1887
Volume 34, Issue 3
  • E-ISSN: 1365-2117

Abstract

[Abstract

Sediment routing from hinterland to the deep sea is complicated because it involves evolution of river drainage from source areas to coastal plains and sediment mixing on the shelf and slope by marine currents. Previous regional paleogeographic mapping in the Gulf of Mexico (GOM) has observed a >150 km offset between the middle Miocene paleo‐Tennessee fluvial axis and the associated deep‐sea fan depositional axis, indicating a complicated sediment pathway. We integrate new and published detrital zircon (DZ) U‐Pb age data from fluvial, shelf and deep‐sea deposits to examine the complex Miocene sediment routing system in the northern GOM. These data suggest an increase in sediment load derived from western North America (increased Western Cordillera terranes; <300 Ma zircon age component) from the early to middle Miocene in the deep‐water Green Canyon protraction area. The early Miocene Green Canyon area received sediments mainly from fluvial axes located directly updip: the paleo‐Mississippi River (44%–56%; characterized by Yavapai‐Mazatzal, Mid‐Continent and Western Cordillera sourced 1800–1600 Ma, 1500–1300 Ma and <300 Ma, respectively, and Grenville‐Appalachian sourced 1300–950 Ma and 500–300 Ma age components) and smaller rivers and tributaries draining the Appalachian Mountains (e.g. paleo‐Tennessee River, 18%–43%; mainly Grenville‐Appalachian sourced 1300–9500 Ma and 500–300 Ma age components). In contrast, the middle Miocene Green Canyon deep‐sea fan shows a strong DZ signal from the paleo‐Red River (38%; increased <300 Ma zircon age component), which requires input of additional sediment sources from west of the paleo‐Mississippi system. In addition, the paleo‐Tennessee River, which was a major middle‐Miocene sediment source for the central‐eastern GOM due to uplift and increased erosion of the Appalachian Mountains, is underrepresented (34%; decreased 1300–950 Ma zircon age component) in the middle Miocene Green Canyon fan. We suggest that two mechanisms combined to produce the increased middle Miocene input from western sediment sources and restriction of locally up‐dip Tennessee River sources: (1) regional drainage changes involving middle Miocene capture of the paleo‐Red River and its tributaries by the paleo‐Mississippi River, which at the same time lost some of its eastern tributaries owing to expansion of the paleo‐Tennessee and (2) eastward (clockwise) marine transport of western‐sourced sediment along the shelf or slope, which deflected the paleo‐Tennessee signal >150 km eastward to feed the deep‐sea fan further east, perhaps reflecting intensification of a precursor to the GOM Loop Current.

,

Early Miocene (a) and middle Miocene (b) schematic paleogeography and inferred oceanic current flow. Eastward (clockwise) marine transport of western‐sourced sediment along the shelf or slope deflected the paleo‐Tennessee signal >150 km eastward to feed the deep‐sea fan further east in the Miocene, which perhaps reflected intensification of a precursor to the Gulf of Mexico Loop Current.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12653
2022-05-22
2024-04-23
Loading full text...

Full text loading...

References

  1. Amidon, W. H., Burbank, D. W., & Gehrels, G. E. (2005a). U‐Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya. Earth and Planetary Science Letters, 235, 244–260. https://doi.org/10.1016/j.epsl.2005.03.019
    [Google Scholar]
  2. Amidon, W. H., Burbank, D. W., & Gehrels, G. E. (2005b). Construction of detrital mineral populations: Insights from mixing of U‐Pb zircon ages in Himalayan rivers. Basin Research, 17, 463–485. https://doi.org/10.1111/j.1365‐2117.2005.00279.x
    [Google Scholar]
  3. Bacon, C. D., Silvestro, D., Jaramillo, C., Smith, B. T., Chakrabarty, P., & Antonelli, A. (2015a). Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences of the United States of America, 112, 6110–6115. https://doi.org/10.1073/pnas.1423853112
    [Google Scholar]
  4. Bacon, C. D., Silvestro, D., Jaramillo, C., Smith, B. T., Chakrabarty, P., & Antonelli, A. (2015b). Reply to Lessios and Marko et al: Early and progressive migration across the Isthmus of Panama is robust to missing data and biases. Proceedings of the National Academy of Sciences of the United States of America, 112, E5767–E5768. https://doi.org/10.1073/pnas.1515451112
    [Google Scholar]
  5. Bartoli, G., Sarnthein, M., Weinelt, M., Erlenkeuser, H., Garbe‐Schönberg, D., & Lea, D. W. (2005). Final closure of Panama and the onset of northern hemisphere glaciation. Earth and Planetary Science Letters, 237, 33–44. https://doi.org/10.1016/j.epsl.2005.06.020
    [Google Scholar]
  6. Bentley, S. J., Blum, M., Maloney, J., Pond, L., & Paulsell, R. (2016). The Mississippi River source‐to‐sink system: Perspectives on tectonic, climatic, and anthropogenic influences, Miocene to Anthropocene. Earth‐Science Reviews, 153, 139–174. https://doi.org/10.1016/j.earscirev.2015.11.001
    [Google Scholar]
  7. Bernhardt, A., Hebbeln, D., Regenberg, M., Lückge, A., & Strecker, M. R. (2016). Shelfal sediment transport by an undercurrent forces turbidity current activity during high sea level along the Chile continental margin. Geology, 44, 295–298. https://doi.org/10.1130/G37594.1
    [Google Scholar]
  8. Biswal, M. S. (2015). Late Tertiary tectonic uplift in the southern and central Appalachians (MS thesis). University of Tennessee, 178p.
    [Google Scholar]
  9. Blum, M. D., Milliken, K. T., Pecha, M. A., Snedden, J. W., Frederick, B. C., & Galloway, W. E. (2017). Detrital‐zircon records of Cenomanian, Paleocene, and Oligocene Gulf of Mexico drainage integration and sediment routing: Implications for scales of basin‐floor fans. Geosphere, 13, 2169–2205. https://doi.org/10.1130/GES01410.1
    [Google Scholar]
  10. Blum, M., & Pecha, M. (2014). Mid‐Cretaceous to Paleocene North American drainage reorganization from detrital zircons. Geology, 42, 607–610. https://doi.org/10.1130/G35513.1
    [Google Scholar]
  11. Blum, M., Rogers, K., Gleason, J., Najman, Y., Cruz, J., & Fox, L. (2018). Allogenic and autogenic signals in the stratigraphic record of the deep‐sea Bengal Fan. Scientific Reports, 8, 7973. https://doi.org/10.1038/s41598‐018‐25819‐5
    [Google Scholar]
  12. Boettcher, S. S., & Milliken, K. L. (1994). Mesozoic‐Cenozoic unroofing of the southern Appalachian Basin: Apatite fission track evidence from middle Pennsylvanian sandstones. The Journal of Geology, 102, 655–668. https://doi.org/10.1086/629710
    [Google Scholar]
  13. Cather, S. M., Chapin, C. E., & Kelley, S. A. (2012). Diachronous episodes of Cenozoic erosion in southwestern North America and their relationship to surface uplift, paleoclimate, paleodrainage, and paleoaltimetry. Geosphere, 8(6), 1177–1206. https://doi.org/10.1130/GES00801.1
    [Google Scholar]
  14. Chapin, C. E. (2008). Interplay of oceanographic and paleoclimate events with tectonism during middle to late Miocene sedimentation across the southwestern USA. Geosphere, 4, 976–991. https://doi.org/10.1130/GES00171.1
    [Google Scholar]
  15. Chapin, C. E., & Cather, S. M. (1994) Tectonic setting of the axial basins of the northern and central Rio Grande Rift. In G. R.Keller & S. M.Cather (Eds.), Basins of the Rio Grande rift: Structure, stratigraphy, and tectonic setting (pp. 5–25). Geological Society of America Special Paper 291. https://doi.org/10.1130/SPE291
    [Google Scholar]
  16. Combellas‐Bigott, R. I., & Galloway, W. E. (2006). Depositional and structural evolution of the middle Miocene depositional episode, east‐central Gulf of Mexico. American Association of Petroleum Geologists Bulletin, 90, 335–362. https://doi.org/10.1306/10040504132
    [Google Scholar]
  17. Covault, J. A., & Fildani, A. (2014). Continental shelves as sediment capacitors or conveyors: Source‐to‐sink insights from the tectonically active Oceanside shelf, southern California, USA. Geological Society, London, Memoirs, 41, 315–326.
    [Google Scholar]
  18. Covault, J. A., & Graham, S. A. (2010). Submarine fans at all sea‐level stands; tectonomorphologic and climatic controls on terrigenous sediment delivery to the deep sea. Geology, 38(10), 939–942. https://doi.org/10.1130/G31081.1
    [Google Scholar]
  19. Covault, J. A., Normark, W. R., Romans, B. W., & Graham, S. A. (2007). Highstand fans in the California borderland: The overlooked deep‐water depositional system. Geology, 35, 783–786.
    [Google Scholar]
  20. Covault, J. A., Romans, B. W., Graham, S. A., Fildani, A., & Hilley, G. E. (2011). Terrestrial source to deep‐sea sink sediment budgets at high and low sea levels: Insights from tectonically active southern California. Geology, 39, 619–622. https://doi.org/10.1130/G31801.1
    [Google Scholar]
  21. Craddock, W. H., Coleman, J. L., & Kylander‐Clark, A. R. C. (2021). Detrital zircon age spectra of middle and upper Eocene outcrop belts, U.S. Gulf Coast region. Basin Research, 33, 250–269. https://doi.org/10.1111/bre.12464
    [Google Scholar]
  22. Craddock, W. H., & Kylander‐Clark, A. R. C. (2013). U‐Pb ages of detrital zircons from the Tertiary Mississippi River delta in central Louisiana: Insights into sediment provenance. Geosphere, 9, 1832–1851. https://doi.org/10.1130/GES00917.1
    [Google Scholar]
  23. Degraaff‐Surpless, K., Mahoney, B. J., Wooden, J. L., & Mcwilliams, M. O. (2003). Lithofacies control in detrital‐zircon provenance studies: Insights from the Cretaceous Methow basin, southern Canadian Cordillera. Geological Society of America, Bulletin, 115, 899–915.
    [Google Scholar]
  24. Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. In G. G.Zuffa (Ed.), Provenance of arenites (pp. 333–361). D. Reidel Publishing Company.
    [Google Scholar]
  25. Dunn, S. C. (2016). Miocene contourite deposition (along‐slope) near DeSoto Canyon, Gulf of Mexico: A product of an enhanced Paleo‐Loop Current (p. 152, PhD thesis). University of South Florida.
    [Google Scholar]
  26. Duque‐Caro, H. (1990). Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 77, 203–234. https://doi.org/10.1016/0031‐0182(90)90178‐A
    [Google Scholar]
  27. Dutton, S. P., Loucks, R. G., & Day‐Stirrat, R. J. (2012). Impact of regional variation in detrital mineral composition on reservoir quality in deep to ultradeep lower Miocene sandstones, western Gulf of Mexico. Marine and Petroleum Geology, 35, 139–153. https://doi.org/10.1016/j.marpetgeo.2012.01.006
    [Google Scholar]
  28. Fan, M., Brown, E., & Li, L. (2019). Cenozoic drainage evolution of the Rio Grande paleoriver recorded in detrital zircons in South Texas. International Geology Review, 61, 622–636. https://doi.org/10.1080/00206814.2018.1446368
    [Google Scholar]
  29. Farris, D. W., Jaramillo, C., Bayona, G., Restrepo‐Moreno, S. A., Montes, C., Cardona, A., Mora, A., Speakman, R. J., Glascock, M. D., & Valencia, V. (2011). Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39, 1007–1010. https://doi.org/10.1130/G32237.1
    [Google Scholar]
  30. Fildani, A., McKay, M. P., Stockli, D., Clark, J., Dykstra, M. L., Stockli, L., & Hessler, A. M. (2016). The ancestral Mississippi drainage archived in the late Wisconsin Mississippi deep–sea fan. Geology, 44(6), 479–482. https://doi.org/10.1130/G37657.1
    [Google Scholar]
  31. Fulthorpe, C. S., Galloway, W. E., Snedden, J. W., Ganey‐Curry, P. E., & Whiteaker, T. L. (2014). New insights into Cenozoic depositional systems of the Gulf of Mexico basin. Gulf Coast Association of Geological Societies Transactions, 64, 119–129.
    [Google Scholar]
  32. Galloway, W. E. (2005). Gulf of Mexico basin depositional record of Cenozoic drainage basin evolution. In M. D.Blum, S. B.Marriott, & S. F.Leclair (Eds.), Fluvial sedimentology VII (pp. 409–423). International Association of Sedimentologists Special Publication 35.
    [Google Scholar]
  33. Galloway, W. E. (2008). Depositional evolution of the Gulf of Mexico sedimentary basin. In A. D.Miall (Ed.), Sedimentary basins of the world, v. 5: The sedimentary basins of the United States and Canada (pp. 505–549). Elsevier.
    [Google Scholar]
  34. Galloway, W. E., Ganey‐Curry, P. E., Li, X., & Buffler, R. T. (2000). Cenozoic depositional history of the Gulf of Mexico basin. American Association of Petroleum Geologists Bulletin, 84, 1743–1774. https://doi.org/10.1306/8626C37F‐173B‐11D7‐8645000102C1865D
    [Google Scholar]
  35. Galloway, W. E., Whiteaker, T. L., & Ganey‐Curry, P. (2011). History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere, 7, 938–973. https://doi.org/10.1130/GES00647.1
    [Google Scholar]
  36. Gardulski, A. F., Gowen, M. H., Milsark, A., Weiterman, S. D., Wise, S. W., & Mullins, H. T. (1991). Evolution of a deep‐water carbonate platform: Upper Cretaceous to Pleistocene sedimentary environments on the west Florida margin. Marine Geology, 101(1), 163–179. https://doi.org/10.1016/0025‐3227(91)90069‐G
    [Google Scholar]
  37. Gold, P. B. (1984). Diagenesis of middle and upper Miocene sandstones, Louisiana Gulf Coast (p. 160, MS thesis). University of Texas at Austin.
    [Google Scholar]
  38. Guertin, L. A., Missimer, T. M., & McNeill, D. F. (2000). Hiatal duration of correlative sequence boundaries from Oligocene‐Pliocene mixed carbonate/siliciclastic sediments of the south Florida platform. Sedimentary Geology, 134, 1–26. https://doi.org/10.1016/S0037‐0738(00)00011‐7
    [Google Scholar]
  39. Hamilton, P., Fargion, G. S., & Biggs, D. C. (1999). Loop Current eddy paths in the Western Gulf of Mexico. Journal of Physical Oceanography, 29, 1180–1207. https://doi.org/10.1175/1520‐0485(1999)029<1180:LCEPIT>2.0.CO;2
    [Google Scholar]
  40. Hamilton, P. (2007). Deep‐current variability near the Sigsbee Escarpment in the Gulf of Mexico. Journal of Physical Oceanography, 37, 708–726.
    [Google Scholar]
  41. Hamilton, P., & Lugo‐Fernandez, A. (2001). Observations of high speed deep currents in the northern Gulf of Mexico. Geophysical Research Letters, 28, 2867–2870. https://doi.org/10.1029/2001GL013039
    [Google Scholar]
  42. Hart, G. F., Ferrell, R. E., & Peach, D. R. (1984). Conventional core studies: Photolog and sampling locations, Texaco well #6: Louisiana State University Publications in Geology and Geophysics, Gulf Coast Studies, No. 4‐1.
  43. Hoel, H. D. (1982). Goliad Formation of the south Texas gulf coastal plain (p. 126, Unpublished MS thesis). University of Texas at Austin.
    [Google Scholar]
  44. Hoorn, C., & Flantua, S. (2015). An early start for the Panama land bridge. Science, 348, 186–187. https://doi.org/10.1126/science.aab0099
    [Google Scholar]
  45. Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation‐inductively coupled plasma‐mass spectrometry to in situ U‐Pb zircon geochronology. Chemical Geology, 211(1–2), 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    [Google Scholar]
  46. Jaramillo, C., Montes, C., Cardona, A., Silvestro, D., Antonelli, A., & Bacon, C. D. (2017). Comment (1) on “formation of the Isthmus of Panama” by O'Dea et al. Science Advances, 3, e1602321. https://doi.org/10.1126/sciadv.1602321
    [Google Scholar]
  47. Liu, L. (2014). Rejuvenation of Appalachian topography caused by subsidence‐induced differential erosion. Nature Geoscience, 7, 518–523. https://doi.org/10.1038/ngeo2187
    [Google Scholar]
  48. Ludwig, K. R. (2003). Isoplot/Ex 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4.
    [Google Scholar]
  49. Mason, C. C., Fildani, A., Gerber, T., Blum, M. D., Clark, J. D., & Dykstra, M. (2017). Climatic and anthropogenic influences on sediment mixing in the Mississippi source‐to‐sink system using detrital zircons: Late Pleistocene to recent. Earth and Planetary Science Letters, 466, 70–79. https://doi.org/10.1016/j.epsl.2017.03.001
    [Google Scholar]
  50. Mason, C. C., Romans, B. W., Stockli, D. F., Mapes, R. W., & Fildani, A. (2019). Detrital zircons reveal sea‐level and hydroclimate controls on Amazon River to deep‐sea fan sediment transfer. Geology, 47, 563–567. https://doi.org/10.1130/G45852.1
    [Google Scholar]
  51. McBride, E. F., Land, L. S., Diggs, T. N., & Mack, L. N. (1988). Petrography, stable isotope geochemistry and diagenesis of Miocene sandstones, Vermilion block 31, offshore Louisiana. Gulf Coast Association of Geological Societies Transactions, 38, 513–523.
    [Google Scholar]
  52. Missimer, T. M., & Ginsburg, R. N. (1998). Homogenized carbonates and siliciclastics in the tertiary of southwest Florida. Gulf Coast Association of Geological Societies Transactions, 48, 263–274.
    [Google Scholar]
  53. Montes, C., Bayona, G., Cardona, A., Buchs, D. M., Silva, C. A., Morón, S., Hoyos, N., Ramírez, D. A., Jaramillo, C. A., & Valencia, V. (2012). Arc‐continent collision and orocline formation: Closing of the Central American seaway. Journal of Geophysical Research, 117, B04105. https://doi.org/10.1029/2011JB008959
    [Google Scholar]
  54. Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J. C., Valencia, V., Ayala, C., Pérez‐Angel, L. C., Rodriguez‐Parra, L. A., Ramirez, V., & Niño, H. (2015). Middle Miocene closure of the Central American Seaway. Science, 348, 226–229. https://doi.org/10.1126/science.aaa2815
    [Google Scholar]
  55. Mullins, H. T., Gardulski, A. F., Hine, A. C., Mellillo, A. J., Wise, S. W., & Applegate, J. (1988). Three‐dimensional sedimentary framework of the carbonate ramp slope of central west Florida: A sequential seismic stratigraphic perspective of a modern scenario. Geological Society of America Bulletin, 100, 514–533. https://doi.org/10.1130/0016‐7606(1988)100<0514:TDSFOT>2.3.CO;2
    [Google Scholar]
  56. Mullins, H. T., Gardulski, A. F., Wise, S. W., & Applegate, J. (1987). Middle Miocene oceanographic event in the eastern Gulf of Mexico: Implications for seismic stratigraphic succession and Loop Current/Gulf Stream circulation. GSA Bulletin, 98, 702–713. https://doi.org/10.1130/0016‐7606(1987)98<702:MMOEIT>2.0.CO;2
    [Google Scholar]
  57. Nie, J. S., Ruetenik, G., Gallagher, K., Hoke, G., Garzione, C., Wang, W. T., Stockli, D., Hu, X. F., Wang, Z., Wang, Y., Stevens, T., Danišík, M., & Liu, S. P. (2018). Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nature Geoscience, 11, 944–948.
    [Google Scholar]
  58. O’Dea, A., Jackson, J. B. C., Fortunato, H., Smith, J. T., D’Croz, L., Johnson, K. G., & Todd, J. A. (2007). Environmental change preceded Caribbean extinction by 2 million years. Proceedings of the National Academy of Sciences of the United States of America, 104, 5501–5506. https://doi.org/10.1073/pnas.0610947104
    [Google Scholar]
  59. O’Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo‐Moreno, S. A., Cione, A. L., Collins, L. S., de Queiroz, A., Farris, D. W., Norris, R. D., Stallard, R. F., Woodburne, M. O., Aguilera, O., Aubry, M. P., Berggren, W. A., Budd, A. F., Cozzuol, M. A., Coppard, S. E., Duque‐Caro, H., … Jackson, J. B. C. (2016). Formation of the Isthmus of Panama. Science Advances, 2, e1600883, 1–11. https://doi.org/10.1126/sciadv.1600883
    [Google Scholar]
  60. Petrus, J. A., & Kamber, B. S. (2012). VizualAge: A novel approach to laser ablation ICP‐MS U‐Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36(3), 247–270. https://doi.org/10.1111/j.1751‐908X.2012.00158.x
    [Google Scholar]
  61. Poag, C. W., & Sevon, W. D. (1989). A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the U.S. Middle Atlantic continental margin. Geomorphology, 2, 119–157. https://doi.org/10.1016/0169‐555X(89)90009‐3
    [Google Scholar]
  62. Popenoe, P., Henry, V. J., & Idris, F. M. (1987). Gulf trough—The Atlantic connection. Geology, 15, 327–332. https://doi.org/10.1130/0091‐7613(1987)15<327:GTAC>2.0.CO;2
    [Google Scholar]
  63. Posamentier, H. W., Erskine, R. D., & Mitchum, R. M.Jr (1991). Submarine fan deposition within a sequence stratigraphic framework. In P.Weimer & M. H.Link (Eds.), Seismic facies and sedimentary processes of submarine fans and turbidite systems (pp. 127–136). Springer‐Verlag.
    [Google Scholar]
  64. Potter, P. E., & Szatmari, P. (2009). Global Miocene tectonics and the modern world. Earth Science Reviews, 96, 279–295. https://doi.org/10.1016/j.earscirev.2009.07.003
    [Google Scholar]
  65. Saucier, R. T. (1994). Geomorphology and quaternary geologic history of the Lower Mississippi Valley (p. 364). U.S. Army corps of Engineers Waterways Experiment Station.
    [Google Scholar]
  66. Saylor, J. E., Jordan, J. C., Sundell, K. E., Wang, X. M., Wang, S. Q., & Deng, T. (2018). Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau. Basin Research, 30, 1–20.
    [Google Scholar]
  67. Saylor, J. E., Knowles, J. N., Horton, B. K., Nie, J., & Mora, A. (2013). Mixing of source populations recorded in detrital zircon U‐Pb age spectra of modern river sands. Journal of Geology, 121, 17–33. https://doi.org/10.1086/668683
    [Google Scholar]
  68. Saylor, J. E., & Sundell, K. E. (2016). Quantifying comparison of large detrital geochronology data sets. Geosphere, 12, 203–220. https://doi.org/10.1130/GES01237.1
    [Google Scholar]
  69. Shanmugam, G., Spalding, T. D., & Rofheart, D. H. (1993). Process sedimentology and reservoir quality of deep‐marine bottom‐current‐reworked sands (sandy contourites): An example from the Gulf of Mexico. American Association of Petroleum Geologists Bulletin, 77, 1241–1259. https://doi.org/10.1306/BDFF8E52‐1718‐11D7‐8645000102C1865D
    [Google Scholar]
  70. Sharman, G. R., Covault, J. A., Stockli, D. F., Wroblewski, A.‐J., & Bush, M. A. (2017). Early Cenozoic drainage reorganization of the United States Western Interior‐Gulf of Mexico sediment routing system. Geology, 45, 187–190. https://doi.org/10.1130/G38765.1
    [Google Scholar]
  71. Sharman, G. R., & Johnstone, S. A. (2017). Sediment unmixing using detrital geochronology. Earth and Planetary Science Letters, 477, 183–194. https://doi.org/10.1016/j.epsl.2017.07.044
    [Google Scholar]
  72. Sharman, G. R., Sharman, J. P., & Sylvester, Z. (2018). detritalPy: A Python‐based toolset for visualizing and analysing detrital geo‐thermochronologic data. Depositional Record, 4, 202–215. https://doi.org/10.1002/dep2.45
    [Google Scholar]
  73. Sickmann, Z. T., Paull, C. K., & Graham, S. A. (2016). Detrital–zircon mixing and partitioning in fluvial to deep marine systems, central California, U.S.A. Journal of Sedimentary Research, 86, 1298–1307. https://doi.org/10.2110/jsr.2016.78
    [Google Scholar]
  74. Snedden, J. W., & Galloway, W. E. (2019). The Gulf of Mexico sedimentary basin: Depositional evolution and petroleum applications. Cambridge University Press. https://doi.org/10.1017/9781108292795.008
    [Google Scholar]
  75. Snedden, J. W., Galloway, W. E., Milliken, K. T., Xu, J., Whiteaker, T., & Blum, M. D. (2018). Validation of empirical source‐to‐sink scaling relationships in a continental‐scale system: The Gulf of Mexico basin Cenozoic record. Geosphere, 14(2), 1–17. https://doi.org/10.1130/GES01452.1
    [Google Scholar]
  76. Snedden, J. W., Galloway, W. E., Whiteaker, T. L., & Ganey‐Curry, P. E. (2012). Eastward shift of deepwater fan axes during the Miocene in the Gulf of Mexico: Possible causes and models. GCAGS Journal, 1, 131–144.
    [Google Scholar]
  77. Snedden, J. W., Nummedal, D., & Amos, A. F. (1988). Storm and fairweather combined‐flow on the central Texas continental shelf. Journal of Sedimentary Research, 58, 580–595. https://doi.org/10.1306/212F8DFA‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  78. Spradlin, S. D. (1980). Miocene fluvial systems: Southeast Texas (p. 139, MS thesis). University of Texas at Austin.
    [Google Scholar]
  79. Sundell, K. E., & Saylor, J. E. (2017). Unmixing detrital geochronology age distributions. Geochemistry, Geophysics, Geosystems, 18, 2872–2886. https://doi.org/10.1002/2016GC006774
    [Google Scholar]
  80. Umbarger, K. F., & Snedden, J. W. (2016). Delineation of post‐KPg carbonate slope deposits as a sedimentary record of the Paleogene linkage of De Soto Canyon and Suwannee Strait, northern Gulf of Mexico. Interpretation, 4, SC51–SC61.
    [Google Scholar]
  81. Wagner, A. J., Guilderson, T. P., Slowey, N. C., & Cole, J. E. (2009). Pre‐bomb surface water radiocarbon of the Gulf of Mexico and Caribbean as recorded in hermatypic corals. Radiocarbon, 51, 947–954. https://doi.org/10.1017/S0033822200034020
    [Google Scholar]
  82. Wahl, P. J., Yancey, T. E., Pope, M. C., Miller, B. V., & Ayers, W. B. (2016). U‐Pb detrital zircon geochronology of the Upper Paleocene to Lower Eocene Wilcox Group, east‐central Texas. Geosphere, 12, 1517–1531. https://doi.org/10.1130/GES01313.1
    [Google Scholar]
  83. Wan, S., Kürschner, W. M., Clift, P. D., Li, A., & Li, T. (2009). Extreme weathering/erosion during the Miocene Climatic Optimum: Evidence from sediment record in the South China Sea. Geophysical Research Letters, 36, 1–5. https://doi.org/10.1029/2009GL040279
    [Google Scholar]
  84. Welsh, S. E., & Inoue, I. (2000). Loop Current rings and the deep circulation in the Gulf of Mexico. Journal of Geophysical Research, 105, 16951–16959. https://doi.org/10.1029/2000JC900054
    [Google Scholar]
  85. Winker, C. D. (1982). Cenozoic shelf margins, northwestern Gulf of Mexico. Gulf Coast Association of Geological Societies Transactions, 32, 427–448.
    [Google Scholar]
  86. Xu, J., Snedden, J. W., Stockli, D. F., Fulthorpe, C. S., & Galloway, W. E. (2017). Early Miocene continental–scale sediment supply to the Gulf of Mexico Basin based on detrital zircon analysis. Geological Society of America Bulletin, 129(1–2), 3–22. https://doi.org/10.1130/B31465.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12653
Loading
/content/journals/10.1111/bre.12653
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): deep sea; detrital zircon; Gulf of Mexico; Miocene; sediment mixing

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error