1887
  • E-ISSN: 1365-2117

Abstract

[

The volcanism in the Shaleitian Sub‐basin enhanced sediment dispersal by smoothing out fault induced topographic rugosity in the syn‐rift stage and created topographic barriers, resulting in damming depocentres and blocking or diverting routing systems in the post‐rift stage.

, Abstract

Although volcanism is an important process in the evolution of rift basins, current tectono‐sedimentary models largely neglect its impact on sediment supply, transport pathways, and depositional systems. In this paper, we integrate core, well logs, and 3D seismic data from the Palaeogene‐Neogene Shaleitian (SLT) uplift and surrounding sub‐basins, Bohai Bay Basin, China, to investigate the sedimentology and geomorphology of a volcanic rift basin. Results of this study show that the spatial distribution of extrusive centres was strongly controlled by basement‐involved intra‐basin normal faults. During the early part of the syn‐rift stage, the SLT uplift supplied sediments to transverse fan deltas and braided‐river deltas that fringed the adjacent syn‐rift depocentres. Volcanic deposits mainly occurred as relatively thin lava flow and pyroclastic facies that partially filled fault‐controlled topographic lows, reducing topographic rugosity, and enhanced breaching of basement highs between syn‐rift depocentres. Integration of drainage to the syn‐rift depocentres and development of through‐flowing axial depositional systems was enhanced. During the later part of syn‐rift and in early post‐rift stages, the SLT uplift was progressively inundated, reducing sediment supply to the fringing transverse depositional systems. In contrast, axial braided‐river deltas became the main depositional systems, sourced by large hinterland drainage from the Yanshan fold‐belt to the northwest. Volcanism in the late syn‐rift and early post‐rift occurs as thick lava flow and pyroclastic facies that infill rift topographic lows and locally blocked axial fluvial systems creating isolated lakes. Within hanging wall depocentres, volcanic topographic highs split and diverted axial fluvial and deltaic systems. Furthermore, volcanism supplied large volumes of volcanic sediment to the rift resulting in increased sedimentation rates, and the development of unstable subaerial and subaqueous slopes and deposits, increasing the occurrence of landslides. Based on the observations of this study we update tectono‐sedimentary models for rift basins to include volcanism.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12651
2022-05-22
2022-06-27
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/3/bre12651.html?itemId=/content/journals/10.1111/bre.12651&mimeType=html&fmt=ahah

References

  1. Abdelmalak, M. M., Planke, S., Polteau, S., Hartz, E. H., Faleide, J. I., Tegner, C., & Myklebust, R. (2019). Breakup volcanism and plate tectonics in the NW Atlantic. Tectonophysics, 760, 267–296.
    [Google Scholar]
  2. Acocella, V. (2014). Structural control on magmatism along divergent and convergent plate boundaries: Overview, model, problems. Earth‐Science Reviews, 136, 226–288.
    [Google Scholar]
  3. Allen, M. B., Macdonald, D. I. M., Xun, Z., Vincent, S. J., & Brouet‐Menzies, C. (1997). Early Cenozoic two‐phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China. Marine and Petroleum Geology, 14(7–8), 951–972.
    [Google Scholar]
  4. Bahk, J. J., & Chough, S. K. (1996). An interplay of syn‐and interruption depositional processes: The lower part of the Jangki Group (Miocene), SE Korea. Sedimentology, 43(3), 421–438.
    [Google Scholar]
  5. Baker, B. H. (1986). Tectonics and volcanism of the southern Kenya Rift Valley and its influence on rift sedimentation. Geological Society, London, Special Publications, 25(1), 45–57.
    [Google Scholar]
  6. Blair, T. C., & McPherson, J. G. (1994). Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. Journal of Sedimentary Research, 64(3a), 450–489.
    [Google Scholar]
  7. Cole, R. B., & Ridgway, K. D. (1993). The influence of volcanism on fluvial depositional systems in a Cenozoic strike‐slip basin, Denali fault system, Yukon Territory, Canada. Journal of Sedimentary Research, 63(1), 152–166.
    [Google Scholar]
  8. D’Elia, L., & Martí, J. (2013). Caldera events in a rift depocentre: An example from the Jurassic Neuquén basin, Argentina. Journal of the Geological Society, 170(4), 571–584.
    [Google Scholar]
  9. D'Elia, L., Martí, J., Muravchik, M., Bilmes, A., & Franzese, J. R. (2018). Impact of volcanism on the sedimentary record of the Neuquén rift basin, Argentina: Towards a cause and effect model. Basin Research, 30, 311–335.
    [Google Scholar]
  10. Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., & Ryberg, P. T. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94(2), 222–235.
    [Google Scholar]
  11. Du, J. X., Shi, W. W., Zhou, H., Wang, Q. L., Xia, Q. J., & Liu, J. R. (2014). Zircon U‐Pb age and formation model of volcanic rocks from Nanpu Sag of Bohai Bay Basin. Oil and Gas Geology, 35, 742–747.
    [Google Scholar]
  12. Duncan, L. J., Dennehy, C. J., Ablard, P. M., & Wallis, D. W. (2020). The rosebank field, blocks 213/27a, 213/26b, 205/1a and 205/2a, UK Atlantic margin. Geological Society, London, Memoirs, 52(1), 980–989.
    [Google Scholar]
  13. Ebinger, C., & Scholz, C. A. (2012). Continental rift basins: The East African perspective (pp. 183–208). Tectonics of Sedimentary Basins: Recent advances.
    [Google Scholar]
  14. Ebinghaus, A., Hartley, A. J., Jolley, D. W., Hole, M., & Millett, J. (2014). Lava–sediment interaction and drainage‐system development in a large igneous province: Columbia River Flood Basalt Province, Washington State, USA. Journal of Sedimentary Research, 84(11), 1041–1063.
    [Google Scholar]
  15. Ebinghaus, A., Taylor, R., Barker, A., Hartley, A. J., Jolley, D. W., & Hole, M. J. (2020). Development of inter‐lava drainage systems in LIPs: The Columbia River Flood Basalt Province (USA) as a case study. Journal of Sedimentary Research, 90(10), 1346–1369.
    [Google Scholar]
  16. Famelli, N., Millett, J. M., Hole, M. J., Lima, E. F., Carmo, I. D. O., Jerram, D. A., & Howell, J. A. (2021). Characterizing the nature and importance of lava‐sediment interactions with the aid of field outcrop analogues. Journal of South American Earth Sciences, 108, 103108.
    [Google Scholar]
  17. Ferguson, D. J., Barnie, T. D., Pyle, D. M., Oppenheimer, C., Yirgu, G., Lewi, E., & Hamling, I. (2010). Recent rift‐related volcanism in Afar, Ethiopia. Earth and Planetary Science Letters, 292(3–4), 409–418.
    [Google Scholar]
  18. Fisher, R. V., & Smith, G. A. (Eds.). (1991). Sedimentation in volcanic settings (No. 12240). Sepm Society for Sedimentary.
    [Google Scholar]
  19. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12(3–4), 195–218.
    [Google Scholar]
  20. Gawthorpe, R. L., Leeder, M. R., Kranis, H., Skourtsos, E., Andrews, J. E., Henstra, G. A., & Stamatakis, M. (2018). Tectono‐sedimentary evolution of the Plio‐Pleistocene Corinth rift, Greece. Basin Research, 30(3), 448–479.
    [Google Scholar]
  21. Grove, C. (2013). Submarine hydrothermal vent complexes in the Palaeocene of the Faroe‐Shetland Basin: Insights from three‐dimensional seismic and petrographical data. Geology, 41(1), 71–74.
    [Google Scholar]
  22. Hall, M. L., Steele, A. L., Mothes, P. A., & Ruiz, M. C. (2013). Pyroclastic density currents (PDC) of the 16–17 August 2006 eruptions of Tungurahua volcano, Ecuador: Geophysical registry and characteristics. Journal of Volcanology and Geothermal Research, 265, 78–93.
    [Google Scholar]
  23. Hardman, J., Schofield, N., Jolley, D., Hartley, A., Holford, S., & Watson, D. (2019). Controls on the distribution of volcanism and intra‐basaltic sediments in the Cambo‐Rosebank region, West of Shetland. Petroleum Geoscience, 25(1), 71–89.
    [Google Scholar]
  24. Hartley, R. A., Roberts, G. G., White, N., & Richardson, C. (2011). Transient convective uplift of an ancient buried landscape. Nature Geoscience, 4(8), 562–565.
    [Google Scholar]
  25. Hayes, S. K., Montgomery, D. R., & Newhall, C. G. (2002). Fluvial sediment transport and deposition following the 1991 eruption of Mount Pinatubo. Geomorphology, 45(3–4), 211–224.
    [Google Scholar]
  26. Helland‐Hansen, D., Varming, T., & Ziska, H. (2009). Rosebank–challenges to development from a subsurface perspective. In Faroe Islands Exploration Conference: Proceedings of the 2nd Conference. Annales Societatis Scientarium Faeroensis, Supplementum (Vol. 50, pp. 241–245).
    [Google Scholar]
  27. Hemelsdaël, R., Ford, M., Malartre, F., & Gawthorpe, R. (2017). Interaction of an antecedent fluvial system with early normal fault growth: Implications for syn‐rift stratigraphy, western Corinth rift (Greece). Sedimentology, 64(7), 1957–1997.
    [Google Scholar]
  28. Hole, M., Jolley, D., Hartley, A., Leleu, S., John, N., & Ball, M. (2013). Lava–sediment interactions in an Old Red Sandstone basin, NE Scotland. Journal of the Geological Society, 170(4), 641–655.
    [Google Scholar]
  29. Hou, G., Qian, X., & Cai, D. (2001). The tectonic evolution of Bohai Basin in Mesozoic and Cenozoic time. Acta Scientiarum Naturalium‐Universitatis Pekinensis, 37(6), 845–851.
    [Google Scholar]
  30. Houghton, B. F., & Landis, C. A. (1989). Sedimentation and volcanism in a Permian arc‐related basin, southern New Zealand. Bulletin of Volcanology, 51(6), 433–450.
    [Google Scholar]
  31. Huismans, R., & Beaumont, C. (2011). Depth‐dependent extension, two‐stage breakup and cratonic underplating at rifted margins. Nature, 473(7345), 74–78.
    [Google Scholar]
  32. Huismans, R., & Beaumont, C. (2014). Rifted continental margins: The case for depth‐dependent extension. Earth and Planetary Science Letters, 407, 148–162.
    [Google Scholar]
  33. Hutchison, W., Pyle, D. M., Mather, T. A., Yirgu, G., Biggs, J., Cohen, B. E., & Lewi, E. (2016). The eruptive history and magmatic evolution of Aluto volcano: New insights into silicic peralkaline volcanism in the Ethiopian rift. Journal of Volcanology and Geothermal Research, 328, 9–33.
    [Google Scholar]
  34. Jackson, C. A. L. (2012). Seismic reflection imaging and controls on the preservation of ancient sill‐fed magmatic vents. Journal of the Geological Society, 169(5), 503–506.
    [Google Scholar]
  35. Jackson, C. A., Schofield, N., & Golenkov, B. (2013). Geometry and controls on the development of igneous sill–related forced folds: A 2‐D seismic reflection case study from offshore southern Australia. Geological Society of America Bulletin, 125(11–12), 1874–1890.
    [Google Scholar]
  36. Jerram, D. A., Single, R. T., Hobbs, R. W., & Nelson, C. E. (2009). Understanding the offshore flood basalt sequence using onshore volcanic facies analogues: An example from the Faroe‐Shetland basin. Geological Magazine, 146(3), 353–367.
    [Google Scholar]
  37. Jolley, D. W., Bell, B. R., Williamson, I. T., & Prince, I. (2009). Syn‐eruption vegetation dynamics, paleosurfaces and structural controls on lava field vegetation: An example from the Palaeogene Staffa Formation, Mull Lava Field, Scotland. Review of Palaeobotany and Palynology, 153(1–2), 19–33.
    [Google Scholar]
  38. Jolley, D. W., Millett, J. M., Schofield, N., & Broadley, L. (2021). Stratigraphy of volcanic rock successions of the North Atlantic rifted margin: The offshore record of the Faroe‐Shetland and Rockall basins. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1–28.
    [Google Scholar]
  39. King, B. C., & Chapman, G. R. (1972). A discussion on volcanism and the structure of the earth‐volcanism of the Kenya rift valley. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 271(1213), 185–208.
    [Google Scholar]
  40. Kirkham, C., Cartwright, J., Hermanrud, C., & Jebsen, C. (2018). The genesis of mud volcano conduits through thick evaporite sequences. Basin Research, 30(2), 217–236.
    [Google Scholar]
  41. Leeder, M. R. (2009). Sedimentology and sedimentary basins: From turbulence to tectonics. John Wiley & Sons. Multipages.
    [Google Scholar]
  42. Leeder, M. R., & Gawthorpe, R. L. (1987). Sedimentary models for extensional tilt‐block/half‐graben basins. Geological Society, London, Special Publications, 28(1), 139–152.
    [Google Scholar]
  43. Leeder, M. R., Mack, G. H., & Salyards, S. L. (1996). Axial–transverse fluvial interactions in half‐graben: Plio‐Pleistocene Palomas Basin, Southern Rio Grande Rift, New Mexico, USA. Basin Research, 8(3), 225–241.
    [Google Scholar]
  44. Li, W., Bhattacharya, J. P., & Campbell, C. (2010). Temporal evolution of fluvial style in a compound incised‐valley fill, Ferron “Notom Delta”, Henry Mountains region, Utah (USA). Journal of Sedimentary Research, 80(6), 529–549.
    [Google Scholar]
  45. Liu, Q. H. (2016). “Source‐to‐Sink” system coupling analysis of the Palaeogene, Shaleitian uplift, Bohai Bay Basin, China (Doctoral thesis). China University of Petroleum (Beijing).
    [Google Scholar]
  46. Liu, Q. H., Zhu, X. M., Li, S. L., Xu, C. G., Du, X. F., Li, H. Y., & Shi, W. L. (2017). Source‐to‐sink system of the steep slope fault in the western Shaleitian uplift. Earth Science, 42(11), 1883–1896.
    [Google Scholar]
  47. Lu, K. Z., & Dai, J. S. (1989). Structural characteristics and evolution of upper proterozoic in central Hebei rift valley. Journal of China University of Petroleum, 2, 6–17.
    [Google Scholar]
  48. Lunt, I. A., Bridge, J. S., & Tye, R. S. (2004). A quantitative, three‐dimensional depositional model of gravelly braided rivers. Sedimentology, 51(3), 377–414.
    [Google Scholar]
  49. Magee, C., Bastow, I. D., van Wyk de Vries, B., Jackson, C. A. L., Hetherington, R., Hagos, M., & Hoggett, M. (2017). Structure and dynamics of surface uplift induced by incremental sill emplacement. Geology, 45(5), 431–434.
    [Google Scholar]
  50. Magee, C., Jackson, C. A. L., & Schofield, N. (2013). The influence of normal fault geometry on igneous sill emplacement and morphology. Geology, 41(4), 407–410.
    [Google Scholar]
  51. Magee, C., Jackson, C. L., & Schofield, N. (2014a). Diachronous sub‐volcanic intrusion along deep‐water margins: Insights from the Irish Rockall Basin. Basin Research, 26(1), 85–105.
    [Google Scholar]
  52. Magee, C., McDermott, K. G., Stevenson, C. T., & Jackson, C. A. L. (2014b). Influence of crystallised igneous intrusions on fault nucleation and reactivation during continental extension. Journal of Structural Geology, 62, 183–193.
    [Google Scholar]
  53. Magee, C., Muirhead, J. D., Karvelas, A., Holford, S. P., Jackson, C. A., Bastow, I. D., & Shtukert, O. (2016). Lateral magma flow in mafic sill complexes. Geosphere, 12(3), 809–841.
    [Google Scholar]
  54. Manville, V., Hodgson, K. A., & Nairn, I. A. (2007). A review of break‐out floods from volcanogenic lakes in New Zealand. New Zealand Journal of Geology and Geophysics, 50(2), 131–150.
    [Google Scholar]
  55. Manville, V., Németh, K., & Kano, K. (2009). Source to sink: A review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sedimentary Geology, 220(3–4), 136–161.
    [Google Scholar]
  56. Martí, J., Groppelli, G., & da Silveira, A. B. (2018). Volcanic stratigraphy: A review. Journal of Volcanology and Geothermal Research, 357, 68–91.
    [Google Scholar]
  57. Menzies, M. A., Klemperer, S. L., Ebinger, C. J., & Baker, J. (2002). Characteristics of volcanic rifted margins. Special Papers‐Geological Society of America, 1–14.
    [Google Scholar]
  58. Miles, A., & Cartwright, J. (2010). Hybrid flow sills: A new mode of igneous sheet intrusion. Geology, 38(4), 343–346.
    [Google Scholar]
  59. Millett, J. M., Hole, M. J., Jolley, D. W., Passey, S. R., & Rossetti, L. (2020). Transient mantle cooling linked to regional volcanic shut‐down and early rifting in the North Atlantic Igneous Province. Bulletin of Volcanology, 82(8), 1–27.
    [Google Scholar]
  60. Millett, J. M., Hole, M. J., Jolley, D. W., Schofield, N., & Campbell, E. (2016). Frontier exploration and the North Atlantic Igneous Province: New insights from a 2.6 km offshore volcanic sequence in the NE Faroe‐Shetland Basin. Journal of the Geological Society, 173(2), 320–336.
    [Google Scholar]
  61. Millett, J. M., Jerram, D. A., Manton, B., Planke, S., Ablard, P., Wallis, D., & Dennehy, C. (2021). The Rosebank Field, NE Atlantic: Volcanic characterisation of an inter‐lava hydrocarbon discovery. Basin Research.
    [Google Scholar]
  62. Miyabuchi, Y. (1999). Deposits associated with the 1990–1995 eruption of Unzen volcano, Japan. Journal of Volcanology and Geothermal Research, 89(1–4), 139–158.
    [Google Scholar]
  63. Muirhead, J. D., Van Eaton, A. R., Re, G., White, J. D., & Ort, M. H. (2016). Monogenetic volcanoes fed by interconnected dikes and sills in the Hopi Buttes volcanic field, Navajo Nation, USA. Bulletin of Volcanology, 78(2), 11.
    [Google Scholar]
  64. Muravchik, M., D'Elia, L., Bilmes, A., & Franzese, J. R. (2011). Syn‐eruptive/inter‐eruptive relations in the syn‐rift deposits of the Precuyano Cycle, Sierra de Chacaico, Neuquén Basin. Argentina. Sedimentary Geology, 238(1–2), 132–144.
    [Google Scholar]
  65. Planke, S. (1994). Geophysical response of flood basalts from analysis of wire line logs: Ocean drilling program site 642, Vøring volcanic margin. Journal of Geophysical Research: Solid Earth, 99(B5), 9279–9296.
    [Google Scholar]
  66. Planke, S., Millett, J. M., Maharjan, D., Jerram, D. A., Abdelmalak, M. M., Groth, A., & Myklebust, R. (2017). Igneous seismic geomorphology of buried lava fields and coastal escarpments on the Vøring volcanic rifted margin. Interpretation, 5(3), SK161–SK177.
    [Google Scholar]
  67. Planke, S., Rasmussen, T., Rey, S. S., & Myklebust, R. (2005). Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. In Geological Society, London, Petroleum Geology Conference series (Vol. 6, No. 1, pp. 833–844). Geological Society of London.
    [Google Scholar]
  68. Planke, S., Symonds, P. A., Alvestad, E., & Skogseid, J. (2000). Seismic volcanostratigraphy of large‐volume basaltic extrusive complexes on rifted margins. Journal of Geophysical Research: Solid Earth, 105(B8), 19335–19351.
    [Google Scholar]
  69. Prather, B. E., Booth, J. R., Steffens, G. S., & Craig, P. A. (1998). Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep‐water Gulf of Mexico. AAPG Bulletin, 82(5), 701–728.
    [Google Scholar]
  70. Ravnås, R., & Steel, R. J. (1998). Architecture of marine rift‐basin successions. AAPG Bulletin, 82(1), 110–146.
    [Google Scholar]
  71. Reynolds, P., Schofield, N., Brown, R. J., & Holford, S. P. (2018). The architecture of submarine monogenetic volcanoes–insights from 3D seismic data. Basin Research, 30, 437–451.
    [Google Scholar]
  72. Riggs, N. R., Hurlbert, J. C., Schroeder, T. J., & Ward, S. A. (1997). The interaction of volcanism and sedimentation in the proximal areas of a mid‐Tertiary volcanic dome field, central Arizona, USA. Journal of Sedimentary Research, 67(1), 142–153.
    [Google Scholar]
  73. Schofield, N., Holford, S., Millett, J., Brown, D., Jolley, D., Passey, S. R., & Stevenson, C. (2017). Regional magma plumbing and emplacement mechanisms of the Faroe‐Shetland Sill Complex: Implications for magma transport and petroleum systems within sedimentary basins. Basin Research, 29(1), 41–63.
    [Google Scholar]
  74. Schofield, N., & Jolley, D. W. (2013). Development of intra‐basaltic lava‐field drainage systems within the Faroe‐Shetland Basin. Petroleum Geoscience, 19(3), 273–288.
    [Google Scholar]
  75. Schofield, N., Newton, R., Thackrey, S., Watson, D., Jolley, D., & Morley, C. (2021). Linking surface and subsurface volcanic stratigraphy in the Turkana depression of the East African Rift system. Journal of the Geological Society, 178(1).
    [Google Scholar]
  76. Shi, W., Zhang, Z., Peng, W., & Tao, G. (2013). Tectonic evolution and hydrocarbon accumulation in the east part of Shaleitian Aailent, Western Bohai Sea. Oil & Gas Geology, 34(2), 242–247.
    [Google Scholar]
  77. Sulpizio, R., Mele, D., Dellino, P., & La Volpe, L. (2007). Deposits and physical properties of pyroclastic density currents during complex Subplinian eruptions: The AD 472 (Pollena) eruption of Somma‐Vesuvius, Italy. Sedimentology, 54(3), 607–635.
    [Google Scholar]
  78. Svensen, H., Jamtveit, B., Planke, S., & Chevallier, L. (2006). Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. Journal of the Geological Society, 163(4), 671–682.
    [Google Scholar]
  79. Thomson, K. (2005). Volcanic features of the North Rockall Trough: Application of visualisation techniques on 3D seismic reflection data. Bulletin of Volcanology, 67(2), 116–128.
    [Google Scholar]
  80. Umazano, A. M., Melchor, R. N., Bedatou, E., Bellosi, E. S., & Krause, J. M. (2014). Fluvial response to sudden input of pyroclastic sediments during the 2008–2009 eruption of the Chaitén Volcano (Chile): The role of logjams. Journal of South American Earth Sciences, 54, 140–157.
    [Google Scholar]
  81. Vessell, R. K., & Davies, D. K. (1981). Nonmarine sedimentation in an active fore arc basin.
  82. Walker, F., Schofield, N., Millett, J., Jolley, D., Holford, S., Planke, S., & Myklebust, R. (2021). Inside the volcano: Three‐dimensional magmatic architecture of a buried shield volcano. Geology, 49(3), 243–247.
    [Google Scholar]
  83. White, R., & McKenzie, D. (1989). Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Journal of Geophysical Research: Solid Earth, 94(B6), 7685–7729.
    [Google Scholar]
  84. Williamson, I. T., & Bell, B. R. (2012). The staffa lava formation: Graben‐related volcanism, associated sedimentation and landscape character during the early development of the Palaeogene Mull Lava Field, NW Scotland. Scottish Journal of Geology, 48(1), 1–46.
    [Google Scholar]
  85. Wolfenden, E., Ebinger, C., Yirgu, G., Renne, P. R., & Kelley, S. P. (2005). Evolution of a volcanic rifted margin: Southern red sea, Ethiopia. Geological Society of America Bulletin, 117(7–8), 846–864.
    [Google Scholar]
  86. Xu, C. G., Yu, S., Lin, C. S., Wang, X., Wang, Y. C., & Li, H. Y. (2008). Structural styles of the Palaeogene lacustrine basin margin and their control on sedimentary sequences in Bohai Sea area. Journal of Palaeogeography, 10(6), 627–635.
    [Google Scholar]
  87. Zanchetta, G., Sulpizio, R., & Di Vito, M. A. (2004). The role of volcanic activity and climate in alluvial fan growth at volcanic areas: An example from southern Campania (Italy). Sedimentary Geology, 168(3–4), 249–280.
    [Google Scholar]
  88. Zhang, G. C. (2000). Tectonic framework and distribution of hydrocarbon‐rich depressions in the Bohai Sea. China Offshore Oil and Gas (Geology), 14(2), 93–99.
    [Google Scholar]
  89. Zhu, W. L., Wu, J. F., & Zhang, G. C. (2015). Tectonic differential evolution of the Cenozoic basins in the offshore China and the direction of oil and gas exploration. Geoscience Frontier, 22(1), 88–101.
    [Google Scholar]
  90. Zou, C. N., Zhao, W. Z., Jia, C. Z., Zhu, R. K., Zhang, G. Y., Xia, Z., & Yan, X. J. (2008). Formation and distribution of volcanic hydrocarbon reservoirs in sedimentary basins of China. Petroleum Exploration and Development, 35(3), 257–271.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12651
Loading
/content/journals/10.1111/bre.12651
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Bohai Bay Basin; depositional systems; landscape; rift basin; sediment supply; volcanism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error