1887
Volume 34, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

The Late Cretaceous to Miocene interval of the Gippsland Basin is composed of 23 stacked coastal plain‐shoreface units. Shorefaces are predominantly retrogradational, only becoming regressive in the Oligocene, likely as a result of compressional tectonics and global icehouse conditions. Despite changes in paleoclimate, ocean chemistry and tectonics, depositional environments remain relatively consistent over 70 Ma.

, Abstract

Well‐developed clastic shoreline systems have been deposited in the Gippsland Basin over a 70 Ma period, from the latest Cretaceous to the present day. Twenty‐three stacked coastal units have been mapped and described in the Traralgon and Balook formations of the Latrobe and Seaspray groups. These units are made up of prograding and backstepping shoreface deposits, which, in plan view, display well‐developed strandline geometries at the terrestrial–marine interface. Shoreface deposits are interpreted to include prograding beach, barrier island and transgressive beach deposits. The lower coastal plain is characterised by persistent deposition of coals despite changes in shoreface type and significant palaeoclimate fluctuations. These coastal deposits display approximately 123 km of transgression from the Late Cretaceous shoreline at the base of the study interval to the mid Miocene Yallourn Formation near the top. The Late Cretaceous and Palaeocene shoreline deposits individually prograde and are separated by flooding surfaces reflecting eustatic changes. Overall they display long‐term backstepping behaviour (retrogradation) as a result of basin subsidence. Though shorelines of the Eocene–Miocene are distinctly transgressional, probably reflecting basin subsidence, in the mid‐Miocene they become individually and collectively progradational. A series of unconformities in the Oligocene, coupled with Miocene progradation, likely reflects a combination of a compressional tectonic regime and glacioeustatic fluctuations. Despite major changes in the tectonics and palaeoclimate, basin subsidence appears to be the dominant driver for changes in shoreline location.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12620
2022-01-17
2023-09-25
Loading full text...

Full text loading...

References

  1. Abbassi, S., Edwards, D. S., George, S. C., Volk, H., Mahlstedt, N., di Primo, R., & Horsfield, B. (2016). Petroleum potential and kinematic models for hydrocarbon generation from the Upper Cretaceous to Paleogene Latrobe Group coals and shales in the Gippsland Basin, Australia. Organic Geochemistry, 91, 54–67. https://doi.org/10.1016/j.orggeochem.2015.11.001
    [Google Scholar]
  2. Abele, C., Gloe, C. S., Hocking, J. B., Holdgate, G., Kenley, P. R., Lawrence, C. R., Ripper, D., Threlfall, W. F., & Bolger, P. F. (1988). Tertiary. In J. G.Douglas & J. A.Ferguson (Eds.), Geology of Victoria (pp. 251–350). Geological Society of Australia Victoria Division.
    [Google Scholar]
  3. Barnet, J. S., Littler, K., Westerhold, T., Kroon, D., Leng, M. J., Bailey, I., Röhl, U., & Zachos, J. C. (2019). A high‐fidelity benthic stable isotope record of late Cretaceous–early Eocene climate change and carbon‐cycling. Paleoceanography and Paleoclimatology, 34(4), 672–691. https://doi.org/10.1029/2019PA003556
    [Google Scholar]
  4. Bernecker, T., & Partridge, A. D. (2001). Emperor and Golden Beach subgroups: the onset of Late Cretaceous sedimentation in the Gippsland Basin, SE Australia. In K.Hill & T.Bernecker (Eds.), Eastern Australasian Basins Symposium: A refocussed energy perspective for the future (Vol. 1, pp. 391–402). Petroleum Exploration Society Australia Special Publication.
    [Google Scholar]
  5. Bernecker, T., & Partridge, A. D. (2005). Approaches to palaeogeographic reconstructions of the Latrobe Group, Gippsland Basin, southeastern Australia. The APPEA Journal, 45(1), 581–600. https://doi.org/10.1071/AJ04044
    [Google Scholar]
  6. Bird, E. C. F. (1961). The coastal barriers of East Gippsland, Australia. The Geographical Journal, 127(4), 460–468. https://doi.org/10.2307/1792799
    [Google Scholar]
  7. Bird, E. C. F. (1971). The evolution of sandy barrier formations on the East Gippsland coast. In J. A.Steers (Ed.), Applied coastal geomorphology. Macmillan and Co Publishing.
    [Google Scholar]
  8. Blake, R. (1986). Seismic‐stratigraphic interpretation of coastal barrier systems of Late Eocene age, offshore Gippsland Basin. In R. C.Glenie (Ed.), Second south‐eastern Australia oil exploration symposium (pp. 159–169). Technical Paper of Petroleum Exploration Society of Australian Symposium.
    [Google Scholar]
  9. Bodard, J. M., & Wall, V. J. (1986). Sandstone porosity patterns in the Latrobe Group, offshore Gippsland Basin. In R. C.Glenie (Ed.), Second south‐eastern Australia oil exploration symposium (pp. 137–154). Technical Paper of Petroleum Exploration Society of Australian Symposium.
    [Google Scholar]
  10. Bodard, J. M., Wall, V. J., & Kanen, R. A. (1986). Lithostratigraphic and depositional architecture of the Latrobe group, offshore Gippsland basin. In R. C.Glenie (Ed.), Second south‐eastern Australia oil exploration symposium (pp. 113–136). Technical Paper of Petroleum Exploration Society of Australian Symposium.
    [Google Scholar]
  11. Boudreau, B. P., Middelburg, J. J., Sluijs, A., & van der Ploeg, R. (2019). Secular variations in the carbonate chemistry of the oceans over the Cenozoic. Earth and Planetary Science Letters, 512, 194–206. https://doi.org/10.1016/j.epsl.2019.02.004
    [Google Scholar]
  12. Carter, A. N. (1979). Pliocene eustacy and the onset of sand barrier formation in Gippsland, Victoria. Nature, 280, 131–132. https://doi.org/10.1038/280131a0
    [Google Scholar]
  13. Colman, J. A. R. (1976). Gippsland Basin, onshore. In R.Leslie, H.Evans, & C.Knight (Eds.), Economic Geology of Australia and Papua New Guinea 3 (Vol. 7, pp. 34–41). Australian Institute of Mining and Metallurgy Monograph Series.
    [Google Scholar]
  14. Colwell, J. B., & Willcox, J. B. (1993). Regional structure of the Gippsland Basin: Interpretation and mapping of a deep seismic data set. Department of Primary Industries and Energy, Australian Geological Survey Organisation Record 1993/13.
    [Google Scholar]
  15. Davis, R. A.Jr (Ed.) (1994). Barrier island systems—A geologic overview. In. Geology of Holocene barrier island systems (pp. 1–46). Springer.
    [Google Scholar]
  16. De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., & Palike, H. (2017). Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y. Geology, 45, 4, 375–378. https://doi.org/10.1130/G38663.1
    [Google Scholar]
  17. Dickinson, J. A., Wallace, M. W., Holdgate, G. R., Daniels, J., Gallagher, S. J., & Thomas, L. (2001). Neogene tectonics in SE Australia: Implications for petroleum systems. The APPEA Journal, 41(1), 37–52. https://doi.org/10.1071/AJ00002
    [Google Scholar]
  18. Dickinson, J., Wallace, M., Holdgate, G., Gallagher, S., & Thomas, L. (2002). Origin and timing of the Miocene‐Pliocene unconformity in southeast Australia. Journal of Sedimentary Research, 72(2), 288–303. https://doi.org/10.1306/082701720288
    [Google Scholar]
  19. Evans, P. R. (1970). Palynology of the Tuna Field, Gippsland Basin, Palynology Report 1970/29. In: Tuna‐2 well summary. Esso Standard Oil Australia, Ltd.
    [Google Scholar]
  20. Feary, D. A., & Loutit, T. S. (1998). Cool‐water carbonate facies patterns and diagenesis – The key to the Gippsland Basin ‘velocity problem’. The APPEA Journal, 38(1), 137–146. https://doi.org/10.1071/AJ97007
    [Google Scholar]
  21. Featherstone, P., Aigner, T., Brown, L., King, M., & Leu, W. (1991). Stratigraphic modelling of the Gippsland basin. The APEA Journal, 31(1), 105–114. https://doi.org/10.1071/AJ90009
    [Google Scholar]
  22. Fittall, A., & Cvetanovic, M. (1991). A sequence stratigraphic interpretation of the eastern Gippsland Basin. Exploration Geophysics, 22, 143–148. https://doi.org/10.1071/EG991143
    [Google Scholar]
  23. Foreman, B. Z. (2014). Climate‐driven generation of a fluvial sheet sand body at the Paleocene‐Eocene boundary in north‐west Wyoming, USA. Basin Research, 26, 225–241. https://doi.org/10.1111/bre.12027
    [Google Scholar]
  24. Foreman, B. Z., Heller, P. L., & Clementz, M. T. (2012). Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary. Nature, 491(7422), 92–95. https://doi.org/10.1038/nature11513
    [Google Scholar]
  25. Gaina, C., Roest, W. R., Muller, R. D., & Symonds, P. (1998). The opening of the Tasman Sea: A gravity anomaly animation. Earth Interactions, 2(4), 1–23.
    [Google Scholar]
  26. Gallagher, S. J., & Holdgate, G. (1996). Sequence stratigraphy and biostratigraphy of the onshore Gippsland Basin S.E. Australia. Australasian Sedimentologists Group Fiend Guide Series No. 11. Geological Society of Australia Inc.
    [Google Scholar]
  27. Gallagher, S., Smith, A., Jonasson, K., Wallace, M., Holdgate, G., Daniels, J., & Taylor, D. (2001). The Miocene palaeoenvironmental and palaeoceanographic evolution of the Gippsland basin, southeast Australia: A record of Southern Ocean change. Palaeogeography, Palaeoclimatology, Palaeoecology, 172, 53–80. https://doi.org/10.1016/S0031‐0182(01)00271‐1
    [Google Scholar]
  28. Gallagher, S. J., Wade, B., Qianyu, L., Holdgate, G. R., Bown, P., Korasidis, V. A., Scher, H., Houben, A. J. P., McGowran, B., & Allan, T. (2020). Eocene to Oligocene high paleolatitude neritic record of Oi‐1 glaciation in the Otway Basin southeast Australia. Global and Planetary Change, 191, 103–218. https://doi.org/10.1016/j.gloplacha.2020.103218
    [Google Scholar]
  29. Gradstein, F. M., Ogg, J. G., Schmitz, M., & Ogg, G. (Eds.). (2012). The geologic time scale. Elsevier. https://doi.org/10.1016/C2011‐1‐08249‐8
    [Google Scholar]
  30. Greene, S. E., Ridgwell, A., Kirtland Turner, S., Schmidt, D. N., Palike, H., Thomas, E., Greene, L. K., & Hoogakker, B. A. A. (2019). Early Cenozoic decoupling of climate and carbonate compensation depth trends. Paleoceanography and Paleoclimatology, 34, 930–945. https://doi.org/10.1029/2019PA003601
    [Google Scholar]
  31. Hajek, E., Paola, C., Petter, A., Alabbad, A., & Kim, W. (2014). Amplification of shoreline response to sea‐level change by back‐tilted subsidence. Journal of Sedimentary Research, 84, 470–474. https://doi.org/10.2110/jsr.2014.34
    [Google Scholar]
  32. Hannah, M. J., Powis, G. D., & Macphail, M. K. (1984). Palynological analysis, Wrasse‐1 Gippsland Basin. In Wrasse‐1 well completion report interpretative data (Vol. 2). Esso Australia Ltd.
    [Google Scholar]
  33. Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156–1167. https://doi.org/10.1126/science.235.4793.1156
    [Google Scholar]
  34. Haskell, T. (1972). Hydrocarbon potential of the Mesozoic and basal Tertiary of the Gippsland Basin: A stratigraphic analysis. The APEA Journal, 12, 138–143. https://doi.org/10.1071/AJ71023
    [Google Scholar]
  35. Hayden, B. P., & Dolan, R. (1979). Barrier islands, lagoons, and marshes. Journal of Sedimentary Research, 49(4), 1061–1071. https://doi.org/10.1306/212F78B0‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  36. Hegarty, K. A., Duddy, I. R., Green, P. F., Gleadow, A. J. W., Fraser, I., & Weissel, J. K. (1986). Regional evaluation of the tectonic and thermal history of the Gippsland Basin. In R. C.Glenie (Ed.), Second south‐eastern Australia oil exploration symposium (pp. 65–74). Technical Paper of Petroleum Exploration Society of Australian Symposium.
    [Google Scholar]
  37. Helland‐Hansen, W., & Hampson, G. J. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21, 454–483. https://doi.org/10.1111/j.1365‐2117.2009.00425.x
    [Google Scholar]
  38. Helland‐Hansen, W., & Martinsen, O. J. (1996). Shoreline trajectories and sequences: Description of variable depositional‐dip scenarios. Journal of Sedimentary Research, 66(4), 670–688. https://doi.org/10.1306/D42683DD‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  39. Hocking, J. B. (1972). Geologic evolution and hydrocarbon habitat Gippsland Basin. The APEA Journal, 12(1), 132–137. https://doi.org/10.1071/AJ71022
    [Google Scholar]
  40. Hocking, J. B. (1988). Tertiary: Gippsland Basin. In J. G.Douglas & J. A.Fergusen (Eds.), Geology of Victoria (pp. 322–347). Geological Society of Australia (Victoria Division).
    [Google Scholar]
  41. Hoffman, N., Arian, N., & Carman, G. (2012). Detailed seal studies for CO2 storage in the Gippsland Basin. In T.Mares (Ed.), Eastern Australasian Basin Symposium IV (pp. 125–138). Petroleum Exploration Society of Australia Special Publication.
    [Google Scholar]
  42. Holdgate, G. R. (2005). Geological processes that control lateral and vertical variability in coal seam moisture contents – Latrobe Valley (Gippsland Basin) Australia. International Journal of Coal Geology, 63, 130–155. https://doi.org/10.1016/j.coal.2005.02.010
    [Google Scholar]
  43. Holdgate, G. R., Cartwright, I., Blackburn, D. T., Wallace, M. W., Gallagher, S. J., Wagstaff, B. E., & Chung, L. (2007). The Middle Miocene Yallourn coal seam‐The last coal in Australia. International Journal of Coal Geology, 70, 95–115. https://doi.org/10.1016/j.coal.2006.01.007
    [Google Scholar]
  44. Holdgate, G. R., & Gallagher, S. J. (2003). Tertiary: A period of transition to marine basin environments. In W. D.Birch (Ed.), Geology of Victoria. Geological Society of Australia Special Publication 23 (pp. 289–335). Geological Society of Australia (Victoria Division).
    [Google Scholar]
  45. Holdgate, G. R., Sluiter, I. R. K., & Taglieri, J. (2017). Eocene‐Oligocene coals of the Gippsland and Australo‐Antarctic basins–Paleoclimatic and paleogeographic context and implications for the earliest Cenozoic glaciations. Palaeogeography, Palaeoclimatology, Palaeoecology, 472, 236–255. https://doi.org/10.1016/j.palaeo.2017.01.035
    [Google Scholar]
  46. Holdgate, G. R., Wallace, M. W., Daniels, J., Gallagher, S. J., Keene, J. B., & Smith, A. J. (2000). Controls on Seaspray Group sonic velocities in the Gippsland Basin – A multidisciplinary approach to the canyon seismic velocity problem. The APPEA Journal, 40(1), 293–313. https://doi.org/10.1071/AJ99016
    [Google Scholar]
  47. Holdgate, G. R., Wallace, M. W., Gallagher, S. J., Smith, A. J., Keene, J. B., Moore, D., & Shafik, S. (2003). Plio‐Pleistocene tectonics and eustacy in the Gippsland Basin, southeast Australia: Evidence from magnetic imagery and marine geological data. Australian Journal of Earth Sciences, 50, 403–426.
    [Google Scholar]
  48. Holdgate, G. R., Wallace, M. W., Gallagher, S. J., & Taylor, D. (2000). A review of the Traralgon Formation in the Gippsland Basin – A world class brown coal resource. International Journal of Coal Geology, 45, 55–84. https://doi.org/10.1016/S0166‐5162(00)00020‐3
    [Google Scholar]
  49. Huber, B. T., MacLoed, K. G., Watkins, D. K., & Coffin, M. F. (2018). The rise and fall of the Cretaceous Hot Greenhouse climate. Global and Planetary Change, 167, 1–23. https://doi.org/10.1016/j.gloplacha.2018.04.004
    [Google Scholar]
  50. James, E. A., & Evans, P. R. (1971). The stratigraphy of the offshore Gippsland basin. The APPEA Journal, 11(1), 71–74. https://doi.org/10.1071/AJ70012
    [Google Scholar]
  51. Johnstone, E., Jenkins, C., & Moore, M. (2001). An integrated structural and palaeogeographic investigation of Eocene erosional events and related hydrocarbon potential in the Gippsland basin. In K.Hill & T.Bernecker (Eds.), Eastern Australasian Basins Symposium: A refocussed energy perspective for the future (pp. 403–412). Petroleum Exploration Society of Australia Special Publication.
    [Google Scholar]
  52. Korasidis, V. A., Wallace, M. W., Dickinson, J. A., & Hoffman, N. (2019). Depositional setting for Eocene seat earths and related facies of the Gippsland Basin, Australia. Sedimentary Geology, 390, 100–113. https://doi.org/10.1016/j.sedgeo.2019.07.007
    [Google Scholar]
  53. Korasidis, V. A., Wallace, M. W., Tosolini, A. P., & Hill, R. S. (2020). The origin of floral lagerstatten in coals. Palaios, 35, 22–36. https://doi.org/10.2110/palo.2019.073
    [Google Scholar]
  54. Korasidis, V. A., Wallace, M. W., Wagstaff, B. E., Gallagher, S. J., McCaffrey, J. C., Allan, T., Rastogi, S., & Fletcher, M.‐S. (2018). New age controls on Oligocene and Miocene sediments in southeastern Australia. Review of Palaeobotany and Palynology, 256, 20–31. https://doi.org/10.1016/j.revpalbo.2018.05.003
    [Google Scholar]
  55. Korasidis, V. A., Wallace, M. W., Wagstaff, B. E., & Hill, R. S. (2019). Terrestrial cooling record through the Eocene‐Oligocene transition of Australia. Global and Planetary Change, 173, 61–72. https://doi.org/10.1016/j.gloplacha.2018.12.007
    [Google Scholar]
  56. Korasidis, V. A., Wallace, M. W., Wagstaff, B. E., & Holdgate, G. R. (2017). Oligo‐Miocene peatland ecosystems of the Gippsland Basin and modern analogues. Global and Planetary Change, 149, 91–104. https://doi.org/10.1016/j.gloplacha.2017.01.003
    [Google Scholar]
  57. Mahon, E. M., & Wallace, M. W. (2020). Cenozoic structural history of the Gippsland Basin: Early Oligocene onset for compressional tectonics in SE Australia. Marine and Petroleum Geology, 114, 1–17. https://doi.org/10.1016/j.marpetgeo.2020.104243
    [Google Scholar]
  58. Maung, T., & Cadman, S. (1992). Seismic interpretation problems caused by Miocene channels in the central part of the Gippsland Basin. In C.Barton, K.Hill, C.Abele, J.Foster, & N.Kempton (Eds.), Energy, Economics and Environment Gippsland Basin Symposium (pp. 1–13).
    [Google Scholar]
  59. Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., & Wright, J. D. (2020). Cenozoic sea‐level and cryospheric evolution from deep‐sea geochemical and continental margin records. Science Advances, 6(20), eaaz1346. https://doi.org/10.1126/sciadv.aaz1346
    [Google Scholar]
  60. Miller, K. G., Kominz, M. A., Browning, V. J., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie‐Blick, N., & Pekar, S. F. (2005). The Phanerozoic record of global sea‐level change. Science, 310(5752), 1293–1298. https://doi.org/10.1126/science.1116412
    [Google Scholar]
  61. Norvick, M. S., Smith, M. A., & Power, M. R. (2001). The plate tectonic evolution of eastern Australasia guided by the stratigraphy of the Gippsland basin. In K.Hill & T.Bernecker (Eds.), Eastern Australasian Basins Symposium: A refocussed energy perspective for the future (Vol. 1, pp. 15–23). Petroleum Exploration Society Australia Special Publication.
    [Google Scholar]
  62. Oertel, G. F. (1985). The barrier island system. Marine Geology, 63 (1–4), 1–18. https://doi.org/10.1016/0025‐3227(85)90077‐5
    [Google Scholar]
  63. Otvos, E. G. (2012). Coastal barriers – Nomenclature, processes, and classification issues. Geomorphology, 139, 39–52. https://doi.org/10.1016/j.geomorph.2011.10.037
    [Google Scholar]
  64. Otvos, E. G. (2020). Coastal barriers – Fresh look at origins, nomenclature and classification issues. Geomorphology, 355, 1–22. https://doi.org/10.1016/j.geomorph.2019.107000
    [Google Scholar]
  65. Pälike, H., Lyle, M. W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K., Klaus, A., Acton, G., Anderson, L., Backman, J., Baldauf, J., Beltran, C., Bohaty, S. M., Bown, P., Busch, W., Channell, J. E. T., Chun, C. O. J., Delaney, M., Dewangan, P., … Zeebe, R. E. (2012). A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature, 488(7413), 609–614. https://doi.org/10.1038/nature11360
    [Google Scholar]
  66. Partridge, A. D. (1971). Stratigraphic palynology of the onshore Tertiary sediments of the Gippsland Basin [Unpublished MSc. thesis]. University of New South Wales.
    [Google Scholar]
  67. Partridge, A. D. (1975). Palynological analysis of Flounder‐5. Palaeontology Report 1975/7. In P. C.Sippe (Compiler), Flounder‐5 well completion report. Esso Australia Ltd.
    [Google Scholar]
  68. Partridge, A. D. (1976). The geological expression of eustacy in the early tertiary of the Gippsland basin. The APPEA Journal, 16(1), 73–79. https://doi.org/10.1071/AJ75007
    [Google Scholar]
  69. Partridge, A. D. (1999). Late Cretaceous to Tertiary geological evolution of the Gippsland Basin [Unpublished PhD thesis]. LaTrobe University.
    [Google Scholar]
  70. Partridge, A. D. (2006). New Observations on the Cenozoic Stratigraphy of the Bassian Rise Derived from a Palynological Study of the Groper‐1, Mullet‐1 and Bluebone‐1 Wells, Offshore Gippsland Basin, Southeast Australia. Biostrata Report 2006/07.
    [Google Scholar]
  71. Porębski, S. J., & Steel, R. J. (2006). Deltas and sea‐level change. Journal of Sedimentary Research, 76(3), 390–403. https://doi.org/10.2110/jsr.2006.034
    [Google Scholar]
  72. Rahmanian, V. D., Moore, P. S., Mudge, W. J., & Spring, D. E. (1990). Sequence stratigraphy and the habitat of hydrocarbons, Gippsland Basin, Australia. Geological Society, London, Special Publications, 50(1), 525–544. https://doi.org/10.1144/GSL.SP.1990.050.01.32
    [Google Scholar]
  73. Schwartz, M. L. (1971). The multiple causality of barrier islands. The Journal of Geology, 79(1), 91–94. https://doi.org/10.1086/627589
    [Google Scholar]
  74. Small, C., & Nicholls, R. J. (2003). A global analysis of human settlement in coastal zones. Journal of Coastal Research, 19(3), 584–599.
    [Google Scholar]
  75. Smith, J. E. L. (1960). Rosedale No. 1 well completion report. APM Development Pty. Ltd.
    [Google Scholar]
  76. Stocchi, P., Escutia, C., Houben, A. J. P., Vermeersen, B. L. A., Bijl, P. K., Brinkhuis, H., DeConto, R. M., Galeotti, S., Passchier, S., Pollard, D., Brinkhuis, H., Escutia, C., Klaus, A., Fehr, A., Williams, T., Bendle, J. A. P., Bijl, P. K., Bohaty, S. M., Carr, S. A., … Yamane, M. (2013). Relative sea‐level rise around East Antarctica during Oligocene glaciation. Nature Geoscience, 6(5), 380–384. https://doi.org/10.1038/NGEO1783
    [Google Scholar]
  77. Stover, L. E., & Evans, P. R. (1973). Upper Cretaceous‐Eocene spore pollen zonation, offshore Gippsland Basin (Vol. 4, pp. 55–72). Geological Society of Australia Special Publication.
    [Google Scholar]
  78. Stover, L. E., & Partridge, A. D. (1973). Tertiary and late cretaceous spores and pollen from the Gippsland basin, southeastern Australia. Proceedings of the Royal Society of Victoria, 85(2), 237–286.
    [Google Scholar]
  79. Straub, K. M., Duller, R. A., Foreman, B. Z., & Hajek, E. A. (2020). Buffered, incomplete, and shredded: The challenges of reading an imperfect stratigraphic record. Journal of Geophysical Research: Earth Surface, 125(3), e2019JF005079. https://doi.org/10.1029/2019JF005079
    [Google Scholar]
  80. Thom, B. G. (1983). Transgressive and regressive stratigraphies of coastal sand barriers in southeast Australia. Marine Geology, 56, 137–158. https://doi.org/10.1016/0025‐3227(84)90010‐0
    [Google Scholar]
  81. Thom, B. G. (1984). Sand barriers in eastern Australia ‐ A case study. In B. G.Thom (Ed.), Coastal geomorphology in Australia (pp. 233–261). Academic Press.
    [Google Scholar]
  82. Thompson, B. R. (1980). The Gippsland sedimentary basin: A study of the onshore area [Unpublished PhD thesis]. University of Melbourne.
    [Google Scholar]
  83. Vail, P. R., Mitchum, R. M.Jr, & Thompson, S.III. (1977). Seismic stratigraphy and global changes of sea level: Part 4. Global cycles of relative changes of sea level: Section 2. Application of seismic reflection configuration to stratigraphic interpretation. In C. E.Poton (Ed.), AAPG Memoir 26 Seismic stratigraphy: Applications to hydrocarbon exploration. AAPG.
    [Google Scholar]
  84. Van der Ploeg, R., Boudreau, B. P., Middelburg, J. J., & Sluijs, A. (2019). Cenozoic carbonate burial along continental margins. Geology, 47, 1025–1028. https://doi.org/10.1130/G46418.1
    [Google Scholar]
  85. Wallace, M. W., Dickinson, J. A., Korasidis, V. A., & Holdgate, G. R. (2018). Distribution and Geometry of Latrobe Group intraformational seals, Gippsland Basin. Australian National Low Emissions Coal Research and Development Limited Report, 2018, 1–75.
    [Google Scholar]
  86. Wallace, M. W., Dickinson, J. A., Moore, D. H., & Sandiford, M. (2005). Late Neogene strandlines of southern Victoria: A unique record of eustasy and tectonics in southeast Australia. Australian Journal of Earth Sciences, 52(2), 279–297. https://doi.org/10.1080/08120090500139455
    [Google Scholar]
  87. Wallace, M. W., Holdgate, G. R., Daniels, J., Gallagher, S. J., & Smith, A. (2002). Sonic velocity, submarine canyons, and burial diagenesis in Oligocene‐Holocene cool‐water carbonates, Gippsland Basin southeast Australia. AAPG Bulletin, 86, 1593–1607. https://doi.org/10.1306/61EEDD14‐173E‐11D7‐8645000102C1865D
    [Google Scholar]
  88. Warne, M. T., Archbold, N. W., Bock, P. E., Darragh, T. A., Dettman, M. E., Douglas, J. G., Gratsianova, R. T., Grover, M., Holloway, D. J., Holmes, F. C., Irwin, R. P., Jell, P. A., Long, J. A., Mawson, R., Partridge, A. D., Pickett, J. W., Rich, T. H., Richardson, J. R., Simpson, A. J., … Vandenberg, A. H. M. (2003). Palaeontology, the biogeohistory of Victoria. In W. D.Birch (Ed.), Geology of Victoria (pp. 605–652). Geological Society of Australia.
    [Google Scholar]
  89. Willcox, J. B., Colwell, J. B., & Constantine, A. E. (1992). New ideas on Gippsland basin regional tectonics. In C.Barton, K.Hill, C.Abele, J.Foster, & N.Kempton (Eds.), Energy, Economics and Environment Gippsland Basin Symposium (pp. 93–110).
    [Google Scholar]
  90. Zachos, J. C., Dickens, G. R., & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon‐cycle dynamics. Nature, 45, 279–283.
    [Google Scholar]
  91. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms and aberrations in global climate, 60 Ma to present. Science, 292(5517), 686–693. https://doi.org/10.1126/science.1059412
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12620
Loading
/content/journals/10.1111/bre.12620
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): 3D seismic; barrier; coal; Gippsland Basin; shoreline; stratigraphy; transgression

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error