1887
  • E-ISSN: 1365-2117
PDF

Abstract

[

, Abstract

Supradetachment basins at passive rifted margins are a key witness of major‐continental extension, and they may preserve a record from which the amount and rates of extension and metamorphic core complex exhumation may be reconstructed. These basins have mainly been recognised in back‐arc and orogenic collapse settings, with few examples from rifted margins. Using 2D and 3D seismic reflection, wellbore, and gravity anomaly data, we here characterise the three‐dimensional structural and tectonosedimentary evolution of a spoon‐shaped supradetachment basin that was formed in the necking domain of a rifted margin, at the southern limit of the Møre and Vøring segments of the Norwegian rifted margin. The basin, with an areal extent of ca. 2400 km2, and a landward‐rotated syn‐tectonic succession up to ca. 30 km thick (true stratigraphic thickness), is separated from footwall continental margin core complex basement culminations by major large‐offset (>30 km) normal fault complexes characterised by a cross‐sectional geometry whereby an upper, steeper part of the fault gives way to a low‐angle detachment fault at depth. These fault complexes are associated with a tectonic thinning of the continental crust to ca. 11 km, compared with a crustal thickness of ca. 27 km in the proximal domain. The basin is filled by a succession of pre‐, syn‐ and post‐tectonic deposits, that accumulated over time as the basin evolved over a series of rift‐ and detachment faulting events. The 30 km thick syn‐tectonic succession reflects deposition during two separate rifting events, which are disconnected by deposits reflecting a relative short period of tectonic quiescence. The results are discussed in light of examples of supradetachment basins on other rifted margins globally, as well as in the context of the evolution of the Norwegian margin overall.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12648
2022-05-22
2022-06-29
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/3/bre12648.html?itemId=/content/journals/10.1111/bre.12648&mimeType=html&fmt=ahah

References

  1. Andersen, T. B., & Jamtveit, B. (1990). Uplift of deep crust during orogenic extensional collapse: A model based on field studies in the Sogn‐Sunnfjord region of western Norway. Tectonics, 9(5), 1097–1111. https://doi.org/10.1029/TC009i005p01097
    [Google Scholar]
  2. Asti, R., Faccena, C., Rossetti, F., Malusà, M. G., Gliozzi, E., Faranda, C., Lirer, F., & Cosentino, D. (2019). The Gediz supradetachment system (SW Turkey): Magmatism, tectonics, and sedimentation during crustal extension. Tectonics, 38, 1414–1440. https://doi.org/10.1029/2018TC005181
    [Google Scholar]
  3. Asti, R., Malusà, M. G., & Faccena, C. (2018). Supradetachment basin evolution unravelled by detritalapatite fission track analysis: The Gediz Graben (Menderesmassif, Westernturkey). Basin Research, 30, 502–521. https://doi.org/10.1111/bre.12262
    [Google Scholar]
  4. Axen, G. J. (2004). Mechanics of low‐angle normal faults, Chapter 3. In G. D.Karner, B.Taylor, N. W.Driscoll, & D. J.Kohlstedt (Eds.), Rheology and deformation of the lithosphere at continental margins (pp. 46–91). Columbia University Press.
    [Google Scholar]
  5. Bell, R., Jackson, C., Elliott, G., Gawthorpe, R., Sharp, I. R., & Michelsen, L. (2014). Insights into the development of major rift‐related unconformities from geologically constrained subsidence modelling: Halten terrace, Offshore Mid Norway. Basin Research, 26, 203–224. https://doi.org/10.1111/bre.12049
    [Google Scholar]
  6. Bell, R., Jackson, C.‐A.‐L., Whipp, P. S., & Clements, B. (2014). Strain migration during multiphase extension: Observations from the northern North Sea. Tectonics, 33, 1936–1963. https://doi.org/10.1002/2014TC003551
    [Google Scholar]
  7. Blystad, P., Brekke, H., & Faerseth, R. B. (1995). Structural elements of the Norwegian continental shelf. Pt. 2. The Norwegian Sea Region. Norwegian Petroleum Directorate.
    [Google Scholar]
  8. Braathen, A., Nordgulen, Ø., Osmundsen, P. T., Andersen, T. B., Solli, A., & Roberts, D. (2000). Devonian, orogen‐parallel, opposed extension in the Central Norwegian Caledonides. Geology, 28, 615–618. https://doi.org/10.1130/0091‐7613(2000)28<615:DOOEIT>2.0.CO;2
    [Google Scholar]
  9. Bukta, K. E. (2018). Slørebotn sub‐basin tectono‐stratigraphic framework (Master thesis). University of Stavanger. https://uis.brage.unit.no/uis‐xmlui/handle/11250/2563002
    [Google Scholar]
  10. Chéry, J. (2001). Core complex mechanics: From the gulf of corinth to the snake range. Geology, 29, 439–442. https://doi.org/10.1130/0091‐7613(2001)029<0439:CCMFTG>2.0.CO;2
    [Google Scholar]
  11. Chiarella, D., Capella, W., Longhitano, S. G., & Muto, F. (2020). Fault‐controlled base‐of‐scarp deposits. Basin Research, 33(2), 1056–1075. https://doi.org/10.1111/bre.12505
    [Google Scholar]
  12. Chiarella, D., Longhitano, S. G., Mosdell, W., & Telesca, D. (2020). Sedimentology and facies analysis of ancient sand ridges: Jurassic Rogn formation, Trøndelag platform, offshore Norway. Marine and Petroleum Geology, 112, 104082. https://doi.org/10.1016/j.marpetgeo.2019.104082
    [Google Scholar]
  13. Cooper, F. J., Platt, J. P., Anczkiewica, R., & Whitehouse, M. J. (2010). Footwall dip of a core complex detachment fault: Thermobarometric constraints from the Northern Snake range (Basin and Range, USA). Journal of Metamorphic Geology, 28, 997–1020. https://doi.org/10.1111/j.1525‐1314.2010.00907.x
    [Google Scholar]
  14. Corfu, F., Andersen, T. B., & Gasser, D. (2014). The Scandinavian Caledonides: Main features, conceptual advances and critical questions. Geological Society, 390, 9–43. https://doi.org/10.1144/SP390.25
    [Google Scholar]
  15. Dalland, A., Worsley, D., & Ofstad, K. (1988). A Lithostratigraphic scheme for the mesozoic and cenozoic and succession offshore mid‐ and northern Norway. Oljedirektoratet.
    [Google Scholar]
  16. Davis, G. H. (1980). Structural characteristics of metamorphic core complexes, Southern Arizona. In M. D.Crittenden, P. J.Coney, & G. H.Davis (Eds.), Cordilleran metamorphic core complexes, memoir (Vol. 153, pp. 35–77). The Geological Society of America.
    [Google Scholar]
  17. Deng, C., Gawthorpe, R. L., Finch, E., & Fossen, H. (2017). Influence of a pre‐existing basement weakness on normal fault growth during oblique extension: Insights from discrete element modeling. Journal of Structural Geology, 105, 44–61. https://doi.org/10.1016/j.jsg.2017.11.005
    [Google Scholar]
  18. Dermircioǧlu, D., Ecevitoǧlu, E., & Seyitoǧlu, G. (2010). Evidence of a rolling hinge mechanism in the seismic records of the hydrocarbon‐bearing Alaşehir Graben, Western Turkey. Petroleum Geoscience, 16, 155–160. https://doi.org/10.1144/1354‐079309‐017
    [Google Scholar]
  19. Doré, A., Lundin, E., Jensen, L., Birkeland, Ø., Eliassen, P., & Fichler, C. (1999). Principal tectonic events in the evolution of the Northwest European Atlantic margin. In A. J.Fleet, A. J.Fleet, & S. A. R.Boldy (Eds.), Petroleum geology of Northwest Europe: Proceedings of the 5th Conference (Vol. 5, pp. 41–61). Petroleum Geology Conference Series, Geological Society of London. https://doi.org/10.1144/0050041
    [Google Scholar]
  20. Ebbing, J., & Olesen, O. (2011). New compilation of top basement and basement thickness for the norwegian continental shelf reveals the segmentation of the passive margin system. In B. A.Vining & S. C.Pickering (Eds.), Petroleum geology: From mature basins to new frontiers ‐ Proceedings of the 7th Petroleum Geology Conference (pp. 885–897). The Geological Society. https://doi.org/10.1144/0070885
    [Google Scholar]
  21. Elliott, G. M., Jackson, C. A. L., Gawthorpe, R. L., Wilson, P., Sharp, I. R., & Michelsen, L. (2015). Late Syn‐Rift evolution of the Vingleia fault complex, Halten terrace, offshore Mid‐Norway; a test of rift basin tectono‐stratigraphic models. Basin Research, 1–23. https://doi.org/10.1111/bre.12158
    [Google Scholar]
  22. Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, O., Wilson, J., & Eldholm, O. (2008). Structure and evolution of the continental margin off Norway and the Barents sea. Episodes, 31, 82–91. https://doi.org/10.18814/epiiugs/2008/v31i1/012
    [Google Scholar]
  23. Fillmore, R. P., Walker, J. D., Bartley, J. M., & Glazner, A. F. (1994). Development of three genetically related basins associated with detachment‐style faulting: Predicted characteristics and an example from the Central Mojave Desert, California. Geology, 88, 1087–1090. https://doi.org/10.1130/0091‐7613(1994)022<1087:DOTGRB>2.3.CO;2
    [Google Scholar]
  24. Folkestad, A., & Steel, R. J. (2001). The alluvial cyclicity in hornelen basin (devonian Western Norway) revisited: A multiparameter sedimentary analysis and stratigraphic implications. In O. J.Martinsen & T.Dreyer (Eds.), Sedimentary environments offshore Norway – Palaeozoic to recent, NPF Special Publication (Vol. 10, pp. 39–50). Norwegian Petroleum Society. https://doi.org/10.1016/S0928‐8937(01)80007‐2
    [Google Scholar]
  25. Ford, M., Rohais, S., Williams, E. A., Bourlange, S., Jousselin, D., Backert, N., & Malartre, F. (2013). Tectono‐sedimentary evolution of the Western Corinth Rift (Central Greece). Basin Research, 25, 3–25. https://doi.org/10.1111/j.1365‐2117.2012.00550.x
    [Google Scholar]
  26. Forshee, E. J., & Yin, A. (1995). Evolution of monolithological breccia deposits in supradetachment basins, Whipple Mountains, California. Basin Research, 7, 181–197. https://doi.org/10.1111/j.1365‐2117.1995.tb00103.x
    [Google Scholar]
  27. Fossen, H. (2010). Extensional tectonics in the North Atlantic Caledonides: A regional view. Geological Society, Special Publications, 335, 767–793. https://doi.org/10.1144/SP335.31
    [Google Scholar]
  28. Fossen, H., & Cavalcante, G. C. (2017). Shear zones – A review. Earth‐Science Reviews, 171, 434–455. https://doi.org/10.1016/j.earscirev.2017.05.002
    [Google Scholar]
  29. Friedmann, S. J., & Burbank, D. W. (1995). Rift basins and supradetachment basins: Intracontinental extensional end‐members. Basin Research, 7, 109–127. https://doi.org/10.1111/j.1365‐2117.1995.tb00099.x
    [Google Scholar]
  30. Gabrielsen, R. H., Odinsen, T., & Grunnaleite, I. (1999). Structuring of the Northern Viking Graben and the Møre basin; the influence of basement structural grain, and the particular role of the Møre‐Trøndelag fault complex. Marine and Petroleum Geology, 16, 443–465. https://doi.org/10.1016/S0264‐8172(99)00006‐9
    [Google Scholar]
  31. Gawthorpe, R., Fraser, A. J., & Collier, R. E. L. (1994). Sequence stratigraphy in active extensional basins: Implications for the interpretation of ancient basin‐fills. Marine and Petroleum Geology, 11, 642–658. https://doi.org/10.1016/0264‐8172(94)90021‐3
    [Google Scholar]
  32. Gee, D. G., Janák, M., Majka, J., Robinson, P., & van Roermund, H. (2013). Subduction along and within the Baltoscandian margin during closing of the Iapetus Ocean and Baltica‐Laurentia collision. Lithosphere, 5(2), 169–178. https://doi.org/10.1130/L220.1
    [Google Scholar]
  33. Gernigon, L., Franke, D., Geoffroy, L., Schiffer, C., Foulger, G. R., & Stoker, M. S. (2020). Crustal fragmentation, magmatism, and the diachronous opening of the Norwegian‐Greenland sea. In C.Doglioni (Ed.), A new paradigm for the North Atlantic realm, earth‐science reviews (Vol. 206, 37 pp). https://doi.org/10.1016/j.earscirev.2019.04.011
    [Google Scholar]
  34. Gernigon, L., Olesen, O., Ebbing, J., Wienecke, S., Gaina, C., Mogaard, J. O., Sand, M., & Myklebust, R. (2009). Geophysical insights and early spreading history in the vicinity of the Jan Mayen fracture zone, Norwegian‐Greenland sea. Tectonophysics, 468, 185–205. https://doi.org/10.1016/j.tecto.2008.04.025
    [Google Scholar]
  35. Groshong, R. H. J. (2006). 3D structural geology: A practical guide to quantitative surface and subsurface map interpretation. Springer.
    [Google Scholar]
  36. Hubbard, R. J. (1988). Age and significance of sequence boundaries on Jurassic and early Cretaceous rifted continental margins. AAPG Bulletin, 72(1), 49–72. https://doi.org/10.1306/703C81C8‐1707‐11D7‐8645000102C1865D
    [Google Scholar]
  37. Jolivet, L., Famin, V., Mehl, C., Parra, T., Aubourg, C., Hébert, R., & Philippot, P. (2004). Strain localization during crustal‐scale boudinage to form extensional metamorphic domes in the Aegean sea. In D. L.Whitney, C.Teyssier, & C. S.Siddoway (Eds.), Gneiss domes in Orogeny, Special Paper (Vol. 380, pp. 185–210). Geological Society of America. https://doi.org/10.1130/0‐8137‐2380‐9.185
    [Google Scholar]
  38. Jones, G., Welbon, A., Mohammadlou, H., Sakharov, A., Ford, J., Needham, T., & Ottesen, C. (2020). Complex stratigraphic fill of a small, confined syn‐rift basins: And Upper Jurassic example from offshore Mid‐Norway. In D.Chiarella, S. G.Archer, J. A.Howell, C.‐A.‐L.Jackson, H.Kombrink, & S.Patruno (Eds.), Cross‐border themes in petroleum geology II: Atlantic margin and Barents sea, Special Publication (Vol. 495, 39 pp). Geological Society. https://doi.org/10.1144/SP495‐2019‐143
    [Google Scholar]
  39. Jongepier, K., Cecilie, J., & Grue, K. (1996). Triassic to early cretaceous stratigraphic and structural development of the Northeastern Møre Basin margin, off Mid‐Norway. Norsk Geologisk Tidsskrift, 76, 199–214.
    [Google Scholar]
  40. Kapp, P., Taylor, M., Stockli, D., & Ding, L. (2008). Development of active low‐angle normal fault systems during orogenic collapse: Insight from Tibet. Geology, 36, 7–10. https://doi.org/10.1130/G24054A.1
    [Google Scholar]
  41. Knott, J. R., Sarna‐Wojcicki, A. M., Meyer, C. E., Tinsley, J. C., III, Wells, S. G., & Wan, E. (1999). Late cenozoic stratigraphic and tephrochronology of the western Black Mountains piedmont, Death Valley, California: Implications for the tectonic development of Death Valley. In L. A.Wright & B. W.Troxel (Eds.), Cenozoic basins of the Death Valley Region, GSA Special papers (Vol. 333, pp. 345–366). The Geological Society of America. https://doi.org/10.1130/0‐8137‐2333‐7.345
    [Google Scholar]
  42. Lister, G. S., Etheridge, M. A., & Symonds, P. A. (1986). Detachment faulting and the evolution of passive continental margins. Geology, 14, 246–250. https://doi.org/10.1016/j.marpetgeo.2013.02.002
    [Google Scholar]
  43. Lymer, G., Cresswell, D. J. F., Reston, T. J., Bull, J. M., Sawyer, D. S., Morgan, J. K., Stevenson, C., Causer, A., Minshull, T. A., & Shillington, D. J. (2019). 3D development of detachment faulting during continental breakup. Earth and Planetary Science Letters, 515, 90–99. https://doi.org/10.1016/j.epsl.2019.03.018
    [Google Scholar]
  44. Masini, E., Manatschal, G., Mohn, G., & Unternehr, P. (2012). Anatomy and tectono‐sedimentary evolution of a rift‐related detachment system: The example of the err detachment (Central Alps, Se Switzerland). GSA Bulletin, 124, 1535–1551. https://doi.org/10.1130/B30557.1
    [Google Scholar]
  45. Maystrenko, Y., Gernigon, L., Nasuti, A., & Olesen, O. (2018). Deep structure of the mid‐Norwegian continental margin (the Vøring and Møre Basins) according to 3‐D density and magnetic modelling. Geophysical Journal International, 212, 1696–1721. https://doi.org/10.1093/gji/ggx491
    [Google Scholar]
  46. McClaughry, J. D., & Gaylord, D. R. (2005). Middle eocene sedimentary and volcanic infilling of an evolving Supradetachment basin: White Lake Basin, South‐Central British Columbia. Canadian Journal of Earth Sciences, 42, 49–66. https://doi.org/10.1139/e04‐105
    [Google Scholar]
  47. Miller, M. B., & Pavlis, T. L. (2005). The black mountains turtlebacks: Rosetta stones of death valley tectonics. Earth‐Science Reviews, 73, 115–138. https://doi.org/10.1016/j.earscirev.2005.04.007
    [Google Scholar]
  48. Mjelde, R., Faleide, J. I., Breivik, A. J., & Raum, T. (2009). Lower crustal composition and crustal lineaments on the Vøring Margin, Ne Atlantic: A review. Tectonophysics, 472, 183–193. https://doi.org/10.1016/j.tecto.2008.04.018
    [Google Scholar]
  49. Mjelde, R., Goncharov, A., & Müller, R. (2013). The Moho: Boundary above upper mantle peridotites or lower crustal Eclogites? A global review and new interpretations for passive margins. Tectonophysics, 609, 636–650. https://doi.org/10.1016/j.tecto.2012.03.001
    [Google Scholar]
  50. Mjelde, R., Kvarven, T., Faleide, J. I., & Thybo, H. (2016). Lower crustal high‐velocity bodies along North Atlantic passive margins, and their link to Caledonian suture zone eclogites and early cenozoic magmatism. Tectonophysics, 670, 16–29. https://doi.org/10.1016/j.tecto.2015.11.021
    [Google Scholar]
  51. Mørk, M. B., & Johnsen, S. O. (2005). Jurassic sandstone provenance and basement erosion in the Møre margin – Froan basin area. NGU Bulletin, 443, 5–18.
    [Google Scholar]
  52. Mørk, M. B., & Stiberg, J.‐P. (2003). Basement erosion and Mesozoic sandstone provenance in the Møre margin area: Extended abstract. In Petroleum exploration and production in environmentally sensitive areas (pp. 41–44). Norwegian Petroleum Society.
    [Google Scholar]
  53. Müller, R., Nystuen, J. P., Eide, F., & Lie, H. (2005). Late permian to Triassic basin infill history and palaeogeography of the mid‐Norwegian shelf – East Greenland region. In B.Wandas (Ed.), Onshore‐offshore relationships on the North Atlantic Margin, Special Publication (Vol. 12, pp. 165–189). Norwegian Petroleum Society. https://doi.org/10.1016/S0928‐8937(05)80048‐7
    [Google Scholar]
  54. Muñoz‐Barrera, J. M., Henstra, G. A., Kristensen, T., Gawthorpe, R., & Rotevatn, A. (2020). The role of structural inheritance in the development of high‐displacement crustal faults in the necking domain of rifted margins: The Klakk fault complex, Frøya high, offshore mid‐Norway. Journal of Structural Geology, 140, 104163. https://doi.org/10.1016/j.jsg.2020.104163
    [Google Scholar]
  55. Naliboff, J. B., Buiter, S. J. H., Péron‐Pinvidic, G., Osmundsen, P. T., & Tetreault, J. (2017). Complex fault interaction controls continental rifting. Nature Communications, 8, 1–9. https://doi.org/10.1038/s41467‐017‐00904‐x
    [Google Scholar]
  56. Nasuti, A., Pascal, C., & Ebbing, J. (2012). Onshore‐offshore potential field analysis of the Møre‐Trøndelag fault complex and adjacent structures of mid Norway. Tectonophysics, 518–521, 17–28. https://doi.org/10.1016/j.tecto.2011.11.003
    [Google Scholar]
  57. Norwegian Petroleum Directorate, Factpages . (2000). Norwegian Petroleum Directorate. https://factpages.npd.no/en/wellbore/PageView/Exploration/All
    [Google Scholar]
  58. Olesen, O., Ebbing, J., Gellein, J., Kihle, O., Myklebust, R., Sand, M., Skilbrei, J. R., Solheim, D., & Usov, S. (2010). Gravity anomaly map, Norway and adjacent areas. Geological Survey of Norway. https://www.ngu.no/en/publikasjon/gravity‐anomaly‐map‐norway‐and‐adjacent‐areas‐scale‐13‐mill
    [Google Scholar]
  59. Olesen, O., Gellein, J., Gernigon, L., Kihle, O., Koziel, J., Lauritsen, T., Mogaard, J. O., Myklebust, R., Skilbrei, J. R., & Usov, S. (2010). Magnetic anomaly map, Norway and adjacent areas. Geological Survey of Norway. https://www.ngu.no/en/publikasjon/magnetic‐anomaly‐map‐norway‐and‐adjacent‐areas‐scale‐13‐mill
    [Google Scholar]
  60. Osagiede, E., Rotevatn, A., Gawthorpe, R. L., Kristensen, T., Jackson, C.‐A.‐L., & Marsh, N. (2020). Pre‐existing intra‐basement shear zones influence growth and geometry of non‐colinear normal faults, Western Utsira High‐Heimdal terrace, North Sea. Journal of Structural Geology, 130, 103908. https://doi.org/10.1016/j.jsg.2019.103908
    [Google Scholar]
  61. Osmundsen, P. T., & Andersen, T. B. (2001). The middle Devonian basins of Western Norway: Sedimentary response to large transtensional tectonics?Tectonophysics, 332, 51–68. https://doi.org/10.1016/S0040‐1951(00)00249‐3
    [Google Scholar]
  62. Osmundsen, P. T., Andersen, T. B., Markussen, S., & Svendby, A. K. (1998). Tectonics and sedimentation in the Hangingwall of a major extensional detachment: The Devonian Kvamshesten basin, Western Norway. Basin Research, 10, 213–234. https://doi.org/10.1046/j.1365‐2117.1998.00064.x
    [Google Scholar]
  63. Osmundsen, P. T., Braathen, A., Sommaruga, A., Skilbrei, J. R., Nordgulen, Ø., Roberts, D., Andersen, T. B., Olesen, O., & Mosar, J. (2005). Metamorphic core complexes and gneiss‐cored culminations along the Mid‐Norwegian Margin: An overview and some current ideas. In B.Wandås, J. P.Nystuen, E.Eide, & F. M.Gradstein (Eds.), Onshore‐offshore relationships on the North Atlantic Margin (Vol. 12, pp. 29–41). Norwegian Geological Society. https://doi.org/10.1016/S0928‐8937(05)80042‐6
    [Google Scholar]
  64. Osmundsen, P. T., & Péron‐Pinvidic, G. (2018). Crustal scale fault interaction at rifted margins and the formation of domain‐bounding breakaway complexes: Insights from offshore Norway. Tectonics, 37, 935–964. https://doi.org/10.1002/2017TC004792
    [Google Scholar]
  65. Osmundsen, P. T., Péron‐Pinvidic, G., & Bunkholt, H. (2021). Rifting of collapsed orogens: Successive incision of continental crust in the proximal margin offshore Norway. Tectonics, 40, e2020TC006283. https://doi.org/10.1029/2020TC006283
    [Google Scholar]
  66. Osmundsen, P. T., Péron‐Pinvidic, G., Ebbing, J., Erratt, D., Fjellanger, E., Bergslien, D., & Syvertsen, S. E. (2016). Extension, hyperextension and mantle exhumation offshore Norway: A discussion based on 6 crustal transects. Norwegian Journal of Geology, 96, 343–372. https://doi.org/10.17850/njg96‐4‐05
    [Google Scholar]
  67. Pechlivanidou, S., Cowie, P. A., Hannisdal, B., Whittaker, A., Gawthorpe, R., Pennos, C., & Riiser, O. S. (2018). Source‐to‐sink analysis in an active extensional setting: Holocene erosion and deposition in the Sperchios Rift, Central Greece. Basin Research, 30, 522–543. https://doi.org/10.1111/bre.12263
    [Google Scholar]
  68. Peron‐Pinvidic, G., Manatschal, G., & Osmundsen, P. T. (2013). Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology, 43, 21–47. https://doi.org/10.1016/j.marpetgeo.2013.02.002
    [Google Scholar]
  69. Péron‐Pinvidic, G., & Osmundsen, P. T. (2018). The Mid Norwegian – NE Greenland conjugate margins: Rifting evolution, margin segmentation, and breakup. Marine and Petroleum Geology, 98, 162–184. https://doi.org/10.1016/j.marpetgeo.2018.0011
    [Google Scholar]
  70. Peron‐Pinvidic, G., Osmundsen, P. T., & Bunkholt, H. (2020). The proximal domain of the Mid‐Norwegian rifted margin: The Trøndelag platform revisited. Tectonophysics, 790, 228551. https://doi.org/10.1016/j.tecto.2020.228551
    [Google Scholar]
  71. Platt, J. P., Behr, W. M., & Cooper, F. J. (2014). Metamorphic core complexes: Windows into the mechanics and reology of the crust. Journal of the Geological Society, 172, 9–27. https://doi.org/10.1144/jgs2014‐036
    [Google Scholar]
  72. Prosser, S. (1993). Rift‐related linked depositional systems and their seismic expression. In G. D.Williams & A.Dobb (Eds.), Tectonics and seismic sequence stratigraphy, Special Publications (pp. 35–66). Geological Society. https://doi.org/10.1144/GSL.SP.1993.071.01.03
    [Google Scholar]
  73. Provan, D. M. (1992). Draugen oil field, Haltenbanken Province, Offshore Norway. In M. T.Halbouty (Ed.), Giant oil and gas fields of the decade 1978–1988, Aapg Memoir (Vol. 54, pp. 371–382). AAPG.
    [Google Scholar]
  74. Ravnås, R., Berge, K., Campbell, H., Harvey, C., & Norton, M. J. (2014). Halten terrace lower and middle Jurassic inter‐rift megasequence analysis: Megasequece structure, sedimentary architecture and controlling parameters. In A. W.Martinius, R.Ravnås, R. J.Steel, & J. P.Wonham (Eds.), From depositional systems to sedimentary successions on the Norwegian Continental Margin, Special Publications (pp. 215–251). Wiley Blackwell. https://doi.org/10.1002/9781118920435.ch10
    [Google Scholar]
  75. Redfield, T. F., Braathen, A., Gabrielsen, R., Osmundsen, P. T., Torsvik, T. H., & Andriessen, P. A. M. (2005). Late mesozoic to early cenozoic components of vertical separation across the Møre‐Trøndelag fault complex, Norway. Tectonophysics, 395, 233–249. https://doi.org/10.1016/j.tecto.2004.09.012
    [Google Scholar]
  76. Reston, T. J., Leytheuser, T., Booth‐Rea, G., Sawyer, D., Klaeschen, D., & Long, C. (2007). Movement along a low‐anlge normal fault: The S reflector west of Spain. Geochemistry, Geophysics, Geosystems, 8(6), 1–14. https://doi.org/10.1029/2006GC001437
    [Google Scholar]
  77. Ribes, C., Ghienne, J.‐F., Manatschal, G., Decarlis, A., Karner, G. D., Figueredo, P. H., & Johnson, C. A. (2019). Long‐lived mega fault‐scarps and related Breccias at distal rifted margins: Insights from present‐day and fossil analogues. Journal of the Geological Society, 176, 801–816. https://doi.org/10.1144/jgs2018‐181
    [Google Scholar]
  78. Rohais, S., Eschard, R., Ford, M., Guillocheau, F., & Moretti, I. (2007). Stratigraphic Architecture of the Plio‐Pleistocene infill of the Corinth Rift: Implications for its structural evolution. Tectonophysics, 440, 5–28. https://doi.org/10.1016/j.tecto.2006.11.006
    [Google Scholar]
  79. Sæbø Serck, C., Braathen, A., Olaussen, S., Osmundsen, P. T., Midtkandal, I., van Yperen, A. E., & Indrevær, K. (2020). Supradetachment to rift basin transition recorded in continental to marine deposition; Paleogene Bandar Jissah Basin, Ne Oman. Basin Research, 33(1), 544–569. https://doi.org/10.1111/bre.12484
    [Google Scholar]
  80. Sangree, J. B., & Widmier, J. M. (1979). Interpretation of depositional facies from seismic data. Geophysics, 44, 131–160. https://doi.org/10.1190/1.1440957
    [Google Scholar]
  81. Seranne, M., & Seguret, M. (1987). The Devonian basins of Western Norway: Tectonics and kinematics of an extending crust. In M. P.Coward, J. F.Dewey, & P. L.Hancock (Eds.), Continental extensional tectonics, Special Publication (Vol. 28, pp. 537–548). Geological Society. https://doi.org/10.1144/GSL.SP.1987.028.01.35
    [Google Scholar]
  82. Slagstad, T., Davidsen, B., & Daly, J. S. (2011). Age and composition of crystalline basement rocks on the Norwegian continental margin: Offshore extension and continuity of the Caledonian–Appalachian orogenic belt. Journal of the Geological Society, 168, 1167–1185. https://doi.org/10.1144/0016‐76492010‐136
    [Google Scholar]
  83. Sommaruga, A., & Bøe, R. (2002). Geometry and Subcrop maps of shallow Jurassic basins along the mid‐Norwegian coast. Marine and Petroleum Geology, 19, 1029–1042. https://doi.org/10.1016/S0264‐8172(02)00113‐7
    [Google Scholar]
  84. Steel, R. J., Mæhle, S., Nilsen, H., Røe, S. L., & Spinnangr, Å. (1977). Coarsening‐upward cycles in the alluvium of Homeien Basin (Devonian) Norway: Sedimentary response to tectonic events. Geological Society of America Bulletin, 88, 1124–1134.
    [Google Scholar]
  85. Trice, R., Hiorth, C., & Holdsworth, R. (2019). Fractured basement play development on the UK and Norwegian Rifted margins. In D.Chiarella, S. G.Archer, J. A.Howell, C.‐A.‐L.Jackson, H.Kombrink, & S.Patruno (Eds.), Cross‐border themes in petroleum Geology II: Atlantic margin and Barents Sea, Special Publications (Vol. 495, 25 pp). Geological Society. https://doi.org/10.1144/SP495‐2018‐174
    [Google Scholar]
  86. Tsikalas, F., Faleide, J. I., Eldholm, O., & Blaich, O. A. (2012). The NE Atlantic conjugate margins. In D. G.Roberts & A. W.Bally (Eds.), Phanerozoic passive margins, Cratonic basins and global tectonic maps (Vol. 5, pp. 141–201). Elsevier.
    [Google Scholar]
  87. Tugend, J., Manatschal, G., Kusznir, N. J., & Masini, E. (2014). Characterizing and identifying structural domains at rifted continental margins: Application to the Bay of Biscay margins and Its Western Pyrenean Fossil remnants. In G. M.Gibson, F.Roure, & G.Manatschal (Eds.), sedimentary basins and crustal processes at continental margins: From modern hyper‐extended margins to deformed ancient analogues, Special Publications (Vol. 413, pp. 171–203). Geological Society. https://doi.org/10.1144/SP413.3
    [Google Scholar]
  88. Vetti, V., & Fossen, H. (2012). Origin of contrasting Devonian supradetachment basin types in the Scandinavian Caledonides. Geology, 40, 571–574. https://doi.org/10.1130/G32512.1
    [Google Scholar]
  89. Wells, M. L. (2001). Rheological control on the initial geometry of the raft river detachment fault and shear zone, Western United States. Tectonics, 20, 435–457. https://doi.org/10.1029/2000TC001202
    [Google Scholar]
  90. Wernicke, B. (1981). Low‐angle normal faults in the Basin and Range Province: Nappe tectonics in an extending orogen. Nature, 291, 645–648. https://doi.org/10.1038/291645a0
    [Google Scholar]
  91. White, N., & McKenzie, D. (1988). Formation of the “steer's head” geometry of sedimentary basins by differential stretching of the crust and mantle. Geology, 16, 250–253. https://doi.org/10.1130/0091‐7613(1988)016<0250:FOTSSH>2.3.CO;2
    [Google Scholar]
  92. Whitney, D. L., Teyssier, C., Rey, P., & Buck, W. R. (2013). Continental and oceanic core complexes. Geological Society of America Bulletin, 125, 273–298. https://doi.org/10.1130/B30754.1
    [Google Scholar]
  93. Wiest, J. D., Osmundsen, P. T., Jacobs, J., & Fossen, H. (2019). Deep crustal flow within post‐orogenic metamorphic core complexes – Insights 1 from the Southern Western Gneiss region of Norway. Tectonics, 38, 4267–4289. https://doi.org/10.1029/2019TC005708
    [Google Scholar]
  94. Wilson, P., Elliott, G. M., Gawthorpe, R. L., Jackson, C.‐ A.‐L., Michelsen, L., & Sharp, I. R. (2013). Geometry and segmentation of an evaporite‐detached normal fault array: 3D seismic analysis of the Southern Bremstein fault complex, Offshore Mid‐Norway. Journal of Structural Geology, 51, 74–91. https://doi.org/10.1016/j.jsg.2013.03.005
    [Google Scholar]
  95. Wilson, P., Elliott, G. M., Gawthorpe, R. L., Jackson, C. A., Michelsen, L., & Sharp, I. R. (2015). Lateral variation in structural style along an evaporite‐influenced rift fault system in the Halten Terrace, Norway: Influence of basement structure and evaporite facies. Journal of Structural Geology, 79, 110–123. https://doi.org/10.1016/j.jsg.2015.08.002
    [Google Scholar]
  96. Woodruff, W. H. J., Horton, B. K., Kapp, P., & Stockli, D. (2013). Late Cenozoic evolution of the Lunggar extensional Basin, Tibet: Implications for basin growth and exhumation in Hinterland Plateaus. GSA Bulletin, 125, 343–358. https://doi.org/10.1130/B30664.1
    [Google Scholar]
  97. Zastrozhnov, D., Gernigon, L., Godin, I., Abdelmalak, M. M., Planke, S., Faleide, J. I., Eide, S., & Myklebust, R. (2018). Cretaceous‐paleocene evolution and crustal structure of the Northern Vñring Margin (Offshore Mid‐Norway): Results from integrated geological and geophysical study. Tectonics, 37, 497–528. https://doi.org/10.1002/2017TC004655
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12648
Loading
/content/journals/10.1111/bre.12648
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error