1887
Volume 34, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

Quantitative integration of cross‐section geometry, kinematics and cooling ages requires notably more complicated kinematic and exhumation pathways than are typically assumed with a simple in‐sequence model of cross‐section deformation. Incorporating measured basin thickness and depositional ages, determined from magnetostratigraphy or young detrital zircon fission track cooling ages, provide further constraints on the timing of fault motion, as changes in shortening rate that may not alter bedrock cooling ages can affect the depositional age of foreland basin strata. Thermokinematic models of balanced cross‐sections in Arunachal Pradesh, NE India demonstrate that the kinematic sequence and shortening rate exert the largest control over the pattern of predicted cooling ages for the region, by dictating the location and timing of rock uplift and exhumation (cooling) over ramps. The best fit to the measured bedrock cooling ages and basin constraints is achieved with a kinematic sequence involving early foreland propagation of four Lesser Himalayan faults combined with variable shortening rates. Fast rates (25–30 mm/yr) are required to accompany early foreland propagation at ca. 14–13 Ma followed by slower rates (18–20 mm/yr) until 10 Ma. Shortening rates increase to ca. 25–35 mm/yr at ca. 10 Ma until ca. 5–7 Ma. A decrease in shortening rate occurs between 7 and 5 Ma, with rates of 9–15 mm/yr until the present. Although non‐unique, the updated cross‐section geometry and kinematics highlight the components of geometry, deformation and exhumation that must be included in any valid cross‐section model for this portion of the eastern Himalaya such as the location of active ramps, and location and age of two key fault systems, the Bomdila imbricate zone and the thrust faults that form the Lumla duplex. Less unique are the specific geometries of faults, thickness of strata they carry, shortening rates, particularly between 14–8 Ma, and model parameters such as topography, heat production and flexure.

,

Thermokinematic models of balanced cross‐sections integrated with bedrock cooling ages and basin thickness and depositional ages are presented for Arunachal Pradesh, NE India. Model results demonstrate that the location and timing of rock uplift and exhumation (cooling) is largely controlled by the kinematic sequence and shortening rate. Measured bedrock cooling ages and basin constraints are best fit by models with a kinematic sequence involving early foreland propagation combined with variable shortening rates.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12615
2022-01-17
2024-04-18
Loading full text...

Full text loading...

References

  1. Adams, B. A., Whipple, K. X., Hodges, K. V., & Heimsath, A. M. (2016). In situ development of high‐elevation, low‐relief landscapes via duplex deformation in the Eastern Himalayan hinterland, Bhutan. Journal of Geophysical Research: Earth Surface, 121(2), 294–319. https://doi.org/10.1002/2015JF003508
    [Google Scholar]
  2. Adlakha, V., Lang, K. A., Patel, R. C., Lal, N., & Huntington, K. W. (2013). Rapid long‐term erosion in the rain shadow of the Shillong Plateau, Eastern Himalaya. Tectonophysics, 582, 76–83. https://doi.org/10.1016/j.tecto.2012.09.022
    [Google Scholar]
  3. Aikman, A. B., Harrison, T. M., & Lin, D. (2008). Evidence for early (> 44 Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet. Earth and Planetary Science Letters, 274(1–2), 14–23. https://doi.org/10.1016/j.epsl.2008.06.038
    [Google Scholar]
  4. Bhushan, S. K., Bindal, C. M., & Aggarwal, R. K. (1991). Geology of Bomdila group in Arunachal Pradesh. Himalayan Geology, 2(2), 207–214.
    [Google Scholar]
  5. Bilham, R., & England, P. (2001). Plateau ‘pop‐up’ in the great 1897 Assam earthquake. Nature, 410, 806–809. https://doi.org/10.1038/35071057
    [Google Scholar]
  6. Biswas, S., Coutand, I., Grujic, D., Hager, C., Stöckli, D., & Grasemann, B. (2007). Exhumation and uplift of the Shillong plateau and its influence on the eastern Himalayas: New constraints from apatite and zircon (U‐Th‐[Sm])/He and apatite fission track analyses. Tectonics, 26(6), 1–22. https://doi.org/10.1029/2007tc002125
    [Google Scholar]
  7. Bookhagen, B., & Burbank, D. W. (2006). Topography, relief, and TRMM‐derived rainfall variations along the Himalaya. Geophysical Research Letters, 33(8), 1–5. https://doi.org/10.1029/2006GL026037
    [Google Scholar]
  8. Brady, R. J., Ducea, M. N., Kidder, S. B., & Saleeby, J. B. (2006). The distribution of radiogenic heat production as a function of depth in the Sierra Nevada Batholith, California. Lithos, 86(3–4), 229–244. https://doi.org/10.1016/j.lithos.2005.06.003
    [Google Scholar]
  9. Braun, J. (2003). Pecube: A new finite‐element code to solve the 3D heat transport equation including the effects of a time‐varying, finite amplitude surface topography. Computers and Geosciences, 29(6), 787–794. https://doi.org/10.1016/S0098‐3004(03)00052‐9
    [Google Scholar]
  10. Braun, J., van der Beek, P., & Batt, G. E. (2006). Quantitative thermochronology. Cambridge University Press.
    [Google Scholar]
  11. Braza, M., & McQuarrie, N. (2021). Determining the tempo of exhumation in the eastern Himalaya: Part 2. Integrating bedrock and detrital cooling ages through thermokinematic modeling. Basin Research, 1–20. https://doi.org/10.1111/bre.12614
    [Google Scholar]
  12. Brookfield, M. E. (1993). The Himalayan passive margin from Precambrian to Cretaceous times. Sedimentary Geology, 84(1–4), 1–35. https://doi.org/10.1016/0037‐0738(93)90042‐4
    [Google Scholar]
  13. Burgess, P. W., Yin, A., Dubey, C. S., Shen, Z. K., & Kelty, T. K. (2012). Holocene shortening across the main frontal thrust zone in the eastern Himalaya. Earth and Planetary Science Letters, 357–358, 152–167. https://doi.org/10.1016/j.epsl.2012.09.040
    [Google Scholar]
  14. Chapman, D. S. (1986). Thermal gradients in the continental crust. Geological Society, London, Special Publications, 24(1), 63–70. https://doi.org/10.1144/GSL.SP.1986.024.01.07
    [Google Scholar]
  15. Chirouze, F., Dupont‐Nivet, G., Huyghe, P., van der Beek, P., Chakraborti, T., Bernet, M., & Erens, V. (2012). Magnetostratigraphy of the Neogene Siwalik Group in the far eastern Himalaya: Kameng section, Arunachal Pradesh, India. Journal of Asian Earth Sciences, 44, 117–135. https://doi.org/10.1016/j.jseaes.2011.05.016
    [Google Scholar]
  16. Chirouze, F., Huyghe, P., van der Beek, P., Chauvel, C., Chakraborty, T., Dupont‐Nivet, G., & Bernet, M. (2013). Tectonics, exhumation, and drainage evolution of the eastern Himalaya since 13 Ma from detrital geochemistry and thermochronology, Kameng River Section, Arunachal Pradesh. Bulletin of the Geological Society of America, 125(3–4), 523–538. https://doi.org/10.1130/B30697.1
    [Google Scholar]
  17. Clark, M. K., & Bilham, R. (2008). Miocene rise of the Shillong Plateau and the beginning of the end for the Eastern Himalaya. Earth and Planetary Science Letters, 269, 337–351. https://doi.org/10.1016/j.epsl.2008.01.045
    [Google Scholar]
  18. Coutand, I., Whipp, D. M., Grujic, D., Bernet, M., Fellin, M. G., Bookhagen, B., Landry, K. R., Ghalley, S. K., & Duncan, C. (2014). Geometry and kinematics of the Main Himalayan Thrust and Neogene crustal exhumation in the Bhutanese Himalaya derived from inversion of multithermochronologic data. Journal of Geophysical Research: Solid Earth, 119(2), 1446–1481. https://doi.org/10.1002/2013JB010891
    [Google Scholar]
  19. Crowley, K. D., Cameron, M., & Schaefer, R. L. (1991). Experimental studies of annealing of etched fission tracks in fluorapatite. Geochimica et cosmochimica acta, 55(5), 1449–1465. https://doi.org/10.1016/0016‐7037(91)90320‐5
    [Google Scholar]
  20. Dahlstrom, C. D. A. (1969). Balanced cross sections. Canadian Journal of Earth Sciences, 6(4), 743–757. https://doi.org/10.1139/e69‐069
    [Google Scholar]
  21. Daniel, C. G., Hollister, L. S., Parrish, R. R., & Grujic, D. (2003). Exhumation of the main central thrust from lower crustal depths, Eastern Bhutan Himalaya. Journal of Metamorphic Geology, 21(4), 317–334. https://doi.org/10.1046/j.1525‐1314.2003.00445.x
    [Google Scholar]
  22. DeCelles, P. G., Carrapa, B., Gehrels, G. E., Chakraborty, T., & Ghosh, P. (2016). Along‐strike continuity of structure, stratigraphy, and kinematic history in the Himalayan thrust belt: The view from Northeastern India. Tectonics, 35(12), 2995–3027. https://doi.org/10.1002/2016TC004298
    [Google Scholar]
  23. DeCelles, P. G., Carrapa, B., Ojha, T. P., Gehrels, G. E., & Collins, D. (2020). Structural and thermal evolution of the Himalayan thrust belt in midwestern Nepal. Geological Society of America, 547, 1–77. https://doi.org/10.1130/2020.2547(01)
    [Google Scholar]
  24. DeCelles, P. G., Gehrels, G. E., Quade, J., & Ojha, T. P. (1998). Eocene‐early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics, 17(5), 741–765. https://doi.org/10.1029/98TC02598
    [Google Scholar]
  25. DeCelles, P. G., Kapp, P., Gehrels, G. E., & Ding, L. (2014). Paleocene‐Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India‐Asia collision. Tectonics, 33(5), 824–849. https://doi.org/10.1002/2014TC003522
    [Google Scholar]
  26. DeCelles, P. G., Robinson, D. M., Quade, J., Ojha, T. P., Garzione, C. N., Copeland, P., & Upreti, B. N. (2001). Stratigraphy, structure, and tectonic evolution of the Himalayan fold‐thrust belt in Western Nepal. Tectonics, 20(4), 487–509. https://doi.org/10.1029/2000TC001226
    [Google Scholar]
  27. Dodson, M. H. (1973). Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40(3), 259–274. https://doi.org/10.1007/BF00373790
    [Google Scholar]
  28. Ehlers, T. A., Chaudhri, T., Kumar, S., Fuller, C. W., Willett, S. D., Ketcham, R. A., & Fu, F. Q. (2005). Computational tools for low‐temperature thermochronometer interpretation. Reviews in Mineralogy and Geochemistry, 58(1), 589–622. https://doi.org/10.2138/rmg.2005.58.22
    [Google Scholar]
  29. Ehlers, T. A., & Farley, K. A. (2003). Apatite (U‐Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters, 206(1–2), 1–14. https://doi.org/10.1016/S0012‐821X(02)01069‐5
    [Google Scholar]
  30. Einsele, G., Ratschbacher, L., & Wetzel, A. (1996). The Himalaya‐Bengal fan denudation‐accumulation system during the past 20 Ma. Journal of Geology, 104(2), 163–184. https://doi.org/10.1086/629812
    [Google Scholar]
  31. England, P., le Fort, P., Molnar, P., & Pêcher, A. (1992). Heat sources for Tertiary metamorphism and anatexis in the Annapurna‐Manaslu Region central Nepal. Journal of Geophysical Research: Solid Earth, 97(B2), 2107–2128. https://doi.org/10.1029/91JB02272
    [Google Scholar]
  32. Gansser, A. (1964). Geology of the Himalayas. Wiley InterScience.
    [Google Scholar]
  33. Geological Survey of India (2000). Geothermal atlas of India. Geological Survey of India, Special Publication, 19, 1–143.
    [Google Scholar]
  34. Ghoshal, S., McQuarrie, N., Robinson, D. M., Adhikari, D. P., Morgan, L. E., & Ehlers, T. A. (2020). Constraining central Himalayan (Nepal) fault geometry through integrated thermochronology and thermokinematic modeling. Tectonics, 39(9), e2020TC006399. https://doi.org/10.1029/2020TC006399
    [Google Scholar]
  35. Gilmore, M. E., McQuarrie, N., Eizenhöfer, P. R., & Ehlers, T. A. (2018). Testing the effects of topography, geometry, and kinematics on modeled thermochronometer cooling ages in the eastern Bhutan Himalaya. Solid Earth, 9(3), 599–627. https://doi.org/10.5194/se‐9‐599‐2018
    [Google Scholar]
  36. Govin, G., Najman, Y., Copley, A., Millar, I., van der Beek, P., Huyghe, P., Grujic, D., & Davenport, J. (2018). Timing and mechanism of the rise of the Shillong Plateau in the Himalayan foreland. Geology, 46(3), 279–282. https://doi.org/10.1130/G39864.1
    [Google Scholar]
  37. Grujic, D., Hollister, L. S., & Parrish, R. R. (2002). Himalayan metamorphic sequence as an orogenic channel: Insight from Bhutan. Earth and Planetary Science Letters, 198(1–2), 177–191. https://doi.org/10.1016/S0012‐821X(02)00482‐X
    [Google Scholar]
  38. Hames, W. E., & Bowring, S. A. (1994). An empirical evaluation of the argon diffusion geometry in muscovite. Earth and Planetary Science Letters, 124(1–4), 161–169. https://doi.org/10.1016/0012‐821X(94)00079‐4
    [Google Scholar]
  39. Harrison, T. M., Copeland, P., Hall, S. A., Quade, J., Burner, S., Ojha, T. P., & Kidd, W. S. F. (1993). Isotopic preservation of Himalayan/Tibetan uplift, denudation, and climatic histories of two molasse deposits. Journal of Geology, 101(2), 157–175. https://doi.org/10.1086/648214
    [Google Scholar]
  40. Harvey, J. E., Burbank, D. W., & Bookhagen, B. (2015). Along‐strike changes in Himalayan thrust geometry: Topographic and tectonic discontinuities in western Nepal. Lithosphere, 7(5), 511–518. https://doi.org/10.1130/L444.1
    [Google Scholar]
  41. Herman, F., Copeland, P., Avouac, J.‐P., Bollinger, L., Mahéo, G., Le Fort, P., Rai, S., Foster, D., Pêcher, A., Stüwe, K., & Henry, P. (2010). Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. Journal of Geophysical Research: Solid Earth, 115(6), 6407. https://doi.org/10.1029/2008JB006126
    [Google Scholar]
  42. Hodges, K. V. (2014). Thermochronology in orogenic systems. In H. D.Holland & K. K.Turekian (Eds.), Treatise on geochemistry (2nd ed., Vol. 4, pp. 281–308). Elsevier Inc. https://doi.org/10.1016/B978‐0‐08‐095975‐7.00308‐9
    [Google Scholar]
  43. Huerta, A. D., & Rodgers, D. W. (2006). Constraining rates of thrusting and erosion: Insights from kinematic thermal modeling. Geology, 34(7), 541–544. https://doi.org/10.1130/G22421.1
    [Google Scholar]
  44. Jade, S., Mukul, M., Bhattacharyya, A. K., Vijayan, M., Jaganathan, S., Kumar, A., Tiwari, R. P., Kumar, A., Kalita, S., Sahu, S. C., Krishna, A. P., Gupta, S. S., Murthy, M., & Gaur, V. K. (2007). Estimates of interseismic deformation in Northeast India from GPS measurements. Earth and Planetary Science Letters, 263(3–4), 221–234. https://doi.org/10.1016/j.epsl.2007.08.031
    [Google Scholar]
  45. Ketcham, R. A. (1996). Distribution of heat‐producing elements in the upper and middle crust of southern and west central Arizona: Evidence from the core complexes. Journal of Geophysical Research: Solid Earth, 101(B6), 13611–13632. https://doi.org/10.1029/96JB00664
    [Google Scholar]
  46. Ketcham, R. A. (2005). Forward and inverse modeling of low‐temperature thermochronometry data. Reviews in Mineralogy and Geochemistry, 58(1), 275–314. https://doi.org/10.2138/rmg.2005.58.11
    [Google Scholar]
  47. Kumar, G. (1997). Geology of Arunachal Pradesh. Geological Society of India.
    [Google Scholar]
  48. Lee, H., Galy, V., Feng, X., Ponton, C., Galy, A., France‐Lanord, C., & Feakins, S. J. (2019). Sustained wood burial in the Bengal Fan over the last 19 My. Proceedings of the National Academy of Sciences, 116(45), 22518–22525.
    [Google Scholar]
  49. Lock, J., & Willett, S. (2008). Low‐temperature thermochronometric ages in fold‐and‐thrust belts. Tectonophysics, 456(3–4), 147–162. https://doi.org/10.1016/j.tecto.2008.03.007
    [Google Scholar]
  50. Long, S. P., Gordon, S. M., Young, J. P., & Soignard, E. (2016). Temperature and strain gradients through Lesser Himalayan rocks and across the Main Central thrust, south central Bhutan: Implications for transport‐parallel stretching and inverted metamorphism. Tectonics, 35(8), 1863–1891. https://doi.org/10.1002/2016TC004242
    [Google Scholar]
  51. Long, S. P., McQuarrie, N., Tobgay, T., Coutand, I., Cooper, F. J., Reiners, P. W., Wartho, J.‐A., & Hodges, K. V. (2012). Variable shortening rates in the eastern Himalayan thrust belt, Bhutan: Insights from multiple thermochronologic and geochronologic data sets tied to kinematic reconstructions. Tectonics, 31(5). https://doi.org/10.1029/2012TC003155
    [Google Scholar]
  52. Long, S. P., McQuarrie, N., Tobgay, T., & Grujic, D. (2011). Geometry and crustal shortening of the Himalayan fold‐thrust belt, eastern and central Bhutan. Bulletin of the Geological Society of America, 123, 1427–1447. https://doi.org/10.1130/B30203.1
    [Google Scholar]
  53. Long, S. P., McQuarrie, N., Tobgay, T., & Hawthorne, J. (2011). Quantifying internal strain and deformation temperature in the eastern Himalaya, Bhutan: Implications for the evolution of strain in thrust sheets. Journal of Structural Geology, 33, 579–608. https://doi.org/10.1016/j.jsg.2010.12.011
    [Google Scholar]
  54. Long, S. P., McQuarrie, N., Tobgay, T., Rose, C., Gehrels, G., & Grujic, D. (2011). Tectonostratigraphy of the Lesser Himalaya of Bhutan: Implications for the along‐strike stratigraphic continuity of the northern Indian margin. Bulletin of the Geological Society of America, 123, 1406–1426. https://doi.org/10.1130/B30202.1
    [Google Scholar]
  55. Lourens, L., Hilgen, F. J., Shackleton, N. J., Laskar, J., & Wilson, D. (2004). The neogene period. In F. M.Gradstein, J. G.Ogg, & A. G.Smith (Eds.), A geologic time scale 2004 (pp. 409–440). Cambridge University Press. https://doi.org/10.1017/CBO9780511536045.022
    [Google Scholar]
  56. Mancktelow, N. S., & Grasemann, B. (1997). Time‐dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics, 270(3–4), 167–195. https://doi.org/10.1016/S0040‐1951(96)00279‐X
    [Google Scholar]
  57. Mareschal, J. C., & Jaupart, C. (2013). Radiogenic heat production, thermal regime and evolution of continental crust. Tectonophysics, 609, 524–534. https://doi.org/10.1016/J.TECTO.2012.12.001
    [Google Scholar]
  58. Mathew, G., de Sarkar, S., Pande, K., Dutta, S., Ali, S., Rai, A., & Netrawali, S. (2013). Thermal metamorphism of the Arunachal Himalaya, India: Raman thermometry and thermochronological constraints on the tectono‐thermal evolution. International Journal of Earth Sciences, 102(7), 1911–1936. https://doi.org/10.1007/s00531‐013‐0904‐6
    [Google Scholar]
  59. McQuarrie, N., & Ehlers, T. A. (2015). Influence of thrust belt geometry and shortening rate on thermochronometer cooling ages: Insights from thermokinematic and erosion modeling of the Bhutan Himalaya. Tectonics, 34(6), 1055–1079. https://doi.org/10.1002/2014TC003783
    [Google Scholar]
  60. McQuarrie, N., & Ehlers, T. A. (2017). Techniques for understanding fold‐and‐thrust belt kinematics and thermal evolution. In R. D.Law, J. R.Thigpen, A. J.Merschat, & H. H.Stowell (Eds.), Linkages and feedbacks in orogenic systems (pp. 25–54). Geological Society of America. https://doi.org/10.1130/2017.1213(02)
    [Google Scholar]
  61. McQuarrie, N., Eizenhöfer, P. R., Long, S. P., Tobgay, T., Ehlers, T. A., Blythe, A. E., Morgan, L. E., Gilmore, M. E., & Dering, G. M. (2019). The influence of foreland structures on hinterland cooling: Evaluating the drivers of exhumation in the eastern Bhutan Himalaya. Tectonics, 38(9), 3282–3310. https://doi.org/10.1029/2018TC005340
    [Google Scholar]
  62. McQuarrie, N., Long, S. P., Tobgay, T., Nesbit, J. N., Gehrels, G., & Ducea, M. N. (2013). Documenting basin scale, geometry and provenance through detrital geochemical data: Lessons from the Neoproterozoic to Ordovician Lesser, Greater, and Tethyan Himalayan strata of Bhutan. Gondwana Research, 23, 1491–1510. https://doi.org/10.1016/j.gr.2012.09.002
    [Google Scholar]
  63. McQuarrie, N., Tobgay, T., Long, S. P., Reiners, P. W., & Cosca, M. A. (2014). Variable exhumation rates and variable displacement rates: Documenting recent slowing of Himalayan shortening in western Bhutan. Earth and Planetary Science Letters, 386, 161–174. https://doi.org/10.1016/j.epsl.2013.10.045
    [Google Scholar]
  64. Mitra, S., Priestley, K., Bhattacharyya, A. K., & Gaur, V. K. (2005). Crustal structure and earthquake focal depths beneath northeastern India and southern Tibet. Geophysical Journal International, 160(1), 227–248. https://doi.org/10.1111/j.1365‐246X.2004.02470.x
    [Google Scholar]
  65. Montgomery, D. R., & Brandon, M. T. (2002). Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters, 201(3–4), 481–489. https://doi.org/10.1016/S0012‐821X(02)00725‐2
    [Google Scholar]
  66. Murphy, M. A., & Yin, A. (2003). Structural evolution and sequence of thrusting in the Tethyan fold‐thrust belt and Indus‐Yalu suture zone, southwest Tibet. Bulletin of the Geological Society of America, 115(1), 21–34. https://doi.org/10.1130/0016‐7606(2003)115<0021:SEASOT>2.0.CO;2
    [Google Scholar]
  67. Najman, Y., Bracciali, L., Parrish, R. R., Chisty, E., & Copley, A. (2016). Evolving strain partitioning in the Eastern Himalaya: The growth of the Shillong Plateau. Earth and Planetary Science Letters, 433, 1–9. https://doi.org/10.1016/j.epsl.2015.10.017
    [Google Scholar]
  68. Naylor, M., & Sinclair, H. D. (2008). Pro‐ vs. retro‐foreland basins. Basin Research, 20(3), 285–303. https://doi.org/10.1111/j.1365‐2117.2008.00366.x
    [Google Scholar]
  69. Ni, J., & Barazangi, M. (1984). Seismotectonics of the Himalayan collision zone: Geometry of the underthrusting Indian plate beneath the Himalaya. Journal of Geophysical Research, 89(B2), 1147–1163. https://doi.org/10.1029/JB089iB02p01147
    [Google Scholar]
  70. Ojha, T. P., Butler, R. F., DeCelles, P. G., & Quade, J. (2009). Magnetic polarity stratigraphy of the Neogene foreland basin deposits of Nepal. Basin Research, 21(1), 61–90. https://doi.org/10.1111/j.1365‐2117.2008.00374.x
    [Google Scholar]
  71. Olsen, J. E. S., McQuarrie, N., & Robinson, D. M. (2019). Determining kinematic order and relative age of faulting via flexural‐kinematic restoration: A case study in far western Nepal. Basin Research, 31(6), 1153–1177. https://doi.org/10.1111/bre.12362
    [Google Scholar]
  72. Parks, V. M. B., & McQuarrie, N. (2019). Kinematic, flexural, and thermal modelling in the Central Andes: Unravelling age and signal of deformation, exhumation, and uplift. Tectonophysics, 766, 302–325. https://doi.org/10.1016/j.tecto.2019.06.008
    [Google Scholar]
  73. Quade, J., Cater, J. M. L., Ojha, T. P., Adam, J., & Harrison, T. M. (1995). Late Miocene environmental change in Nepal and the northern Indian subcontinent: Stable isotopic evidence from paleosols. Geological Society of America Bulletin, 107(12), 1381–1397. https://doi.org/10.1130/0016‐7606(1995)107<1381:LMECIN>2.3.CO;2
    [Google Scholar]
  74. Rajendran, C. P., Rajendran, K., Duarah, B. P., Baruah, S., & Earnest, A. (2004). Interpreting the style of faulting and paleoseismicity associated with the 1897 Shillong, northeast India, earthquake: Implications for regional tectonism. Tectonics, 23(4), 1–12. https://doi.org/10.1029/2003TC001605
    [Google Scholar]
  75. Ratschbacher, L., Frisch, W., Liu, G., & Chen, C. (1994). Distributed deformation in southern and western Tibet during and after the India‐Asia collision. Journal of Geophysical Research, 99(B10), 917–936. https://doi.org/10.1029/94jb00932
    [Google Scholar]
  76. Ray, L., Bhattacharya, A., & Roy, S. (2007). Thermal conductivity of higher Himalayan crystallines from Garhwal Himalaya, India. Tectonophysics, 434(1–4), 71–79. https://doi.org/10.1016/j.tecto.2007.02.003
    [Google Scholar]
  77. Reiners, P. W., & Brandon, M. T. (2006). Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34(1), 419–466. https://doi.org/10.1146/annurev.earth.34.031405.125202
    [Google Scholar]
  78. Reiners, P. W., Ehlers, T. A., & Zeitler, P. K. (2005). Past, Present, and Future of Thermochronology. Reviews in Mineralogy and Geochemistry, 58(1), 1–18. https://doi.org/10.2138/RMG.2005.58.1
    [Google Scholar]
  79. Ring, U., Brandon, M. T., Willett, S. D., & Lister, G. S. (1999). Exhumation processes. Geological Society Special Publication, 154(1), 1–27. https://doi.org/10.1144/GSL.SP.1999.154.01.01
    [Google Scholar]
  80. Robert, X., van der Beek, P., Braun, J., Perry, C., & Mugnier, J. L. (2011). Control of detachment geometry on lateral variations in exhumation rates in the Himalaya: Insights from low‐temperature thermochronology and numerical modeling. Journal of Geophysical Research: Solid Earth, 116(5), 5202. https://doi.org/10.1029/2010JB007893
    [Google Scholar]
  81. Roy, S., & Rao, R. U. M. (2000). Heat flow in the Indian shield. Journal of Geophysical Research: Solid Earth, 105(B11), 25587–25604. https://doi.org/10.1029/2000JB900257
    [Google Scholar]
  82. Sarma, K. P., Bhattacharjee, S., Nandy, S., Konwar, P., & Mazumdar, N. (2014). Structure, stratigraphy and magnetic susceptibility of Bomdila Gneiss, Western Arunachal Himalaya, India. Journal of the Geological Society of India, 84(5), 544–554. https://doi.org/10.1007/s12594‐014‐0162‐7
    [Google Scholar]
  83. Singer, J., Kissling, E., Diehl, T., & Hetényi, G. (2017). The underthrusting Indian crust and its role in collision dynamics of the Eastern Himalaya in Bhutan: Insights from receiver function imaging. Journal of Geophysical Research: Solid Earth, 122(2), 1152–1178. https://doi.org/10.1002/2016JB013337
    [Google Scholar]
  84. Taral, S., Chakraborty, T., Huyghe, P., van der Beek, P., Vögeli, N., & Dupont‐Nivet, G. (2019). Shallow marine to fluvial transition in the Siwalik succession of the Kameng River section, Arunachal Himalaya and its implication for foreland basin evolution. Journal of Asian Earth Sciences, 184(103980). https://doi.org/10.1016/j.jseaes.2019.103980
    [Google Scholar]
  85. ter Voorde, M., de Bruijne, C. H., Cloetingh, S. A. P. L., & Andriessen, P. A. M. (2004). Thermal consequences of thrust faulting: Simultaneous versus successive fault activation and exhumation. Earth and Planetary Science Letters, 223(3–4), 395–413. https://doi.org/10.1016/J.EPSL.2004.04.026
    [Google Scholar]
  86. Tobgay, T., Long, S., McQuarrie, N., Ducea, M. N., & Gehrels, G. (2010). Using isotopic and chronologic data to fingerprint strata: Challenges and benefits of variable sources to tectonic interpretations, the Paro Formation, Bhutan Himalaya. Tectonics, 29(TC6023), 19. https://doi.org/10.1029/2009TC002637
    [Google Scholar]
  87. Warren, C. J., Grujic, D., Kellett, D. A., Cottle, J., Jamieson, R. A., & Ghalley, K. S. (2011). Probing the depths of the India‐Asia collision: U‐Th‐Pb monazite chronology of granulites from NW Bhutan. Tectonics, 30(2), https://doi.org/10.1029/2010TC002738
    [Google Scholar]
  88. Warren, C. J., Singh, A. K., Roberts, N. M. W., Regis, D., Halton, A. M., & Singh, R. B. (2014). Timing and conditions of peak metamorphism and cooling across the Zimithang Thrust, Arunachal Pradesh, India. Lithos, 200–201(1), 94–110. https://doi.org/10.1016/j.lithos.2014.04.005
    [Google Scholar]
  89. Webb, A. A. G., Yin, A., & Dubey, C. S. (2013). U‐Pb zircon geochronology of major lithologic units in the eastern Himalaya: Implications for the origin and assembly of Himalayan rocks. Geological Society of America Bulletin, 125(3–4), 499–522. https://doi.org/10.1130/B30626.1
    [Google Scholar]
  90. Whipp, D. M., Ehlers, T. A., Blythe, A. E., Huntington, K. W., Hodges, K. V., & Burbank, D. W. (2007). Plio‐Quaternary exhumation history of the central Nepalese Himalaya: 2. Thermokinematic and thermochronometer age prediction model. Tectonics, 26(3). https://doi.org/10.1029/2006TC001991
    [Google Scholar]
  91. Whipp, D. M., Ehlers, T. A., Braun, J., & Spath, C. D. (2009). Effects of exhumation kinematics and topographic evolution on detrital thermochronometer data. Journal of Geophysical Research, 114(F4), F04021. https://doi.org/10.1029/2008JF001195
    [Google Scholar]
  92. Whipple, K. X. (2001). Fluvial landscape response time: How plausible is steady‐state denudation?American Journal of Science, 301(4–5), 313–325. https://doi.org/10.2475/ajs.301.4‐5.313
    [Google Scholar]
  93. Whipple, K. X., & Tucker, G. E. (1999). Dynamics of the stream‐power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth, 104(B8), 17661–17674. https://doi.org/10.1029/1999jb900120
    [Google Scholar]
  94. Yin, A., Dubey, C. S., Kelty, T. K., Gehrels, G. E., Chou, C. Y., Grove, M., & Lovera, O. (2006). Structural evolution of the Arunachal Himalaya and implications for asymmetric development of the Himalayan orogen. Current Science, 90(2), 195–206.
    [Google Scholar]
  95. Yin, A., Dubey, C. S., Kelty, T. K., Webb, A. A. G., Harrison, T. M., Chou, C. Y., & Célérier, J. (2010). Geologic correlation of the Himalayan orogen and Indian craton: Part 2. Structural geology, geochronology, and tectonic evolution of the eastern Himalaya. Bulletin of the Geological Society of America, 122(3–4), 360–395. https://doi.org/10.1130/B26461.1
    [Google Scholar]
  96. Yin, A., & Harrison, T. M. (2000). Geologic evolution of the Himalayan‐Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1), 211–280. https://doi.org/10.1146/annurev.earth.28.1.211
    [Google Scholar]
  97. Zhang, J., & Guo, L. (2007). Structure and geochronology of the southern Xainza‐Dinggye rift and its relationship to the south Tibetan detachment system. Journal of Asian Earth Sciences, 29(5–6), 722–736. https://doi.org/10.1016/j.jseaes.2006.05.003
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12615
Loading
/content/journals/10.1111/bre.12615
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error