1887
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

Fault relay ramps are important sediment delivery points along rift margins and often provide persistent flow pathways in deepwater sedimentary basins. They form as tilted rock volumes between en‐echelon fault segments, which become modified through progressive deformation, and may develop through‐going faults that ‘breach’ the relay ramp. It is well established that hinterland drainage (fluvial/alluvial systems) is greatly affected by the presence of relay ramps at basin margins. However, the impact on deepwater (deep‐marine/lacustrine) subaqueous sediment gravity flow processes, particularly by breached relay ramps, is less well documented. To better evaluate the complex geology of breached relay settings, this study examines a suite of high‐quality subsurface data from the Early Cretaceous deep‐lacustrine North Falkland Basin (NFB). The Isobel Embayment breached relay‐ramp, an ideal example, formed during the syn‐rift and was later covered by a thick transitional and early post‐rift succession. Major transitional and early post‐rift fan systems are observed to have consistently entered the basin at the breached relay location, directed through a significant palaeo‐bathymetric low associated with the lower, abandoned ramp of the structure. More minor systems also entered the basin across the structure‐bounding fault to the north. Reactivation of basin‐bounding faults is shown by the introduction of new point sources along its extent. This study shows the prolonged influence of margin‐located relay ramps on sedimentary systems from syn‐rift, transitional and into the early post‐rift phase. It suggests that these structures can become reactivated during post‐rift times, providing continued control on deposition and sourcing of overlying sedimentary systems. Importantly, breached relays exert control on fan distribution, characterised by laterally extensive lobes sourced by widespread feeder systems, and hanging walls settings by small‐scale lobes, with small, often line‐sourced feeders. Further characterising the likely sandstone distribution in these structurally complex settings is important as these systems often form attractive hydrocarbon reservoirs.

,

Early post‐rift deposition associated with the breached relay structure can be divided into two domains: (1) systems which entered the basin at the breached relay structure via the lower abandoned ramp; (2) systems which entered directly across the hangingwall of structure bounding faults. Into the early post‐rift, systems continue to enter at the same locations, however, fan geometries and sources change in response to overall basin subsidence becoming the main accommodation driver.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12655
2022-05-22
2022-06-27
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/3/bre12655.html?itemId=/content/journals/10.1111/bre.12655&mimeType=html&fmt=ahah

References

  1. Anderson, J. E., Cartwright, J., Drysdall, S. J., & Vivian, N. (2000). Controls on turbidite sand deposition during gravity‐driven extension of a passive margin: Examples from Miocene sediments in Block 4, Angola. Marine and Petroleum Geology, 17, 1165–1203.
    [Google Scholar]
  2. Athmer, W., Groenenberg, R. M., Luthi, S. M., Donselaar, M. E., Sokoutis, D., & Willingshofer, E. (2010). Relay ramps as pathways for turbidity currents: A study combining analogue sandbox experiments and numerical flow simulations. Sedimentology, 57(3), 806–823. https://doi.org/10.1111/j.1365‐3091.2009.01120.x
    [Google Scholar]
  3. Athmer, W., & Luthi, S. M. (2011). The effect of relay ramps on sediment routes and deposition: A review. Sedimentary Geology, 242(1–4), 1–17. https://doi.org/10.1016/j.sedgeo.2011.10.002
    [Google Scholar]
  4. Barrett, B. J., Hodgson, D. M., Jackson, C. A. L., Lloyd, C., Casagrande, J., & Collier, R. E. LI. (2020). Quantitative analysis of a footwall‐scarp degradation complex and syn‐rift stratigraphic architecture, Exmount Plateau, NW Shelf, offshore Australia. Basin Research, 33(2), 1135–1169.
    [Google Scholar]
  5. Bell, D., Stevenson, C. J., Kane, I. A., Hodgson, D. M., & Poyatos‐Moré, M. (2018). Topographic controls on the development of contemporaneous but contrasting basin‐floor depositional architectures. Journal of Sedimentary Research, 88, 1166–1189. https://doi.org/10.2110/jsr.2018.58
    [Google Scholar]
  6. Bouma, A. H. (2000). Coarse‐grained and fine‐grained turbidite systems as end member models: Applicability and dangers. Marine and Petroleum Geology, 17, 137–143. https://doi.org/10.1016/S0264‐8172(99)00020‐3
    [Google Scholar]
  7. Bowman, M. B. J. (1985). Cenozoic. In E. K. W.Glennie (Ed.), Introduction to the petroleum geology of the North Sea. JAPEC, Supplementary course notes no. 126.58. https://doi.org/10.1002/9781444313413
    [Google Scholar]
  8. Bruhn, R., & Vagle, K. (2005). Relay ramp evolution and mass flow deposition (Upper Kimmeridgian‐Lower Volgian) in the tail end Graben, Danish North Sea. Basin Research, 17(4), 551–567. https://doi.org/10.1111/j.1365‐2117.2005.00276.x
    [Google Scholar]
  9. Bunt, R. J. W. (2015). The use of seismic attributes for fan and reservoir definition in the Sea Lion Field, North Falkland Basin. Petroleum Geoscience, 21, 137–149. https://doi.org/10.1144/petgeo2014‐055
    [Google Scholar]
  10. Carmona, A., Gratacós, O., Clavera‐Gispert, R., Muñoz, J. A., & Hardy, S. (2016). Numerical modelling of syntectonic subaqueous sedimentation: The effect of normal faulting and a relay ramp on sediment dispersal. Tectonophysics, 684, 100–118. https://doi.org/10.1016/j.tecto.2016.06.018
    [Google Scholar]
  11. Childs, C., Watterson, J., & Walsh, J. J. (1995). Fault overlap zones within developing normal fault systems. Journal of the Geological Society, London, 152, 535–549. https://doi.org/10.1144/gsjgs.152.3.0535
    [Google Scholar]
  12. Çiftçi, N. B., & Bozkurt, E. (2007). Anomalous stress field and active breaching in relay ramps: A field example from Gediz Graben, SW Turkey. Geological Magazine, 144, 687–699.
    [Google Scholar]
  13. Commins, D., Gupta, S., & Cartwright, J. (2005). Deformed streams reveal growth and linkage of a normal fault array in the Canyonlands graben, Utah. Geology, 33(8), 645–648. https://doi.org/10.1130/G21433AR.1
    [Google Scholar]
  14. Covault, J. A., & Romans, B. W. (2009). Growth patterns of deep‐sea fans, revisited Turbidite‐system morphology in confined basins, examples from the California Borderland. Marine Geology, 265(1–2), 51–66. https://doi.org/10.1016/j.margeo.2009.06.016
    [Google Scholar]
  15. Cowie, P. A., Attal, M., Tucker, G. E., Whittaker, A. C., Naylor, M., Ganas, A., & Roberts, G. P. (2006). Investigating the surface process response to fault interaction and linkage using a numerical modelling approach. Basin Research, 18(3), 231–266. https://doi.org/10.1111/j.1365‐2117.2006.00298.x
    [Google Scholar]
  16. Crossley, R. (1984). Controls of sedimentation in the Malawi rift valley, Central Africa. Sedimentary Geology, 40(1–3), 33–50. https://doi.org/10.1016/0037‐0738(84)90038‐1
    [Google Scholar]
  17. Cullen, T. M., Collier, R. E. L. L., Gawthorpe, R. L., Hodgson, D. M., & Barrett, B. J. (2020). Axial and transverse deep‐water sediment supply to syn‐rift terraces: Insights from the West Xylokastro Fault Block, Gulf of Corinth, Greece. Basin Research, 32(5), 1105–1139.
    [Google Scholar]
  18. Cunha, R. S., Tinterri, R., & Magalhaes, P. M. (2017). Annot Sandstone in the Peira Cava basin: An example of an asymmetric facies distribution in a confined turbidite system (SE France). Marine and Petroleum Geology, 87, 60–79.
    [Google Scholar]
  19. Destro, N., Szatmari, P., Alkmim, F. F., & Magnavita, L. P. (2003). Release faults, associated structures, and their control on petroleum trends in the Recôncavo rift, northeast Brazil. AAPG Bulletin, 87(7), 1123–1144. https://doi.org/10.1306/02200300156
    [Google Scholar]
  20. Dodd, T. J. H., McCarthy, D. J., & Richards, P. C. (2019). A depositional model for deep‐lacustrine, partially confined, turbidite fans: Early Cretaceous, North Falkland Basin. Sedimentology, 66(1), 53–80. https://doi.org/10.1111/sed.12483
    [Google Scholar]
  21. Elliott, G. M., Jackson, C. A. L., Gawthorpe, R. L., Wilson, P., Sharp, I. R., & Michelsen, L. (2017). Late syn‐rift evolution of the Vingleia Fault Complex, Halten Terrace, Offshore Mid‐Norwary: A test of rift basin tectono‐stratigraphic models. Basin Research, 29(Suppl. 1), 465–487.
    [Google Scholar]
  22. Evans, A. L. (1990). Miocene sandstone provenance relations in the Gulf of Suez: Insights into synrift unroofing and uplift history. AAPG Bulletin, 74(9), 1386–1400.
    [Google Scholar]
  23. Fossen, H., & Rotevatn, A. (2015). Fault linkage and relay structures in extensional settings – A review. Earth‐Science Reviews, 154, 14–28. https://doi.org/10.1016/j.earscirev.2015.11.014
    [Google Scholar]
  24. Frostick, L., & Reid, I. (1989). Is structure the main control of river drainage and sedimentation in rift?Journal of Africa Earth Science, 8(2–4), 165–182.
    [Google Scholar]
  25. Fugelli, E. M. G., & Olsen, T. R. (2007). Delineating confined slope turbidite systems offshore mid‐Norway: The Cretaceous deep‐marine Lysing Formation. American Association of Petroleum Geologists Bulletin, 91(11), 1577–1601. https://doi.org/10.1306/07090706137
    [Google Scholar]
  26. Gawthorpe, R. L., & Colella, A. (1990). Tectonic controls on coarse‐grained delta depositional systems in right basins. Course grained deltas. https://doi.org/10.1002/9781444303858
  27. Gawthorpe, R. L., & Hurst, J. M. (1993). Transfer zones in extensional basins: Their structural style and influence on drainage development and stratigraphy. Journal of the Geological Society (London), 150(6), 1137–1152. https://doi.org/10.1144/gsjgs.150.6.1137
    [Google Scholar]
  28. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218.
    [Google Scholar]
  29. Ge, Z., Nemec, W., Gawthorpe, R. L., Rotevatn, A., & Hansen, E. W. M. (2018). Response of unconfined turbidity current to relay‐ramp topography: Insights from process‐based numerical modelling. Basin Research, 30(2), 321–343. https://doi.org/10.1111/bre.12255
    [Google Scholar]
  30. Genik, G. J. (1993). Petroleum geology of Cretaceous‐Tertiary Rift Basins in Niger, Chad and Central African Republic. AAPG Bulletin, 77(8), 1405–1434.
    [Google Scholar]
  31. Gervais, A., Savove, B., Piper, D. J. W., Mulder, T., Cremer, M., & Pichevin, L. (2004). Present morphology and depositional architecture of a sandy confined submarine system: The Golo turbidite system (eastern margin of Corsica). Geological Society of London Special Publications, 222, 59–89. https://doi.org/10.1144/GSL.SP.2004.222.01.05
    [Google Scholar]
  32. Guardado, L. R., Gamboa, L. A. P., & Lucchesi, C. F. (1989). Petroleum geology of the Campos Basin, Brazil, a model for producing Atlantic type Basin: Part 1. In: J. D.Edwards, & P. A.Santogrossi (Eds.), Divergent/passive margins. AAPG Memoir, 48, 3–79.
    [Google Scholar]
  33. Gupta, S., Underhill, J. R., Sharp, I. R., & Gawthorpe, R. L. (1999). Role of fault interactions in controlling synrift sediment dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt. Basin Research, 11(2), 167–189. https://doi.org/10.1046/j.1365‐2117.1999.00300.x
    [Google Scholar]
  34. Harding, T. P., & Lowell, J. D. (1979). Structural styles, their plate tectonic habitats and hydrocarbon traps in petroleum provinces. AAPG Bulletin, 63(7), 1016–1058.
    [Google Scholar]
  35. Heller, P. L., & Dickinson, W. R. (1985). Submarine ramp facies model for delta‐fed, sand‐rich turbidite systems. AAPG Bulletin, 69(6), 960–976.
    [Google Scholar]
  36. Hemelsdaël, R., & Ford, M. (2016). Relay zone evolution: A history of repeated fault propagation and linkage, central Corinth rift, Greece. Basin Research, 28, 34–56. https://doi.org/10.1111/bre.12101
    [Google Scholar]
  37. Henstra, G. A., Grundvåg, S. A., Johannessen, E. P., Kristensen, T. B., Midtkandal, I., Nystuen, J. P., Rotevatn, A., Surlyk, F., Sæther, T., & Windelstad, J. (2016). Depositional processes and stratigraphic architecture within a coarse‐grained rift‐margin turbidite system: The Wollaston Forland Group, east Greenland. Marine and Petroleum Geology, 76, 187–209. https://doi.org/10.1016/j.marpetgeo.2016.05.018
    [Google Scholar]
  38. Jackson, J., & Leeder, M. (1994). Drainage systems and the development of normal faults: An example from Pleasant Valley, Nevada. Journal of Structural Geology, 16(8), 1041–1059. https://doi.org/10.1016/0191‐8141(94)90051‐5
    [Google Scholar]
  39. Kim, W., & Paola, C. (2007). Long‐period cyclic sedimentation with constant tectonic forcing in an experimental relay ramp. Geology, 35, 331–334. https://doi.org/10.1130/G23194A.1
    [Google Scholar]
  40. Lambiase, J. J., & Bosworth, W. (1995). Structural controls on sedimentation in continental rifts. Geological Society, London, Special Publications, 80(1), 117–144.
    [Google Scholar]
  41. Leeder, M. R., & Gawthorpe, R. L. (1987). Sedimentary models for extensional tilt‐block/half‐graben basins. Continental Extensional Tectonics. Geological Society Special Publications, 28, 139–152. https://doi.org/10.1144/GSL.SP.1987.028.01.11
    [Google Scholar]
  42. Leeder, M. R., & Jackson, J. A. (1993). The interaction between normal faulting and drainage in active extensional basins, with examples from the western United States and central Greece. Basin Research, 5, 79–102. https://doi.org/10.1111/j.1365‐2117.1993.tb00059.x
    [Google Scholar]
  43. Lezzar, K. E., Tiercelinm, J. J., Le Turdu, C., Cohen, A. S., Reynolds, D. J., Le Gall, B., & Scholz, C. A. (2002). Control of normal fault interaction of major Neogene sedimentary depocentres, Lake Tanganyika, East African Rift. AAPG Bulletin, 86, 1027–1059.
    [Google Scholar]
  44. Lohr, T., & Underhill, J. R. (2015). Role of rift transection and punctuated subsidence in the development of the North Falkland Basin. Petroleum Geoscience, 21, 85–110. https://doi.org/10.1144/petgeo2014‐050
    [Google Scholar]
  45. Lomas, S. A., & Joseph, P. (2004). Confined turbidite systems. Geological Society London Special Publications, 222, 1–7. https://doi.org/10.1144/GSL.SP.2004.222.01.01
    [Google Scholar]
  46. Morely, C. K. (1995). Developments in the structural geology of rifts over the last decade and their impact on hydrocarbon exploration. Geological Society London Special Publications, 80(1), 1–32.
    [Google Scholar]
  47. Morely, C. K., Nelson, R. A., Patton, T. L., & Munn, S. G. (1990). Transfer zones in the East Africa rift system and their relevance to hydrocarbon exploration in rifts. AAPG Bulletin, 74, 1234–1253.
    [Google Scholar]
  48. Mutti, E., & Normark, W. R. (1987). Comparing examples of modern and ancient turbidite systems: Problems and concepts. In J. K.Leggett, & G. G.Zuffa (Eds.), Marine clastic sedimentology: Concepts and case studies (pp. 1–38). Springer.
    [Google Scholar]
  49. Mutti, E., & Normark, W. R. (1991). An integrated approach to the study of turbidite systems. In P.Weimer, & M. H.Link (Eds.), Seismic facies and sedimentary processes of submarine fans and turbidite systems (pp. 75–106). Springer.
    [Google Scholar]
  50. Nelson, R. A., Patton, T. L., & Morely, C. K. (1992). Rift segment interaction and its relation to hydrocarbon exploration in rift systems. AAPG Bulletin, 76, 1153–1169.
    [Google Scholar]
  51. Partington, M. A., Mitchener, B. C., Milton, N. J., & Fraser, A. J. (1993). Genetic sequence stratigraphy for the North Sea Late Jurassic and Early Cretaceous: Distribution and prediction of Kimmeridgian‐Late Ryazanian reservoirs in the North Sea and adjacent areas. In: J. R.Parker (Ed.), Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference (pp. 347–370). Geological Society, London.
    [Google Scholar]
  52. Peacock, D. C. P., & Sanderson, D. J. (1991). Displacements, segment linkage and relay ramps in normal fault zones. Journal of Structural Geology, 13(6), 721–733. https://doi.org/10.1016/0191‐8141(91)90033‐F
    [Google Scholar]
  53. Peacock, D. C. P., & Sanderson, D. J. (1994). Geometry and development of relay ramps in normal fault systems. American Association of Petroleum Geologists Bulletin, 78(2), 147–165.
    [Google Scholar]
  54. Prather, B. E., Booth, J. R., Steffens, G. S., & Craig, P. A. (1998). Classification, lithological calibration and stratigraphic succession to seismic facies of intraslope Basin, Deep‐Water Gulf of Mexico. AAPG Bulletin, 82(5A), 701–728.
    [Google Scholar]
  55. Ravnås, R., & Steel, R. J. (1997). Contrasting styles of Late Jurassic syn‐rift turbidite sedimentation: A comparative study of the Magnus and Oseberg areas, norther North Sea. Marine and Petroleum Geology, 14, 417–449.
    [Google Scholar]
  56. Richard, M., & Bowman, M. (1998). Submarine fans and related depositional systems II: Variability in reservoir architecture and wireline log character. Marine and Petroleum Geology, 15, 821–839. https://doi.org/10.1016/S0264‐8172(98)00042‐7
    [Google Scholar]
  57. Richard, M., Bowman, N., & Reading, H. (1998). Submarine‐fan systems I: Characterization and stratigraphic prediction. Marine and Petroleum Geology, 16, 689–717. https://doi.org/10.1016/S0264‐8172(98)00036‐1
    [Google Scholar]
  58. Richards, P., Duncan, I., Phipps, C., Pickering, G., Grzywacz, J., Hoult, R., & Merritt, J. (2006). Exploring for fan and delta sandstones in the offshore Falklands Basins. Journal of Petroleum Geology, 29(3), 199–214. https://doi.org/10.1111/j.1747‐5457.2006.00199.x
    [Google Scholar]
  59. Richards, P. C., & Fannin, N. G. T. (1997). Geology of the North Falkland Basin. Journal of Petroleum Geology, 20(2), 165–183. https://doi.org/10.1111/j.1747‐5457.1997.tb00771.x
    [Google Scholar]
  60. Richards, P. C., Gatliff, R. W., Quinn, M. F., Williamson, J. P., & Fannin, N. G. T. (1996). The geological evolution of the Falkland Islands continental shelf. Geological Society Special Publication, 108(108), 105–128. https://doi.org/10.1144/GSL.SP.1996.108.01.08
    [Google Scholar]
  61. Richards, P. C., & Hillier, B. V. (2000a). Post‐drilling analysis of the North Falkland Basin‐Part 1: Tectono‐stratigraphic framework. Journal of Petroleum Geology, 23(3), 253–272. https://doi.org/10.1111/j.1747‐5457.2000.tb01019.x
    [Google Scholar]
  62. Richards, P. C., & Hillier, B. V. (2000b). Post‐drilling analysis of the North Falkland Basin‐ Part 1: Petroleum system and future prospects. Journal of Petroleum Geology, 23(3), 253–272.
    [Google Scholar]
  63. Serck, C. S., & Braathen, A. (2019). Extensional fault and fold growth: Impact on accommodation evolution and sedimentary infill. Basin Research, 31(5), 967–990. https://doi.org/10.1111/bre.12353
    [Google Scholar]
  64. Soreghan, M. J., Scholz, C. A., & Wells, J. T. (1999). Coarse‐grained, deep‐water sedimentation along a border fault margin of Lake Malawi, Africa: Seismic stratigraphic analysis. Journal of Sedimentary Research, 69(4), 832–846. https://doi.org/10.2110/jsr.69.832
    [Google Scholar]
  65. Tagliaferri, A., Tinterri, R., Pontiggia, M., Da Pra, A., Davoli, G., & Bonamini, E. (2018). Basin‐scale, high‐resolution three‐dimensional facies modelling of tectonically confined turbidites: An example from the Firenzuola system (Marnoso‐arenacea Formation, northern Apennines, Italy). AAPG Bulletin, 102(8), 1601–1626.
    [Google Scholar]
  66. Talling, P. J. (2013). Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models. Geosphere, 9(3), 460–488. https://doi.org/10.1130/GES00793.1
    [Google Scholar]
  67. Trudgill, B. D. (2002). Structural controls on drainage development in the Canyonlands grabens of southeast Utah. AAPG Bulletin, 86(6), 1095–1112.
    [Google Scholar]
  68. Walsh, J. J., Watterson, J., Bailey, W. R., & Childs, C. (1999). Fault relays, bends and branch‐lines. Journal of Structural Geology, 21, 1019–1026. https://doi.org/10.1016/S0191‐8141(99)00026‐7
    [Google Scholar]
  69. Waltham, D. (2004). Flow transformation in particulate gravity currents. Journal of Sedimentary Research, 74(1), 129–134.
    [Google Scholar]
  70. Wells, J. T., Scholz, C. A., & Soreghan, M. J. (1999). Processes of sedimentation on a lacustrine border‐fault margin: Interpretation of core from Lake Malawi, East Africa. Journal of Sedimentary Research, 69(4), 816–831.
    [Google Scholar]
  71. Williams, L. S. (2015). Sedimentology of the Lower Cretaceous reservoirs of the Sea Lion Field, North Falkland Basin. Petroleum Geoscience, 21, 183–198. https://doi.org/10.1144/petgeo2014‐039
    [Google Scholar]
  72. Williams, R. M., Underhill, J. R., & Jamieson, R. J. (2020). The role of relay ramp evolution in governing sediment dispersal and petroleum prospectivity of syn‐rift stratigraphic plays in the Northern North Sea. Petroleum Geoscience, 26(2), 232–246. https://doi.org/10.1144/petgeo2019‐096
    [Google Scholar]
  73. Winker, C. D. (1996). High‐resolution seismic stratigraphy of a Late Pleistocene submarine fan ponded by salt‐withdrawal mini basins on the Gulf of Mexico continental slope. Offshore Technology Conference 8024, 6–9 (May 1996). Houston, TX, USA.
  74. Yang, T., Cao, Y., Liu, K., Tian, J., Zavala, C., & Wang, Y. (2020). Gravity‐flow deposits caused by different initiation processes in a deep‐lake system. AAPG Bulletin, 104(7), 1462–1499. https://doi.org/10.1306/03172017081
    [Google Scholar]
  75. Yang, T., Cao, Y., Liu, K., Wang, Y., Zavala, C., Friis, H., Song, M., Yuan, G., Liang, C., Xi, K., & Wang, J. (2019). Genesis and depositional model of subaqueous sedimentary gravity‐flow deposits in a lacustrine rift basin as exemplified by the Eocene Shahejie Formation in the Jiyang Depression, Eastern China. Marine and Petroleum Geology, 102, 231–257.
    [Google Scholar]
  76. Young, M. J., Gawthorpe, R. L., & Sharp, I. R. (2000). Sedimentology and sequence stratigraphy of a transfer zone coarse‐grained delta, Miocene Suez Rift, Egypt. Sedimentology, 47(6), 1081–1104. https://doi.org/10.1046/j.1365‐3091.2000.00342.x
    [Google Scholar]
  77. Zhang, C., Sholz, C. A., & Harris, A. D. (2020). Sedimentary fills and sensitivity analysis of deep lacustrine facies in multi‐segment rift basins: Insights from 3D forward modelling. Sedimentary Geology, 408, 105753.
    [Google Scholar]
  78. Zhang, X., & Sholz, C. A. (2015). Turbidite systems of lacustrine rift basins: Examples from the Lake Kivu and Lake Albert rifts, East Africa. Sedimentary Geology, 325, 177–191. https://doi.org/10.1016/j.sedgeo.2015.06.003
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12655
Loading
/content/journals/10.1111/bre.12655
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error