1887
Volume 34, Issue 3
  • E-ISSN: 1365-2117

Abstract

[Abstract

Many Paradox Basin passive salt diapirs underwent a prolonged history (>65 my) of progressive burial during the Early Triassic to Jurassic. Burial is recorded by a series of geographically limited wedge‐shaped stratal panels of diapiric roof, termed ‘burial wedges’, which partly covered the diapirs, thereby gradually narrowing them. Tectonostratigraphic analysis of the Triassic Chinle Fm. burial wedge developed on the Gypsum Valley diapir illustrates the typical features and processes associated with burial wedges. Burial wedges represent the first description of the geometry and deposition of strata deposited on a partially buried diapir. Recognition of burial wedges allows reinterpretation of Paradox Basin diapirs where large areas of the roof strata were syndepositionally folded rather than deformed in the Neogene. The observations and concepts can also be applied to the terminal histories of passive salt diapirs in other salt basins. Preserved burial wedges cover 97 km2, or 64% of the original Gypsum Valley diapir and overlie regional unconformities. Onlapping strata stack into wedge halokinetic sequences (HS). Caprock‐clast conglomerates indicate deposition on exposed diapirs. Syndepositional deformation of burial wedge strata formed small synclinal ‘microbasins’ and contractional chevron folds trending subparallel to the diapir margin. A four‐stage burial wedge model includes the following: (1) erosion of the diapir roof during formation of regional unconformities; (2) onlap and partial burial of the diapir; (3) local dissolution and possible concomitant gravity‐driven folding and (4) ongoing rotation during deposition, forming wedge HS signifying continued inflation of the top of the diapir. Post formation, the burial wedges were deformed in ways that obscure their original geometry. The most common deformation is downwarping of the burial wedge into the diapir due to dissolution or lateral movement of salt, creating an anticlinal fold that overlies the underlying diapir margin. These anticlines may be offset on small normal faults subparallel to the diapir margin. Burial wedges were faulted during later diapir breaching and solution collapse.

,

Photograph of the Dolores River Canyon showing a burial wedge formed of onlapping and syndepositionally deformed Triassic Chinle Formation. Burial wedges preserve sediment and deformed during deposition on salt.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12658
2022-05-22
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/3/bre12658.html?itemId=/content/journals/10.1111/bre.12658&mimeType=html&fmt=ahah

References

  1. Alsop, G. I., Weinberger, R., Levi, T., & Marco, S. (2016). Cycles of passive versus active diapirism recorded along an exposed salt wall. Journal of Structural Geology, 84, 47–67. https://doi.org/10.1016/j.jsg.2016.01.008
    [Google Scholar]
  2. Amador, C. M., Schurger, S. G., & Miller, B. L. (2009). Andy's Mesa Unit, San Miguel County, Colorado. In W. S.Houston, L. S.Wray, & P. G.Moreland (Eds.), The Paradox Basin revisited—New developments in petroleum systems and basin analysis (pp. 497–518). Rocky Mountain Association of Geologists.
    [Google Scholar]
  3. Aubrey, W. M. (1995). Stratigraphic architecture and deformational history of Early Cretaceous Foreland Basin, Eastern Utah and Southwestern Colorado. In A. C.Huffman, W. R.Lund, & L. H.Goodwin (Eds.), Geology and resources of the Paradox Basin: Utah Geological Association guidebook (Vol. 25, pp. 211–220). Utah Geological Association.
    [Google Scholar]
  4. Baars, D. L., & Doelling, H. H. (1987). Moab salt‐intruded anticline, east‐central Utah. In S. S.Beus (Ed.), Geological Society of America centennial field guide—Rocky Mountain Section (pp. 275–280). Geological Society of America. https://doi.org/10.1130/0‐8137‐5402‐X.275
    [Google Scholar]
  5. Baars, D. L., & Stevenson, G. M. (1981). Tectonic evolution of western Colorado and eastern Utah. In R. C.Epis & J. F.Callender (Eds.), Western Slope (Western Colorado), New Mexico Geological Society guidebooks 32nd Annual Fall Field Conference Guidebook (Vol. 32, pp. 105–112). New Mexico Geological Society.
    [Google Scholar]
  6. Bailey, C. H. (2020). Fluvial interactions of the Jurassic Salt Wash Member of the Morrison Formation with the Gypsum Valley Salt Diapir, Co (p. 228, PhD dissertation). University of Texas at El Paso.
    [Google Scholar]
  7. Barbeau, D. L. (2003). A flexural model for the Paradox Basin: Implications for the tectonics of the ancestral rocky mountains. Basin Research, 15(1), 97–115. https://doi.org/10.1046/j.1365‐2117.2003.00194.x
    [Google Scholar]
  8. Blakey, R. C. (1973). Stratigraphy and origin of the Moenkopi Formation (Triassic) of southeastern Utah. The Mountain Geologist, 10(1), 1–17.
    [Google Scholar]
  9. Blakey, R. C. (1989). Triassic and Jurassic geology of the southern Colorado Plateau. Geologic Evolution of Arizona: Arizona Geological Society Digest, 17, 369–396.
    [Google Scholar]
  10. Boyers, W. (2000). Structural style and normal faulting adjacent to the Onion Creek Salt Diapir, Paradox Basin, Utah (p. 70, Master of Science). Baylor University.
    [Google Scholar]
  11. Cater, F. W.. (1954). Geology of the Paradox quadrangle (Geologic quadrangle No. GQ‐72). US Geological Survey.
    [Google Scholar]
  12. Cater, F. W. (1955a). Geology of the Anderson Mesa quadrangle (No. GQ‐71). US Geological Survey.
    [Google Scholar]
  13. Cater, F. W. (1955b). Geology of the Gypsum Gap quadrangle, Colorado: Map GQ‐59 (U.S. Geol. Survey No. GQ‐59).
    [Google Scholar]
  14. Cater, F. W. (1955c). Geology of the Horse Range Mesa Quadrangle, Colorado (U.S. Geol. Survey No. GQ‐64).
    [Google Scholar]
  15. Cater, F. W. (1955d). Geology of the Hamm Canyon quadrangle (Geologic Quadrangle No. GQ‐69). US Geological Survey.
    [Google Scholar]
  16. Cater, F. W. (1968). Stratigraphy of Slick Rock District and Vicinity San Miguel and Dolores Counties, Colorado (Professional Paper No. 576‐A, p. 107). U.S. Geological Survey.
    [Google Scholar]
  17. Cater, F. W. (1970). Geology of the Salt Anticline region in southwestern Colorado, with a section on stratigraphy. Geology of the salt anticline region by F.W. Cater and L.C. Craig (U.S. Geol. Survey No. PP‐637, p. 84).
  18. Coleman, A. J., Jackson, C.‐ A.‐L., Duffy, O. B., & Nikolinakou, M. A. (2018). How, where, and when do radial faults grow near salt diapirs?Geology, 46(7), 655–658. https://doi.org/10.1130/G40338.1
    [Google Scholar]
  19. Craig, L. C. (1955). Stratigraphy of the Morrison and related formations, Colorado Plateau Region: A preliminary report. In Geol. Survey Bull. 1009‐E. U.S. Government Printing Office.
    [Google Scholar]
  20. Craig, L. C. (1981). Lower Cretaceous rocks, Southwestern Colorado and Southeastern Utah. In Geology of the Paradox Basin (pp. 195–200). Rocky Mountain Association of Geologists.
    [Google Scholar]
  21. DeCelles, P. G. (2004). Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western U.S.A. American Journal of Science, 304(2), 105–168. https://doi.org/10.2475/ajs.304.2.105
    [Google Scholar]
  22. Dias, R. P., & Cabral, J. (2002). Interpretation of recent structures in an area of cryptokarst evolution—Neotectonic versus subsidence genesis. Geodinamica Acta, 15(4), 233–248. https://doi.org/10.1080/09853111.2002.10510756
    [Google Scholar]
  23. Doelling, H. H. (1988). Geology of Salt Valley anticline and Arches National Park, Grand County, Utah. In Salt deformation in the Paradox region, Utah: Utah Geological and Mineral Survey Bulletin (Vol. V–122, pp. 1–60). Utah Geological Survey.
    [Google Scholar]
  24. Doelling, H. H. (2002). Geologic map of the Fishers Towers 7.5'Quadrangle, Grand County, Utah (Vol. 183). Utah Geological Survey.
    [Google Scholar]
  25. Doelling, H. H., Sprinkel, D. A., Chidsey, T. C., & Anderson, D. L. (2000). Geology of Arches National Park, Grand County, Utah. In Geology of Utah's parks and monuments (Vol. 28, pp. 11–36). Utah Geological Society.
    [Google Scholar]
  26. Draper, H. (2020). Structural analysis of deformed caprock associated with a salt shoulder at Gypsum Valley salt wall, Paradox Basin, Colorado (p. 130, MS thesis). University of Texas at El Paso.
    [Google Scholar]
  27. Dubiel, R. F., Huntoon, J. E., Stanesco, J. D., & Condon, S. M. (2009). Cutler group alluvial, eolian, and marine deposystems: Permian facies relations and climatic variability in the Paradox Basin. In W. S.Houston, L. S.Wray, & P. G.Moreland (Eds.), The Paradox Basin revisited new developments in petroleum systems and basin analysis (pp. 265–308). Rocky Mountain Association of Geologists.
    [Google Scholar]
  28. DuChene, H. R., Cole, S. L.III, & Greenberg, N. (2009). Geology of the Double Eagle Unit, Andy's Mesa Field, San Miguel County, Colorado. In W. S.Houston, L. S.Wray, & P. G.Moreland (Eds.), The Paradox Basin revisited—New developments in petroleum systems and basin analysis (pp. 519–533). Rocky Mountain Association of Geologists.
    [Google Scholar]
  29. Escosa, F. O., Rowan, M. G., Giles, K. A., Deatrick, K. T., Mast, A. M., Langford, R. P., Hearon, T. E., & Roca, E. (2019). Lateral terminations of salt walls and megaflaps: An example from Gypsum Valley Diapir, Paradox Basin, Colorado, USA. Basin Research, 31(1), 191–212. https://doi.org/10.1111/bre.12316
    [Google Scholar]
  30. Foxford, K. A., Garden, R., Guscott, S. C., Burley, S. D., Lewis, J. J. M., Walsh, J. J., & Watterson, J. (1996). The field geology of the Moab Fault. In A. C.Huffman, W. R.Lund, & L. H.Goodwin (Eds.), Geology and resources of the Paradox Basin Utah (pp. 265–283). Salt Lake City Geological Association.
    [Google Scholar]
  31. Gannaway Dalton, C. E., Giles, K. A., Rowan, M. G., Langford, R. P., Hearon, T. E.IV, & Fiduk, J. C. (2020). Sedimentologic, stratigraphic, and structural evolution of minibasins and a megaflap formed during passive salt diapirism: The Neoproterozoic Witchelina diapir, Willouran Ranges, South Australia. Journal of Sedimentary Research, 90(2), 165–199. https://doi.org/10.2110/jsr.2020.9
    [Google Scholar]
  32. Ge, H. (1996). Kinematics and dynamics of salt tectonics in the Paradox Basin, Utah and Colorado: Field observations and scaled modeling (p. 317, PhD thesis). The University of Texas at Austin.
    [Google Scholar]
  33. Ge, H., & Jackson, M. P. (1998). Physical modeling of structures formed by salt withdrawal: Implications for deformation caused by salt dissolution. AAPG Bulletin, 82(2), 228–250.
    [Google Scholar]
  34. Ge, H., Jackson, M. P. A., & Vendeville, B. C. (1995). Rejuvenation and subsidence of salt diapirs by regional extension. Gulf Coast Association of Geological Societies Transactions, 55, 211–218.
    [Google Scholar]
  35. Ge, H., Jackson, M. P., & Vendeville, B. C. (1996). Extensional origin of breached Paradox diapirs, Utah and Colorado: Field observations and scaled physical models. In A. C.Huffman, Jr, W. R.Lund & L. H.Godwin (Eds.), Geology and Resources of the Paradox Basin: Utah Geological Association Guidebook (Vol. 25, pp. 285–294). Utah Geological Association.
    [Google Scholar]
  36. Giles, K. A., & Lawton, T. F. (2002). Halokinetic sequence stratigraphy adjacent to the El Papalote diapir, northeastern Mexico. AAPG Bulletin, 86(5), 823–840.
    [Google Scholar]
  37. Giles, K. A., & Rowan, M. G. (2012). Concepts in halokinetic‐sequence deformation and stratigraphy. Geological Society, London, Special Publications, 363(1), 7–31. https://doi.org/10.1144/SP363.2
    [Google Scholar]
  38. Giles, K. A., Rowan, M. G., Langford, R. P., & Hearon, T. E. (2018). Salt shoulders. AAPG search and discovery article #30554. AA.
    [Google Scholar]
  39. Gilluly, J., & Reeside, J. B.Jr. (1928). Sedimentary rocks of the San Rafael Swell and some adjacent areas in eastern Utah. Geol. Survey Prof. Paper, 150‐D, 61–110.
    [Google Scholar]
  40. Guerrero, J., Bruhn, R. L., McCalpin, J. P., Gutierrez, F., Willis, G., & Mozafari, M. (2015). Salt‐dissolution faults versus tectonic faults from the case study of salt collapse in Spanish Valley, SE Utah (USA). Lithosphere, 7(1), 46–58. https://doi.org/10.1130/L385.1
    [Google Scholar]
  41. Gutiérrez, F. (2004). Origin of the salt valleys in the Canyonlands section of the Colorado Plateau. Geomorphology, 57(3–4), 423–435. https://doi.org/10.1016/S0169‐555X(03)00186‐7
    [Google Scholar]
  42. Gutiérrez, F., Guerrero, J., & Lucha, P. (2008). A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain. Environmental Geology, 53(5), 993–1006. https://doi.org/10.1007/s00254‐007‐0727‐5
    [Google Scholar]
  43. Halbouty, M. (1969). Hidden trends and subtle traps in Gulf Coast. AAPG Bulletin, 53, 1–29. https://doi.org/10.1306/5D25C58F‐16C1‐11D7‐8645000102C1865D
    [Google Scholar]
  44. Harden, D. R., Biggar, N. E., & Gillam, M. L. (1985). Quaternary deposits and soils in and around Spanish Valley. In Soils and quaternary geology of the southwestern United States (Issue 203, p. 43). Geological Society of America.
    [Google Scholar]
  45. Hearon, T. E., Rowan, M. G., Giles, K. A., & Hart, W. H. (2014). Halokinetic deformation adjacent to the deepwater Auger diapir, Garden Banks 470, northern Gulf of Mexico: Testing the applicability of an outcrop‐based model using subsurface data. Interpretation, 2(4), SM57–SM76. https://doi.org/10.1190/INT‐2014‐0053.1
    [Google Scholar]
  46. Heness, E. A. (2016). Salt tectonic controls on facies and sequence stratigraphy of the Triassic Chinle Formation, Gypsum Valley Salt Wall, Colorado (MS thesis). The University of Texas at El Paso.
    [Google Scholar]
  47. Heness, E. A., McFarland, J. C., Langford, R. P., & Giles, K. A. (2017). Facies changes across a deforming salt shoulder, Chinle Formation, Gypsum Valley, Colorado. In New Mexico Geological Society guidebooks: Vol. 68. The geology of the Ouray‐Silverton area (pp. 159–167). New Mexico Geological Society.
    [Google Scholar]
  48. Hite, R. J., & Buckner, D. H. (1981). Stratigraphic correlations, facies concepts, and cyclicity. In Field conference guidebook (pp. 147–169). Geology of the Paradox Basin.
    [Google Scholar]
  49. Hite, R. J., Cater, F., & Liming, J. (1972). Pennsylvanian rocks and salt anticlines, Paradox Basin, Utah and Colorado (pp. 133–138). Rocky Mountain Association of Geologists Guidebook.
    [Google Scholar]
  50. Hite, R. J., & Gere, W. C. (1958). Potash deposits of the Paradox Basin. In A. F.Sanborn (Ed.), Guidebook to the geology of the Paradox Basin, ninth annual field conference (pp. 221–225). Intermountain Association of Petroleum Geologists.
    [Google Scholar]
  51. Hudec, M. (1995). The onion creek salt diapir: An exposed diapir fall structure in the Paradox Basin, Utah. Salt, sediment and hydrocarbons. Presented at the Gulf Coast Section Society of Economic Paleontologists and Mineralogists Foundation Sixteenth Annual Research Conference.
    [Google Scholar]
  52. Ismail‐Zadeh, A. T., Talbot, C. J., & Volozh, Y. A. (2001). Dynamic restoration of pro®les across diapiric salt structures: Numerical approach and its applications. Tectonophysics, 337, 23–38.
    [Google Scholar]
  53. Joesting, H. R., & Byerly, P. E. (1958). Regional geophysical investigations of the Uravan area, Colorado (Professional Paper No. 316‐A, pp. 1–17). U.S. Geological Survey.
    [Google Scholar]
  54. Jones, R. W. (1959). Origin of salt anticlines of Paradox Basin. AAPG Bulletin, 43, 1869–1895. https://doi.org/10.1306/0BDA5E76‐16BD‐11D7‐8645000102C1865D
    [Google Scholar]
  55. Kluth, C. F., & DuChene, H. R. (2009). Late Pennsylvanian and early Permian structural geology and tectonic history of the Paradox Basin and Uncompahgre Uplift, Colorado and Utah. In W. S.Houston, L. S.Wray, & P. G.Moreland (Eds.), The Paradox Basin revisited—New developments in petroleum systems and basin analysis (pp. 178–197). Rocky Mountain Association of Geologists.
    [Google Scholar]
  56. Kowallis, B. J., Christiansen, E. H., & Deino, A. L. (1991). Age of the Brushy Basin Member of the Morrison Formation, Colorado Plateau, western USA. Cretaceous Research, 12(5), 483–493. https://doi.org/10.1016/0195‐6671(91)90003‐U
    [Google Scholar]
  57. Labrado, A. L. (2021). Geological problems with microbiological solutions: Deciphering the authigenesis of calcite, dolomite, and native sulfur in salty environments (p. 326, PhD thesis). The University of Texas at El Paso.
    [Google Scholar]
  58. Lerer, K. (2017). Gypsum, calcite, and dolomite caprock fabrics and geochemistry from the Gypsum Valley salt diapir, Paradox Basin, Southwestern Colorado (p. 177, MS thesis).
    [Google Scholar]
  59. Lucas, S. G. (2014). Lithostratigraphy of the Jurassic San Rafael Group from Bluff to the Abajo Mountains, southeastern Utah: Stratigraphic relationships of the Bluff sandstone. Volumina Jurassica, 12(2), 55–68.
    [Google Scholar]
  60. Martín‐Martín, J. D., Vergés, J., Saura, E., Moragas, M., Messager, G., Baqués, V., Razin, P., Grélaud, C., Malaval, M., Joussiaume, R., Casciello, E., Cruz‐Orosa, I., & Hunt, D. W. (2017). Diapiric growth within an Early Jurassic rift basin: The Tazoult salt wall (central High Atlas, Morocco). Tectonics, 36(1), 2–32. https://doi.org/10.1002/2016TC004300
    [Google Scholar]
  61. Matthews, W. J., Hampson, G. J., Trudgill, B. D., & Underhill, J. R. (2007). Controls on fluviolacustrine reservoir distribution and architecture in passive salt‐diapir provinces: Insights from outcrop analogs. AAPG Bulletin, 91(10), 1367–1403. https://doi.org/10.1306/05310706123
    [Google Scholar]
  62. McDonnell, A., Loucks, R. G., & Dooley, T. (2007). Quantifying the origin and geometry of circular sag structures in northern Fort Worth Basin, Texas: Paleocave collapse, pull‐apart fault systems, or hydrothermal alteration?AAPG Bulletin, 91(9), 1295–1318. https://doi.org/10.1306/05170706086
    [Google Scholar]
  63. McFarland, J. C. (2016). Structural and stratigraphic development of a salt‐diapir shoulder, Gypsum Valley, Colorado (p. 108, MS thesis). The University of Texas at El Paso.
    [Google Scholar]
  64. McGuinness, D., & Hossack, J. (1993). The development of Allochthonous salt sheets as controlled by the rates of extension, sedimentation, and salt supply. In J. M.Armentrout, R.Bloch, H. C.Olson, & B. F.Perkins (Eds.), Rates of geologic processes, tectonics, sedimentation, eustasy and climate–Implications for hydrocarbon exploration (Vol. 14, pp. 127–139). SEPM Society for Sedimentary Geology. https://doi.org/10.5724/gcs.93.14.0127
    [Google Scholar]
  65. Naqi, M. (2016). Salt‐influenced normal faulting related to salt‐dissolution and extensional tectonics: 3d seismic analysis and 2d numerical modeling of the salt valley salt wall, Utah and Danish Central Graben, North Sea (PhD Dissertation). Colorado School of Mines.
    [Google Scholar]
  66. Nuccio, V. F., & Condon, S. M. (1996). Burial and thermal history of the Paradox Basin, Utah and Colorado, and petroleum potential of the Middle Pennsylvanian Paradox Formation (Bulletin No. 2000‐O. p. 41). US. Geological Survey.
    [Google Scholar]
  67. Owen, A., Nichols, G. J., Hartley, A. J., Weissmann, G. S., & Scuderi, L. A. (2015). Quantification of a distributive fluvial system: The salt wash DFS of the Morrison Formation, SW U.S.A. Journal of Sedimentary Research, 85(5), 544–561. https://doi.org/10.2110/jsr.2015.35
    [Google Scholar]
  68. Peterson, J. A., & Hite, R. J. (1969). Pennsylvanian evaporite‐carbonate cycles and their relation to petroleum occurrence, Southern Rocky Mountains. AAPG Bulletin, 53(4), 884–908.
    [Google Scholar]
  69. Pevear, D., Vrolijk, P., & Longstaffe, F. (1997). Timing of Moab fault displacement and fluid movement integrated with burial history using radiogenic and stable isotopes (J.Hendry, P.Carey, J.Parnell, A.Ruffell, & R.Worden, Eds.). The Queen's University.
    [Google Scholar]
  70. Pilcher, R. S., Kilsdonk, B., & Trude, J. (2011). Primary basins and their boundaries in the deep‐water northern Gulf of Mexico: Origin, trap types, and petroleum system implications. AAPG Bulletin, 95(2), 219–240. https://doi.org/10.1306/06301010004
    [Google Scholar]
  71. Pipiringos, G. N., & O'Sullivan, R. B. (1978). Principal unconformities in Triassic and Jurassic rocks, western interior United States—A preliminary survey (No. 1035; pp. A1–A28). U.S. Geological Survey.
    [Google Scholar]
  72. Poe, P. L. (2018). Characterization and geochemistry of carbonate caprock associated with the Gypsum Valley salt wall, Paradox Basin, Colorado: Implications for understanding lateral caprock emplacement (MS thesis). The University of Texas at El Paso.
    [Google Scholar]
  73. Rasmussen, D. L. (2014). Namakiers in Triassic and Permian Formations in the Paradox Basin (USA) with comparisons to modern examples in the Zagros Fold Belt, Iran. In J. S.MacLean, R. F.Biek, & J. E.Huntoon (Eds.), Geology of Utah's far south (pp. 689–756). Uah Geological Association.
    [Google Scholar]
  74. Rasmussen, D. L. (2016). Discovery of an exposed early Triassic Namakier (salt glacier) on the West Flank of the Onion Creek Diapir in Grand County, Utah (p. 48). Geological Society of America. https://doi.org/10.1130/abs/2016AM‐286899
    [Google Scholar]
  75. Rasmussen, L., & Rasmussen, L. (2009). Burial history analysis of the Pennsylvanian Petroleum System in the deep Paradox Basin fold and Fault Belt, Colorado and Utah. In W. S.Houston, L. S.Wray, & P. G.Moreland (Eds.), The Paradox Basin revisited—New developments in petroleum systems and basin analysis (pp. 24–94). Rocky Mountain Association of Geologists.
    [Google Scholar]
  76. Ritter, S. M., Barrick, J. E., & Skinner, M. R. (2002). Conodont sequence biostratigraphy of the Hermosa Group (Pennsylvanian) at Honaker Trail, Paradox Basin, Utah. Journal of Paleontology, 76(3), 24. https://doi.org/10.1666/0022‐3360(2002)076<0495:CSBOTH>2.0.CO;2
    [Google Scholar]
  77. Roca, E., Ferrer, O., Rowan, M. G., Muñoz, J. A., Butillé, M., Giles, K. A., Arbués, P., & de Matteis, M. (2021). Salt tectonics and controls on halokinetic‐sequence development of an exposed deepwater diapir: The Bakio Diapir, Basque‐Cantabrian Basin, Pyrenees. Marine and Petroleum Geology, 123, 104770. https://doi.org/10.1016/j.marpetgeo.2020.104770
    [Google Scholar]
  78. Ronson, R. B. (2018). Facies changes associated with formation of an extensive salt shoulder by the coastal and Eolian Carmel and Entrada Formations, Gypsum Valley, Colorado (MS thesis). The University of Texas at El Paso.
    [Google Scholar]
  79. Rowan, M. G. (2017). An overview of allochthonous salt tectonics. In J. I.Soto, J.Flinch, & G.Tari (Eds.), Permo‐Triassic salt provinces of Europe, North Africa and the Atlantic Margins: Tectonics and hydrocarbon potential (pp. 97–114). Elsevier.
    [Google Scholar]
  80. Rowan, M. G., & Giles, K. A. (2021). Passive versus active salt diapirism. AAPG Bulletin, 105(1), 53–63. https://doi.org/10.1306/05212020001
    [Google Scholar]
  81. Rowan, M. G., Giles, K., Deatrick, K. T., Langford, R., & Hearon, T. E. (2015). Widening of salt diapirs in the absence of extension: Evidence from the megaflap of Gypsum Valley Diapir, Paradox Basin. Presented at the AAPG Annual Convention and Exhibition. Retrieved from http://www.searchanddiscovery.com/abstracts/html/2015/90216ace/abstracts/2073757.html
    [Google Scholar]
  82. Rowan, M. G., Giles, K. A., Hearon, T. E.IV, & Fiduk, J. C. (2016). Megaflaps adjacent to salt diapirs. AAPG Bulletin, 100(11), 1723–1747. https://doi.org/10.1306/05241616009
    [Google Scholar]
  83. Rowan, M. G., Lawton, T. F., Giles, K. A., & Ratliff, R. A. (2003). Near‐salt deformation in La Popa basin, Mexico, and the northern Gulf of Mexico: A general model for passive diapirism. AAPG Bulletin, 87(5), 733–756. https://doi.org/10.1306/01150302012
    [Google Scholar]
  84. Sebai, N., Vendeville, B. C., Boukadi, N., & Dhahri, F. (2021). The perched synclines look‐alike of Central Tunisia: Examples of diapir rise–fall–rise illustrated by field, geophysical, and experimental data. Journal of Structural Geology, 147, 104336. https://doi.org/10.1016/j.jsg.2021.104336
    [Google Scholar]
  85. Shawe, D. R. (1970). Structure of the Slick Rock district and vicinity, San Miguel and Dolores Counties, Colorado. US. Geol. Survey Prof. Paper, 576‐C, 18.
    [Google Scholar]
  86. Shawe, D. R., Simmons, G. C., & Archibold, N. I. (1968). Stratigraphy of Slick Rock District and vicinity, San Miguel and Dolores Counties, Colorado. (U.S. Geological Survey Professional Paper No. 576‐A, pp. A1–A108). US. Geological Survey.
    [Google Scholar]
  87. Shoemaker, E. M., Case, J. E., & Elston, D. P. (1958). Salt anticlines of the Paradox Basin. Guidebook to the geology of the Paradox Basin, Ninth Annual Field Conference (pp. 39–59). Utah Geological Survey.
    [Google Scholar]
  88. Shoemaker, E. M., & Newman, W. L. (1959). Moenkopi Formation (triassic? And Triassic) in Salt Anticline Region, Colorado and Utah. American Association of Petroleum Geologists Bulletin, 43(8), 1835–1851.
    [Google Scholar]
  89. Soltero, A. (2020). Supra‐salt syndepositional folding within the Jurassic Morrison Formation, Big Gypsum Valley, Colorado (MS thesis). The University of Texas at El Paso.
    [Google Scholar]
  90. Stevenson, G. M., & Baars, D. L. (1985). Paradox–Pull‐apart basin of Pennsylvanian age. AAPG Bulletin, 69(5), 867–868.
    [Google Scholar]
  91. Stewart, H., Poole, F. G., & Wilson, R. F. (1972). Stratigraphy and origin of the Triassic Moenkopi Formation and related strata in the Colorado Plateau Region. US Geological Survey.
    [Google Scholar]
  92. Stewart, J. H. (1969). Major upper Triassic lithogenetic sequences in Colorado Plateau Region. AAPG Bulletin, 53, 1866–1879. https://doi.org/10.1306/5D25C887‐16C1‐11D7‐8645000102C1865D
    [Google Scholar]
  93. Stewart, S. A. (2006). Implications of passive salt diapir kinematics for reservoir segmentation by radial and concentric faults. Marine and Petroleum Geology, 23(8), 843–853. https://doi.org/10.1016/j.marpetgeo.2006.04.001
    [Google Scholar]
  94. Stokes, W. L., & Phoenix, D. A. (1948). Geology of the Egnar—Gypsum Valley Area, San Miguel and Montrose Counties Colorado [oil and gas investigations map]. In OM‐93. U.S. Geological Survey.
    [Google Scholar]
  95. Thompson Jobe, J. A., Giles, K. A., Hearon, T. E.IV, Rowan, M. G., Trudgill, B., Gannaway Dalton, C. E., & Jobe, Z. R. (2019). Controls on the structural and stratigraphic evolution of the megaflap‐bearing Sinbad Valley salt wall, NE Paradox Basin, SW Colorado. Geosphere, 16(1), 297–328. https://doi.org/10.1130/GES02089.1
    [Google Scholar]
  96. Trudgill, B. D. (2011). Evolution of salt structures in the northern Paradox Basin: Controls on evaporite deposition, salt wall growth and supra‐salt stratigraphic architecture: Evolution of salt structures in the northern Paradox Basin. Basin Research, 23(2), 208–238. https://doi.org/10.1111/j.1365‐2117.2010.00478.x
    [Google Scholar]
  97. Trudgill, B. D., & Arbuckle, W. C. (2009). Reservoir characterization of clastic cycle sequences in the Paradox Formation of the Hermosa Group, Paradox Basin, Utah (OFR‐543) (Open File Report No. FR‐543, p. 153). Utah Geological Survey.
    [Google Scholar]
  98. Trudgill, B. D., & Paz, M. (2009). Restoration of Mountain Front and salt structures in the Northern Paradox Basin, SE Utah. In W. S.Houston, L. S.Wray, & P. G.Moreland (Eds.), The Paradox Basin revisited—New developments in petroleum systems and basin analysis (pp. 132–177). Rocky Mountain Association of Geologists.
    [Google Scholar]
  99. Waltham, T., Waltham, A. C., Bell, F. G., & Culshaw, M. G. (2005). Sinkholes and subsidence: Karst and cavernous rocks in engineering and construction. Springer Science & Business Media.
    [Google Scholar]
  100. Wengerd, S. A. (1963). Stratigraphic section at Honaker Trail, San Juan Canyon San Juan County, Utah. In R. O.Bass (Ed.), Shelf carbonates of the Paradox Basin, field conference guidebook (Vol. 4, pp. 235–243). Four Corners Geological Society.
    [Google Scholar]
  101. Wengerd, S. A., & Matheny, M. L. (1958). Pennsylvanian system of Four Corners region. Bulletin of the American Association of Petroleum Geologists, 42, 2048–2106.
    [Google Scholar]
  102. White, M. A., & Jacobson, M. I. (1983). Structures associated with the southwest margin of the ancestral Uncompahgre Uplift: Guidebook to the Northern Paradox Basin—Uncompahgre Uplift (pp. 33–39). Grand Junction Geological Society.
    [Google Scholar]
  103. Williams, M. R. (1996). Stratigraphy of upper Pennsylvanian cyclical carbonate and siliciclastic rocks, Western Paradox Basin, Utah. In M. W.Longman & M. D.Sonnenfeld (Eds.), Paleozoic geology of the Rocky Mountain Region (pp. 283–304). Rocky Mountain Section SEPM.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12658
Loading
/content/journals/10.1111/bre.12658
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error