1887
Volume 34, Issue 4
  • E-ISSN: 1365-2117
PDF

Abstract

[

Maximum horizontal stress orientation () and the trend of fault lines (based on two different studies) in the Moatize Basin. There is a consistency between the trend of and fault lines in different parts of the study area that can explain the role of faults in localised perturbation of stress at basin scales.

, Abstract

This paper presents the first comprehensive analysis of the present‐day stress from boreholes near an active continental rifting zone in the Moatize Basin, Mozambique. The state of present‐day stress in this area that is located ca. 100 km away from the Eastern African Rift System (EARS) is poorly understood, and most of our knowledge is from earthquake focal mechanisms that provide stress information from the deeper part of the lithosphere, and to a lesser extent from surface geological features in the Malawi region. Considering the limited reliability of earthquake‐derived stress orientations near plate boundaries, poor coverage of low to moderate magnitude earthquakes in eastern Africa, and ambiguity about the latest activity of geological structure; other well‐established methods are required to shed light on the active tectonics of EARS. In this study, we analyse stress orientation using log data from 95 vertical boreholes in a mine site to investigate the neotectonic stress pattern of the region. Analysis of 17.9 km of televiewer logs resulted in interpretation of 1188 stress‐related borehole failures. The results indicate a mean regional trend of 045° ± 31° for the maximum horizontal stress (). Our investigation reveals that the regional state of stress in the study area is controlled by superposition of stress sources that act at very different spatial scales. The consistency between our results and predictions by plate‐scale geodynamic models of stress orientations confirm that the regional pattern of stress in this area is mainly controlled by first (>500 km) and second (distances between 500 and 100 km) order stress sources (i.e., large tectonic forces and lateral density variations). However, high‐resolution data used in this study reveal that third (between 100 and 1 km) and fourth (<1 km) order stress sources from stiffness contrasts, rock fabric and geological structures have a great impact on the stress perturbations at smaller and local scales.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12660
2022-07-16
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/4/bre12660.html?itemId=/content/journals/10.1111/bre.12660&mimeType=html&fmt=ahah

References

  1. Afonso, R. (1976). Contribuição para o conhecimento da tectónica de Moçambique (Notícia explicativa da carta tectónica de Moçambique). Escala – 1:2.000.000 (39 pp +1 map). Direcção dos Serviços de Geologia e Minas de Moçambique.
  2. Amante, C., & Eakins, B. W. (2009). ETOPO1 1 arc‐minute global relief model procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC‐24. National Geophysical Data Center, NOAA.
    [Google Scholar]
  3. Bailey, A. H. E., Jarrett, A. J. M., Tenthorey, E., & Henson, P. A. (2021). Understanding present‐day stress in the onshore Canning Basin of Western Australia. Australian Journal of Earth Sciences, 68(6), 818–838. https://doi.org/10.1080/08120099.2021.1879265
    [Google Scholar]
  4. Barth, A. (2007). Frequency sensitive moment tensor inversion for light to moderate magnitude earthquakes in eastern Africa and derivation of the regional stress field. PhD Thesis, Universität Karlsruhe (TH), 133 p.
  5. Barth, A., Delvaux, D., & Wenzel, F. (2008). Tectonic stress field in rift systems–A comparison of Rhinegraben, Baikal Rift and East African Rift. In 27th ECGS Workshop ‘Seismicity Patterns in the Euro‐Med Region’, Luxembourg.
    [Google Scholar]
  6. Barth, A., Wenzel, F., & Giardini, D. (2007). Frequency sensitive moment tensor inversion for light to moderate magnitude earthquakes in eastern Africa. Geophysical Research Letters, 34, L15302. https://doi.org/10.1029/2007GL030359
    [Google Scholar]
  7. Bell, J. S., & Gough, D. I. (1979). Northeast‐southwest compressive stress in Alberta evidence from oil wells. Earth and Planetary Science Letters, 45, 475–482. https://doi.org/10.1016/0012‐821X(79)90146‐8
    [Google Scholar]
  8. Bicca, M. M., Jelinek, A. R., Philipp, R. P., & Jamal, D. L. (2019). Mesozoic‐Cenozoic landscape evolution of NW Mozambique recorded by apatite thermochronology. Journal of Geodynamics, 125, 48–65. https://doi.org/10.1016/j.jog.2019.02.001
    [Google Scholar]
  9. Bicca, M. M., Philipp, R. P., Jelinek, A. R., Ketzer, J. M. M., dos Santos Scherer, C. M., Jamal, D. L., & dos Reis, A. D. (2017). Permian‐Early Triassic tectonics and stratigraphy of the Karoo Supergroup in northwestern Mozambique. Journal of African Earth Sciences, 130, 8–27. https://doi.org/10.1016/j.jafrearsci.2017.03.003
    [Google Scholar]
  10. Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4, 1027. https://doi.org/10.1029/2001GC000252
    [Google Scholar]
  11. Bird, P., Ben‐Avraham, Z., Schubert, G., Andreoli, M., & Viola, G. (2006). Patterns of stress and strain rate in southern Africa. Journal of Geophysical Research: Solid Earth, 111, B08402. https://doi.org/10.1029/2005JB003882
    [Google Scholar]
  12. Bird, P., & Kong, X. (1994). Computer simulations of California tectonics confirm very low strength of major faults. GSA Bulletin, 106, 159–174. https://doi.org/10.1130/0016‐7606(1994)106<0159:CSOCTC>2.3.CO;2
    [Google Scholar]
  13. Bosworth, W., Burke, K., & Strecker, M. (2003). Effect of stress fields on magma chamber stability and the formation of collapse calderas. Tectonics, 22(4), 1042. https://doi.org/10.1029/2002TC001369
    [Google Scholar]
  14. Bosworth, W., & Durocher, S. (2017). Present‐day stress fields of the Gulf of Suez (Egypt) based on exploratory well data: Non‐uniform regional extension and its relation to inherited structures and local plate motion. Journal of African Earth Sciences, 136, 136–147. https://doi.org/10.1016/j.jafrearsci.2017.04.025
    [Google Scholar]
  15. Bosworth, W., & Strecker, M. R. (1997). Stress field changes in the Afro‐Arabian rift system during the Miocene to Recent period. Tectonophysics, 278, 47–62. https://doi.org/10.1016/S0040‐1951(97)00094‐2
    [Google Scholar]
  16. Bosworth, W., Strecker, M. R., & Blisniuk, P. M. (1992). Integration of east African Paleostress and present‐day stress data: Implications for continental stress field dynamics. Journal of Geophysical Research: Solid Earth, 97, 11851–11865.
    [Google Scholar]
  17. Burgin, H. B., Amrouch, K., Rajabi, M., Kulikowski, D., & Holford, S. P. (2018). Determining paleo‐structural environments through natural fracture and calcite twin analyses: A case study in the Otway Basin, Australia. The APPEA Journal, 58, 238–254. https://doi.org/10.1071/AJ17099
    [Google Scholar]
  18. Cairncross, B. (2001). An overview of the Permian (Karoo) coal deposits of southern Africa. Journal of African Earth Sciences, 33, 529–562. https://doi.org/10.1016/S0899‐5362(01)00088‐4
    [Google Scholar]
  19. Castaing, C. (1991). Post‐Pan‐African tectonic evolution of South Malawi in relation to the Karroo and recent East African rift systems. Tectonophysics, 191, 55–73. https://doi.org/10.1016/0040‐1951(91)90232‐H
    [Google Scholar]
  20. Catuneanu, O., Wopfner, H., Eriksson, P. G., Cairncross, B., Rubidge, B. S., Smith, R. M. H., & Hancox, P. J. (2005). The Karoo basins of south‐central Africa. Journal of African Earth Sciences, 43, 211–253. https://doi.org/10.1016/j.jafrearsci.2005.07.007
    [Google Scholar]
  21. Célérier, B., Etchecopar, A., Bergerat, F., Vergely, P., Arthaud, F., & Laurent, P. (2012). Inferring stress from faulting: From early concepts to inverse methods. Tectonophysics, 581, 206–219. https://doi.org/10.1016/j.tecto.2012.02.009
    [Google Scholar]
  22. Chorowicz, J. (2005). The East African rift system. Journal of African Earth Sciences, 43, 379–410. https://doi.org/10.1016/j.jafrearsci.2005.07.019
    [Google Scholar]
  23. Chorowicz, J., & Sorlien, C. (1992). Oblique extensional tectonics in the Malawi Rift, Africa. GSA Bulletin, 104, 1015–1023. https://doi.org/10.1130/0016‐7606(1992)104<1015:OETITM>2.3.CO;2
    [Google Scholar]
  24. Coblentz, D. D., & Sandiford, M. (1994). Tectonic stresses in the African plate: Constraints on the ambient lithospheric stress state. Geology, 22, 831–834. https://doi.org/10.1130/0091‐7613(1994)022<0831:TSITAP>2.3.CO;2
    [Google Scholar]
  25. Daly, M. C., Green, P., Watts, A. B., Davies, O., Chibesakunda, F., & Walker, R. (2020). Tectonics and landscape of the central African Plateau and their implications for a propagating Southwestern Rift in Africa. Geochemistry, Geophysics, Geosystems, 21, e2019GC008746. https://doi.org/10.1029/2019GC008746
    [Google Scholar]
  26. De Bremaeker, J.‐C. (1956). Premières données séismologiques sur le Graben de l'Afrique Centrale. Acad. R. Sci. Coloniales. Bulletin des séances de l'Académie Royale des Sciences Coloniales, 4, 762–787.
    [Google Scholar]
  27. Delvaux, D. (2001). Tectonic and palaeostress evolution of the Tanganyika‐Rukwa‐Malawi rift segment, East African Rift System. In P. A.Ziegler, W.Cavazza, A. H. F.Robertson, & S.Crasquin‐Soleau (Eds.), Peri‐Tethys Memoir 6: Peri‐Tethyan Rift/Wrench Basins and Passive Margins (pp. 545–566). Mémoires du Muséum national d’Histoire naturelle.
    [Google Scholar]
  28. Delvaux, D., & Barth, A. (2010). African stress pattern from formal inversion of focal mechanism data. Tectonophysics, 482, 105–128. https://doi.org/10.1016/j.tecto.2009.05.009
    [Google Scholar]
  29. Delvaux, D., Kervyn, F., Macheyeki, A. S., & Temu, E. B. (2012). Geodynamic significance of the TRM segment in the East African Rift (W‐Tanzania): Active tectonics and paleostress in the Ufipa plateau and Rukwa basin. Journal of Structural Geology, 37, 161–180. https://doi.org/10.1016/j.jsg.2012.01.008
    [Google Scholar]
  30. Delvaux, D., Mulumba, J.‐L., Sebagenzi, M. N. S., Bondo, S. F., Kervyn, F., & Havenith, H.‐B. (2017). Seismic hazard assessment of the Kivu rift segment based on a new seismotectonic zonation model (western branch, East African Rift system). Journal of African Earth Sciences, 134, 831–855. https://doi.org/10.1016/j.jafrearsci.2016.10.004
    [Google Scholar]
  31. Delvaux, D., & Soumaya, A. (2019). Spatial heterogeneity of the stress field in the current development of the East African Rift System: Update from new focal mechanism data and comparison with the latest geodetic strain rate model (pp. 1–1). EGU General Assembly 2019. EGU.
    [Google Scholar]
  32. Duncan, R. A., Hooper, P. R., Rehacek, J., Marsh, J. S., & Duncan, A. R. (1997). The timing and duration of the Karoo igneous event, southern Gondwana. Journal of Geophysical Research: Solid Earth, 102, 18127–18138. https://doi.org/10.1029/97JB00972
    [Google Scholar]
  33. Ebinger, C. J., Oliva, S. J., Pham, T.‐Q., Peterson, K., Chindandali, P., Illsley‐Kemp, F., Drooff, C., Shillington, D. J., Accardo, N. J., Gallacher, R. J., Gaherty, J., Nyblade, A. A., & Mulibo, G. (2019). Kinematics of active deformation in the Malawi Rift and Rungwe Volcanic Province, Africa. Geochemistry, Geophysics, Geosystems, 20, 3928–3951. https://doi.org/10.1029/2019GC008354
    [Google Scholar]
  34. Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid‐moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
    [Google Scholar]
  35. Faulkner, D. R., Mitchel, T. M., Healy, D., & Heap, M. J. (2006). Slip on ‘weak’ faults by the rotation of regional stress in fracture damage zone. Nature, 144, 922–925.
    [Google Scholar]
  36. Fonseca, J. F. B. D., Chamussa, J., Domingues, A., Helffrich, G., Antunes, E., van Aswegen, G., Pinto, L. V., Custódio, S., & Manhiça, V. J. (2014). MOZART: A seismological investigation of the East African Rift in Central Mozambique. Seismological Research Letters, 85, 108–116. https://doi.org/10.1785/0220130082
    [Google Scholar]
  37. Foster, A. N., & Jackson, J. A. (1998). Source parameters of large African earthquakes: Implications for crustal rheology and regional kinematics. Geophysical Journal International, 134, 422–448. https://doi.org/10.1046/j.1365‐246x.1998.00568.x
    [Google Scholar]
  38. Galasso, F., Fernandes, P., Montesi, G., Marques, J., Spina, A., & Pereira, Z. (2019). Thermal history and basin evolution of the Moatize–Minjova Coal Basin (N'Condédzi sub‐basin, Mozambique) constrained by organic maturation levels. Journal of African Earth Sciences, 153, 219–238. https://doi.org/10.1016/j.jafrearsci.2019.02.020
    [Google Scholar]
  39. Geofon Data Centre . (1993). GEOFON seismic network. https://doi.org/10.14470/TR560404
  40. Glerum, A., Brune, S., Stamps, D. S., & Strecker, M. R. (2020). Victoria continental microplate dynamics controlled by the lithospheric strength distribution of the East African Rift. Nature Communications, 11, 2881. https://doi.org/10.1038/s41467‐020‐16176‐x
    [Google Scholar]
  41. GTK Consortium . (2006). Map explanation. In Sheets 1631–1934. Geology of degree sheets, Mecumbura, Chioco, Tete, Tambara, Guro, Chemba, Manica, Catandica, Gorongosa, Rotanda, Chimoio and Beira, Mozambique (Vol. 2). Ministério dos Recursos Minerais, Direcção Nacional de Geologia.
    [Google Scholar]
  42. Hayes, G. P., Jones, E. S., Stadler, T. J., Barnhart, W. D., McNamara, D. E., Benz, H. M., Furlong, K. P., & Villaseñor, A. (2014). Seismicity of the Earth 1900–2013 East African Rift: U.S. Geological Survey Open‐File Report 2010–1083‐P, 1 sheet, scale 1:8,500,000. https://doi.org/10.3133/of20101083p
  43. Heap, M. J., Faulkner, D. R., Meredith, P. G., & Vinciguerra, S. (2010). Elastic moduli evolution and accompanying stress changes with increasing crack damage: Implications for stress changes around fault zones and volcanoes during deformation. Geophysical Journal International, 183, 225–236. https://doi.org/10.1111/j.1365‐246X.2010.04726.x
    [Google Scholar]
  44. Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M. O., Zoback, M.‐L., & Zoback, M. (2018). The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744, 484–498. https://doi.org/10.1016/j.tecto.2018.07.007
    [Google Scholar]
  45. Heidbach, O., Rajabi, M., Reiter, K., & Ziegler, M. (2019). World Stress Map. In R.Sorkhabi (Ed.), Encyclopedia of petroleum geoscience (pp. 1–8). Springer International Publishing. https://doi.org/10.1007/1978‐1003‐1319‐02330‐02334_02195‐02331
    [Google Scholar]
  46. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., & Müller, B. (2010). Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics, 482, 3–15. https://doi.org/10.1016/j.tecto.2009.07.023
    [Google Scholar]
  47. Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M., & WSM‐Team . (2016). World Stress Map database release 2016. GFZ Data Services. https://doi.org/10.5880/WSM.2016.001
    [Google Scholar]
  48. Hickman, S. H. (1991). Stress in the lithosphere and the strength of active faults. Reviews of Geophysics, 29, 759–775. https://doi.org/10.1002/rog.1991.29.s2.759
    [Google Scholar]
  49. Hodge, M., Biggs, J., Goda, K., & Aspinall, W. (2015). Assessing infrequent large earthquakes using geomorphology and geodesy: The Malawi Rift. Natural Hazards, 76, 1781–1806. https://doi.org/10.1007/s11069‐014‐1572‐y
    [Google Scholar]
  50. Holford, S. P., Tassone, D. R., Stoker, M. S., & Hillis, R. (2015). Contemporary stress orientations in the Faroe‐Shetland region. Journal of the Geological Society, 173, 142–152. https://doi.org/10.1144/jgs2015‐048
    [Google Scholar]
  51. Homberg, C., Hu, J. C., Angelier, J., Bergerat, F., & Lacombe, O. (1997). Characterization of stress perturbations near major fault zones: Insights from 2‐D distinct‐element numerical modelling and field studies (Jura mountains). Journal of Structural Geology, 19, 703–718. https://doi.org/10.1016/S0191‐8141(96)00104‐6
    [Google Scholar]
  52. Inaba, M., McCormick, D., Mikalsen, T., Nishi, M., Rasmus, J., Rohler, H., & Tribe, I. (2003). Wellbore imaging goes live. Oilfield Review Spring, 15(2), 24–37.
    [Google Scholar]
  53. Jackson, J., & Blenkinsop, T. (1993). The Malaŵi earthquake of March 10, 1989: Deep faulting within the East African Rift System. Tectonics, 12, 1131–1139. https://doi.org/10.1029/93TC01064
    [Google Scholar]
  54. Kendall, J. M., & Lithgow‐Bertelloni, C. (2016). Why is Africa rifting?Geological Society, London, Special Publications, 420, 11. https://doi.org/10.1144/SP420.17
    [Google Scholar]
  55. Kipata, M. L., Delvaux, D., Sebagenzi, M. N., Cailteux, J., & Sintubin, M. (2013). Brittle tectonic and stress field evolution in the Pan‐African Lufilian arc and its foreland (Katanga, DRC): From orogenic compression to extensional collapse, transpressional inversion and transition to rifting. Geologica Belgica, 16, 1–17.
    [Google Scholar]
  56. Kirsch, E. G. (1898). Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Zeitschrift Des Vereines Deutscher Ingenieure, 42, 797–807.
    [Google Scholar]
  57. Kraml, M., Kessels, K., Kalberkamp, U., Kehrer, P., Ochmann, N., Reitmayr, G., Stadtler, C., & Delvaux, D. (2006). Status and potential of geothermal power in East Africa; Status quo und Entwicklungspotential der Geothermie in Ostafrika. Geothermische Energie, 15, 6–7.
    [Google Scholar]
  58. Lakshminarayana, G. (2015). Geology of Barcode type coking coal seams, Mecondezi sub‐basin, Moatize Coalfield, Mozambique. International Journal of Coal Geology, 146, 1–13. https://doi.org/10.1016/j.coal.2015.04.012
    [Google Scholar]
  59. Lambiase, J. J. (1989). The framework of African rifting during the phanerozoic. Journal of African Earth Sciences (and the Middle East), 8, 183–190. https://doi.org/10.1016/S0899‐5362(89)80023‐5
    [Google Scholar]
  60. Laó‐Dávila, D. A., Al‐Salmi, H. S., Abdelsalam, M. G., & Atekwana, E. A. (2015). Hierarchical segmentation of the Malawi Rift: The influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts. Tectonics, 34, 2399–2417. https://doi.org/10.1002/2015TC003953
    [Google Scholar]
  61. Linol, B., de Wit, M. J., Milani, E. J., Guillocheau, F., & Scherer, C. (2015). New regional correlations between the Congo, Paraná and Cape‐Karoo basins of southwest Gondwana. In M. J.de Wit, F.Guillocheau, & M. C. J.de Wit (Eds.), Geology and resource potential of the Congo Basin (pp. 245–268). Springer.
    [Google Scholar]
  62. Macey, P. H., Miller, J. A., Rowe, C. D., Grantham, G. H., Siegfried, P., Armstrong, R. A., Kemp, J., & Bacalau, J. (2013). Geology of the Monapo Klippe, NE Mozambique and its significance for assembly of central Gondwana. Precambrian Research, 233, 259–281. https://doi.org/10.1016/j.precamres.2013.03.012
    [Google Scholar]
  63. Mahatsente, R., & Coblentz, D. (2015). Ridge‐push force and the state of stress in the Nubia‐Somalia plate system. Lithosphere, 7(5), 503–510. https://doi.org/10.1130/L441.1
    [Google Scholar]
  64. Mardia, K. V. (1972). Statistics of directional data. Academic Press.
    [Google Scholar]
  65. McKenzie, D. P. (1969). The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bulletin of the Seismological Society of America, 59, 591–601. https://doi.org/10.1785/BSSA0590020591
    [Google Scholar]
  66. Medvedev, S. (2016). Understanding lithospheric stresses: Systematic analysis of controlling mechanisms with applications to the African Plate. Geophysical Journal International, 2017, 393–413. https://doi.org/10.1093/gji/ggw241
    [Google Scholar]
  67. Meert, J. G. (2003). A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics, 362, 1–40. https://doi.org/10.1016/S0040‐1951(02)00629‐7
    [Google Scholar]
  68. Meghraoui, M., Amponsah, P., Ayadi, A., Ayele, A., Ateba, B., Bensuleman, A., Delvaux, D., El Gabry, M., Fernandes, R.‐M., Midzi, V., Roos, M., & Timoulali, Y. (2016). The seismotectonic map of Africa. Episodes: Journal of International Geoscience, 39, 9–18. https://doi.org/10.18814/epiiugs/2016/v39i1/89232
    [Google Scholar]
  69. Morley, C. K. (2010). Stress re‐orientation along zones of weak fabrics in rifts: An explanation for pure extension in ‘oblique’ rift segments?Earth and Planetary Science Letters, 297, 667–673. https://doi.org/10.1016/j.epsl.2010.07.022
    [Google Scholar]
  70. Morawietz, S., Heidbach, O., Reiter, K., Ziegler, M., Rajabi, M., Zimmermann, G., Müller, B., & Tingay, M. (2020). An open‐access stress magnitude database for Germany and adjacent regions. Geothermal Energy, 8 (1), 1–39. http://dx.doi.org/10.1186/s40517‐020‐00178‐5
    [Google Scholar]
  71. Mukherjee, S., Rajabi, M., & Esterle, J. (2021). Relationship between coal composition, fracture abundance and initial reservoir permeability: A case study in the Walloon Coal Measures, Surat Basin, Australia. International Journal of Coal Geology, 240, 103726. https://doi.org/10.1016/j.coal.2021.103726
    [Google Scholar]
  72. Mukherjee, S., Rajabi, M., Esterle, J., & Copley, J. (2020). Subsurface fractures, in‐situ stress and permeability variations in the Walloon Coal Measures, eastern Surat Basin, Queensland, Australia. International Journal of Coal Geology, 222C, 103449. https://doi.org/10.1016/j.coal.2020.103449
    [Google Scholar]
  73. Plumb, R. A., & Hickman, S. H. (1985). Stress‐induced borehole elongation: A comparison between the four‐arm dipmeter and the borehole televiewer in the Auburn Geothermal Well. Journal of Geophysical Research: Solid Earth, 90, 5513–5521.
    [Google Scholar]
  74. Poggi, V., Durrheim, R., Tuluka, G. M., Weatherill, G., Gee, R., Pagani, M., Nyblade, A., & Delvaux, D. (2017). Assessing seismic hazard of the East African Rift: A pilot study from GEM and AfricaArray. Bulletin of Earthquake Engineering, 15, 4499–4529. https://doi.org/10.1007/s10518‐017‐0152‐4
    [Google Scholar]
  75. Pourjavad, M., Bell, J. S., & Bratli, R. K. (1998). Stress trajectories in the neighbourhood of fault zones, SPE/ISRM rock mechanics in petroleum engineering. Society of Petroleum Engineers.
    [Google Scholar]
  76. Ragg, S., Grasso, M., & Müller, B. (1999). Patterns of tectonic stress in Sicily from borehole breakout observations and finite element modeling. Tectonics, 18, 669–685. https://doi.org/10.1029/1999TC900010
    [Google Scholar]
  77. Rajabi, M., Heidbach, O., Tingay, M., & Reiter, K. (2017). Prediction of the present‐day stress field in the Australian continental crust using 3D geomechanical‐numerical models. Australian Journal of Earth Sciences, 64, 435–454. https://doi.org/10.1080/08120099.2017.1294109
    [Google Scholar]
  78. Rajabi, M., Tingay, M., & Heidbach, O. (2016). The present‐day stress field of New South Wales, Australia. Australian Journal of Earth Sciences, 63, 1–21. https://doi.org/10.1080/08120099.2016.1135821
    [Google Scholar]
  79. Rajabi, M., Tingay, M., Heidbach, O., Belton, D., Balfour, N., & Bendall, B. (2018). New constraints on the neotectonic stress pattern of the Flinders and Mount Lofty Ranges, South Australia. Exploration Geophysics, 49, 111–124. https://doi.org/10.1071/EG16076
    [Google Scholar]
  80. Rajabi, M., Tingay, M., Heidbach, O., Hillis, R., & Reynolds, S. (2017). The present‐day stress field of Australia. Earth Science Reviews, 168, 165–189. https://doi.org/10.1016/j.earscirev.2017.04.003
    [Google Scholar]
  81. Rajabi, M., Tingay, M., Heidbach, O., & King, R. (2015). The role of faults and fractures in local and regional perturbation of present‐day horizontal stresses – An example from the Clarence‐Moreton Basin, eastern Australia. In 77th EAGE Conference & Exhibition 2015 (p. 5). EAGE, IFEMA.
    [Google Scholar]
  82. Rajabi, M., Tingay, M., King, R., & Heidbach, O. (2017). Present‐day stress orientation in the Clarence‐Moreton Basin of New South Wales, Australia: A new high density dataset reveals local stress rotations. Basin Research, 29, 622–640. https://doi.org/10.1111/bre.12175
    [Google Scholar]
  83. Rajabi, M., Ziegler, M., Tingay, M., Heidbach, O., & Reynolds, S. (2016). Contemporary tectonic stress pattern of the Taranaki Basin, New Zealand. Journal of Geophysical Research: Solid Earth, 121, 6053–6070. https://doi.org/10.1002/2016JB013178
    [Google Scholar]
  84. Raleigh, C. B., Healy, J. H., & Bredehoeft, J. D. (1972). Faulting and crustal stress at Rangely, Colorado. In H. C.Heard, I. Y.Borg, N. L.Carter, & C. B.Raleigh (Eds.), Flow and fracture of rocks (pp. 275–284). U.S. Geological Survey.
    [Google Scholar]
  85. Ranjbar‐Karami, R., Rajabi, M., Ghavidel, A., & Afroogh, A. (2019). Contemporary tectonic stress pattern of the Persian Gulf Basin, Iran. Tectonophysics, 766, 219–231. https://doi.org/10.1016/j.tecto.2019.06.017
    [Google Scholar]
  86. Reynolds, S. D., Mildren, S. D., Hillis, R., & Meyer, J. J. (2006). Constraining stress magnitudes using petroleum exploration data in the Cooper‐Eromanga Basins, Australia. Tectonophysics, 415, 123–140. https://doi.org/10.1016/j.tecto.2005.12.005
    [Google Scholar]
  87. Ring, U., Betzler, C., & Delvaux, D. (1992). Normal vs. strike‐slip faulting during rift development in East Africa: The Malawi rift. Geology, 20, 1015–1018. https://doi.org/10.1130/0091‐7613(1992)020<1015:NVSSFD>2.3.CO;2
    [Google Scholar]
  88. Rodrigues, S., Esterle, J., Ward, V., Glasser, L., Maquissene, T., & Etchart, E. (2020). Flow structures and mineralisation in thermally altered coal from the Moatize Basin, Mozambique. International Journal of Coal Geology, 228, 103551. https://doi.org/10.1016/j.coal.2020.103551
    [Google Scholar]
  89. Salmachi, A., Rajabi, M., Reynolds, P., Yarmohammadtooski, Z., & Wainman, C. (2016). The effect of magmatic intrusions on coalbed methane reservoir characteristics: A case study from the Hoskissons coalbed, Gunnedah Basin, Australia. International Journal of Coal Geology, 165, 278–289. https://doi.org/10.1016/j.coal.2016.08.025
    [Google Scholar]
  90. Schindler, A., Jurado, M.‐J., & Müller, B. (1998). Stress orientation and tectonic regime in the northwestern Valencia Trough from borehole data. Tectonophysics, 300, 63–77. https://doi.org/10.1016/S0040‐1951(98)00234‐0
    [Google Scholar]
  91. Scholz, C. A., Shillington, D. J., Wright, L. J. M., Accardo, N., Gaherty, J. B., & Chindandali, P. (2020). Intrarift fault fabric, segmentation, and basin evolution of the Lake Malawi (Nyasa) Rift, East Africa. Geosphere, 16, 1293–1311. https://doi.org/10.1130/GES02228.1
    [Google Scholar]
  92. Scott, D. L., Etheridge, M. A., & Rosendahl, B. R. (1992). Oblique‐slip deformation in extensional terrains: A case study of the lakes Tanganyika and Malawi Rift Zones. Tectonics, 11, 998–1009. https://doi.org/10.1029/92TC00821
    [Google Scholar]
  93. Shudofsky, G. N. (1985). Source mechanisms and focal depths of East African earthquakes using Rayleigh‐wave inversion and body‐wave modelling. Geophysical Journal International, 83, 563–614. https://doi.org/10.1111/j.1365‐246X.1985.tb04328.x
    [Google Scholar]
  94. Smith, R. M. H., Eriksson, P. G., & Botha, W. J. (1993). A review of the stratigraphy and sedimentary environments of the Karoo‐aged basins of Southern Africa. Journal of African Earth Sciences (and the Middle East), 16, 143–169. https://doi.org/10.1016/0899‐5362(93)90164‐L
    [Google Scholar]
  95. Shumba Blessing, T., Midzi, V., Manzunzu, B., Ottemöller, L., & Marimira Kwangwari, T. (2020). Source parameters of the moderate Mozambique – Zimbabwe border earthquake on 22 December 2018. Journal of African Earth Sciences, 166, 103829. http://dx.doi.org/10.1016/j.jafrearsci.2020.103829
    [Google Scholar]
  96. Solomon, S., Bureau‐Cauchois, G., Ahmed, N., Aarnes, J., & Holtedahl, P. (2014). CO2 storage capacity assessment of deep saline aquifers in the Mozambique Basin. Energy Procedia, 63, 5266–5283. https://doi.org/10.1016/j.egypro.2014.11.558
    [Google Scholar]
  97. Sperner, B., Müller, B., Heidbach, O., Delvaux, D., Reinecker, J., & Fuchs, K. (2003). Tectonic stress in the Earth’s crust: Advances in the World Stress Map project. Geological Society, London, Special Publications, 212, 101–116. https://doi.org/10.1144/GSL.SP.2003.212.01.07
    [Google Scholar]
  98. Stacey, T. R., & Wesseloo, J. (1998). In situ stresses in mining areas in South Africa. The Journal of the South African Institute of Mining and Metallurgy, 98, 365–368.
    [Google Scholar]
  99. Stamps, D. S., Flesch, L. M., & Calais, E. (2010). Lithospheric buoyancy forces in Africa from a thin sheet approach. International Journal of Earth Sciences, 99, 1525–1533. https://doi.org/10.1007/s00531‐010‐0533‐2
    [Google Scholar]
  100. Stamps, D. S., Flesch, L. M., Calais, E., & Ghosh, A. (2014). Current kinematics and dynamics of Africa and the East African Rift System. Journal of Geophysical Research: Solid Earth, 119, 5161–5186. https://doi.org/10.1002/2013JB010717
    [Google Scholar]
  101. Stamps, D. S., Kreemer, C., Fernandes, R., Rajaonarison, T. A., & Rambolamanana, G. (2021). Redefining East African Rift System kinematics. Geology, 49, 150–155. https://doi.org/10.1130/G47985.1
    [Google Scholar]
  102. Strecker, M., & Bosworth, W. (1991). Quaternary stress‐field change in the Gregory rift, Kenya. Eos, Transactions American Geophysical Union, 72, 17–22. https://doi.org/10.1029/90EO00017
    [Google Scholar]
  103. Streit, J. E. (1997). Low frictional strength of upper crustal faults: A model. Journal of Geophysical Research: Solid Earth, 102, 24619–24626.
    [Google Scholar]
  104. Styron, R., & Pagani, M. (2020). The GEM global active faults database. Earthquake Spectra, 36(160–180), 1. https://doi.org/10.1177/8755293020944182
    [Google Scholar]
  105. Suess, E. (1891). Die Bru¨che des o¨stlichen Africa. In Beitrage zur Geologischen Kenntnis des o¨stlichen Africa (Vol. 50, pp. 555–556). Denkschriften Kaiserlichen Akademie der Wissenschaftliche Klasse.
    [Google Scholar]
  106. Tankard, A. J., Jackson, M. P. A., Eriksson, K. A., Hobday, D. K., Hunter, D. R., & Minter, W. E. L. (1982). Crustal evolution of Southern Africa: 3.8 billion years of Earth history. Springer‐Verlag.
    [Google Scholar]
  107. Tingay, M., Bentham, P., De Feyter, A., & Kellner, A. (2011). Present‐day stress‐field rotations associated with evaporites in the offshore Nile Delta. Geological Society of America Bulletin, 123, 1171–1180. https://doi.org/10.1130/B30185.1
    [Google Scholar]
  108. Tingay, M., Morley, C., King, R., Hillis, R., Coblentz, D. D., & Hall, R. (2010). Present‐day stress field of Southeast Asia. Tectonophysics, 482, 92–104. https://doi.org/10.1016/j.tecto.2009.06.019
    [Google Scholar]
  109. Trouw, R. A. J., & De Wit, M. J. (1999). Relation between the Gondwanide Orogen and contemporaneous intracratonic deformation. Journal of African Earth Sciences, 28, 203–213. https://doi.org/10.1016/S0899‐5362(99)00024‐X
    [Google Scholar]
  110. Vale . (2018). Coal Brownfield Moatize program (Unpublished Report, p. 131). Vale Moçambique SA & Exploration and Mineral Projects Department.
    [Google Scholar]
  111. Vasconcelos, L. (2009). Coal in Mozambique. Key note at 3rd Symposium on Gondwana Coals, PUCRS, Porto Alegre, RS, Brasil, 16‐18.09.2009.
  112. Vasconcelos, L., Chafy, A., & Xerinda, L. (2014). Determination of the limit of oxidation in zones of sub‐outcropping Chipanga Coal Seam, Moatize Coal Basin, Mozambique. Journal of African Earth Sciences, 99, 554–567. https://doi.org/10.1016/j.jafrearsci.2014.05.006
    [Google Scholar]
  113. Viola, G., Andreoli, M., Ben‐Avraham, Z., Stengel, I., & Reshef, M. (2005). Offshore mud volcanoes and onland faulting in southwestern Africa: Neotectonic implications and constraints on the regional stress field. Earth and Planetary Science Letters, 231, 147–160. https://doi.org/10.1016/j.epsl.2004.12.001
    [Google Scholar]
  114. Visser, J. N. J. (1991). Geography and climatology of the Late Carboniferous to Jurassic Karoo Basin in south‐western Gondwana. Annals of the South African Museum, 99, 415–431.
    [Google Scholar]
  115. Wedmore, L. N. J., Biggs, J., Floyd, M., Fagereng, Å., Mdala, H., Chindandali, P., Williams, J. N., & Mphepo, F. (2021). Geodetic constraints on cratonic microplates and broad strain during rifting of thick Southern African Lithosphere. Geophysical Research Letters, 48, e2021GL093785. https://doi.org/10.1029/2021GL093785
    [Google Scholar]
  116. Wedmore, L. N. J., Biggs, J., Williams, J. N., Fagereng, Å., Dulanya, Z., Mphepo, F., & Mdala, H. (2020). Active fault scarps in southern Malawi and their implications for the distribution of strain in incipient continental rifts. Tectonics, 39, e2019TC005834. https://doi.org/10.1029/2019TC005834
    [Google Scholar]
  117. Wedmore, L. N. J., Williams, J. N., Biggs, J., Fagereng, Å., Mphepo, F., Dulanya, Z., Willoughby, J., Mdala, H., & Adams, B. (2020). Structural inheritance and border fault reactivation during active early‐stage rifting along the Thyolo fault, Malawi. Journal of Structural Geology, 139, 104097. https://doi.org/10.1016/j.jsg.2020.104097
    [Google Scholar]
  118. Wiley, R. (1980). Borehole televiewer – Revisited. In SPWLA 21st Annual Logging Symposium. Society of Petrophysicists and Well‐Log Analysts, Lafayette, Louisiana (p. 16).
    [Google Scholar]
  119. Williams, J. N., Fagereng, Å., Wedmore, L. N. J., Biggs, J., Mphepo, F., Dulanya, Z., Mdala, H., & Blenkinsop, T. (2019). How do variably striking faults reactivate during rifting? Insights from southern Malawi. Geochemistry, Geophysics, Geosystems, 20, 3588–3607. https://doi.org/10.1029/2019GC008219
    [Google Scholar]
  120. Williams, J. N., Mdala, H., Fagereng, Å., Wedmore, L. N. J., Biggs, J., Dulanya, Z., Chindandali, P., & Mphepo, F. (2021). A systems‐based approach to parameterise seismic hazard in regions with little historical or instrumental seismicity: Active fault and seismogenic source databases for southern Malawi. Solid Earth, 12, 187–217. https://doi.org/10.5194/se‐12‐187‐2021
    [Google Scholar]
  121. Wopfner, H. (1994). The Malagasy Rift, a chasm in the Tethyan margin of Gondwana. Journal of Southeast Asian Earth Sciences, 9, 451–461. https://doi.org/10.1016/0743‐9547(94)90056‐6
    [Google Scholar]
  122. Yale, D. P. (2003). Fault and stress magnitude controls on variations in the orientation of in situ stress. Geological Society, London, Special Publications, 209, 55–64.
    [Google Scholar]
  123. Yang, Z., & Chen, W.‐P. (2010). Earthquakes along the East African Rift System: A multiscale, system‐wide perspective. Journal of Geophysical Research: Solid Earth, 115. https://doi.org/10.1029/2009JB006779
    [Google Scholar]
  124. Zemanek, J., Caldwell, R. L., Glenn, E. E.Jr, Holcomb, S. V., Norton, L. J., & Straus, A. J. D. (1969). The borehole televiewera new logging concept for fracture location and other types of borehole inspection. Journal of Petroleum Technology, 21, 762–774. https://doi.org/10.2118/2402‐PA
    [Google Scholar]
  125. Zemanek, J., Glenn, E. E., Norton, L. J., & Caldwell, R. L. (1970). Formation evaluation by inspection with the borehole televiewer. Geophysics, 35, 254–269. https://doi.org/10.1190/1.1440089
    [Google Scholar]
  126. Ziebarth, M. J., von Specht, S., Heidbach, O., Cotton, F., & Anderson, J. G. (2020). Applying conservation of energy to estimate earthquake frequencies from strain rates and stresses. Journal of Geophysical Research: Solid Earth, 125, e2020JB020186. https://doi.org/10.1029/2020JB020186
    [Google Scholar]
  127. Ziegler, M., Rajabi, M., Heidbach, O., Hersir, G. P., Ágústsson, K., Árnadóttir, S., & Zang, A. (2016). The stress pattern of Iceland. Tectonophysics, 674, 101–113. https://doi.org/10.1016/j.tecto.2016.02.008
    [Google Scholar]
  128. Ziegler, M., Reiter, K., Heidbach, O., Zang, A., Kwiatek, G., Stromeyer, D., Dahm, T., Dresen, G., & Hofmann, G. (2015). Mining‐induced stress transfer and its relation to a Mw 1.9 seismic event in an ultra‐deep South African gold mine. Pure and Applied Geophysics, 172, 2557–2570.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12660
Loading
/content/journals/10.1111/bre.12660
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error