1887
Volume 34, Issue 4
  • E-ISSN: 1365-2117

Abstract

[

Summary of basin development using a representative 2D seismic profile.

, Abstract

The separation and characterisation of different deformation events in superimposed basins can be challenging due to the effects of overprinting and/or fault reactivation, combined with a lack of detailed geological or geophysical data. This paper shows how an onshore study can be enhanced using a targeted interpretation of contiguous structures offshore imaged by seismic reflection data. Two deformation events, including evidence of fault reactivation, are recognised and associated with the onshore part of the Lossiemouth Fault Zone (LFZ), southern‐central Inner Moray Firth Basin. The basin is thought to record a history of Permian to Cenozoic deformation, but it is difficult to conclusively define the age of faulting and fault reactivation. However, structures in onshore outcrops of Permo–Triassic strata show no evidence of fault growth, and new interpretation of seismic reflection profiles in the offshore area reveals that Permo–Triassic fills are widely characterised by subsidence and passive infill of post‐Variscan palaeotopography. We propose that sequences of reactivated faulting observed onshore and offshore can be correlated and can be shown in the latter domain to be Early Jurassic–Late Cretaceous, followed by localised Cenozoic reactivation. The workflow used here can be applied to characterise deformation events in other superimposed rift basins with contiguous onshore (surface)—offshore (subsurface) expressions.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12661
2022-07-16
2022-08-18
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/4/bre12661.html?itemId=/content/journals/10.1111/bre.12661&mimeType=html&fmt=ahah

References

  1. Al‐Hinai, S., Fisher, Q. J., Al‐Busafi, B., Guise, P., & Grattoni, C. A. (2008). Laboratory measurements of the relative permeability of cataclastic fault rocks: An important consideration for production simulation modelling. Marine and Petroleum Geology, 25, 473–485.
    [Google Scholar]
  2. Allmendinger, R. W., Cardozo, N., & Fisher, D. (2012). Structural Geology Algorithms: Vectors and Tensors in Structural Geology. Cambridge University Press.
    [Google Scholar]
  3. Andrews, I. J., Long, D., Richards, P. C., Thomson, A. R., Brown, S., Chesher, J. A., & McCormac, M. (1990). The Geology of the Moray Firth. British Geological Survey.
    [Google Scholar]
  4. Angelier, J. (1984). Tectonic analysis of fault slip data sets. Journal of Geophysical Research, 89, 5835–5848.
    [Google Scholar]
  5. Angelier, J. (1990). Inversion of field data in fault tectonics to obtain the regional stress III: A new rapid direct inversion method by analytical means. Geophysical Journal International, 103, 363–376.
    [Google Scholar]
  6. Argent, J., Stewart, S. A., Green, P., & Underhill, J. R. (2002). Heterogeneous exhumation in the Inner Moray Firth, UK North Sea: Constraints from new apatite fission track analysis and seismic data. Journal of the Geological Society, 159, 715–729.
    [Google Scholar]
  7. Barr, D. (1985). 3‐D palinspastic restoration of normal faults in the Inner Moray Firth: Implications for extensional basin development. Earth and Planetary Science Letters, 75, 191–203.
    [Google Scholar]
  8. Bell, R. E., Jackson, C.‐A.‐L., Whipp, P. S., & Clements, B. (2014). Strain migration during multiphase extension: Observations from the northern North Sea. Tectonics, 33, 1936–1963. https://doi.org/10.1002/2014TC003551
    [Google Scholar]
  9. Benton, M. J., & Walker, A. D. (1985). Palaeoecology, taphonomy, and dating of Permo‐Triassic reptiles from Elgin, north‐east Scotland. Palaeontology, 28, 207–234.
    [Google Scholar]
  10. BGS . (1969). Geological Map, Elgin Sheet (1:63 360). British Geological Survey.
    [Google Scholar]
  11. Bird, T. J., Bell, A., Gibbs, A. D., & Nicholson, J. (1987). Aspects of strike‐slip tectonics in the Inner Moray Firth Basin, offshore Scotland. Norsk Geologisk Tidsskrift, 67, 353–369.
    [Google Scholar]
  12. Bosworth, W., & Tari, G. (2021). Hydrocarbon accumulation in basins with multiple phases of extension and inversion: Examples from the Western Desert (Egypt) and the western Black Sea. Solid Earth, 12, 59–77. https://doi.org/10.5194/se‐12‐59‐2021
    [Google Scholar]
  13. Bott, M. (1959). The mechanics of oblique slip faulting. Geological Magazine, 96(2), 109–117. https://doi.org/10.1017/S0016756800059987
    [Google Scholar]
  14. Brown, A. R. (Ed.) (2011). 1. Introduction. In Interpretation of Three‐Dimensional Seismic Data (pp. 1–30). Society of Exploration Geophysicists and American Association of Petroleum Geologists. https://doi.org/10.1190/1.9781560802884.ch1
    [Google Scholar]
  15. Cameron, T. D. J. (1993). Triassic, Permian and pre‐Permian of the Central and Northern North Sea. In K.RWO’B & W. G.Cordey (Eds.), Lithostratigraphic Nomenclature of the UK North Sea 4 (p. 163). BGS, HMSO [4, 7,8].
    [Google Scholar]
  16. Cardozo, N., & Allmendinger, R. W. (2013). Spherical projections with OSXStereonet. Computers & Geosciences, 51, 193–205. https://doi.org/10.1016/j.cageo.2012.07.021
    [Google Scholar]
  17. Carne, R. C., & Little, T. A. (2012). Geometry and scale of fault segmentation and deformational bulging along an active oblique‐slip fault (Wairarapa fault, New Zealand). GSA Bulletin, 124(7–8), 1365–1381. https://doi.org/10.1130/B30535.1
    [Google Scholar]
  18. Chopra, S. (2009). Interpreting fractures through 3D seismic discontinuity attributes and their visualisation. Recorder, CSEG. Number 8.
  19. Chopra, S., & Marfurt, K. J. (2007). Seismic attributes for fault/fracture characterisation. In SEG Technical Program Expanded Abstracts (pp. 1520–1524). https://doi.org/10.1190/1.2792785
    [Google Scholar]
  20. Clemmensen, L. B. (1987). Complex star dunes and associated aeolian bedforms, Hopeman Sandstone (Permo‐Triassic), Moray Firth Basin, Scotland. In L.Frostick, & I.Reid (Eds.), Desert Sediments: Ancient and Modern (Vol. 35, pp. 213–231). Geological Society, London, Special Publicationshttps://doi.org/10.1144/GSL.SP.1987.035.01.15
    [Google Scholar]
  21. Coward, M. P., Enfield, M. A., & Fischer, M. W. (1989). Devonian basins of Northern Scotland: extension and inversion related to Late Caledonian ‐ Variscan tectonics. Geological Society, London, Special Publications, 44(1), 275–308. https://doi.org/10.1144/GSL.SP.1989.044.01.16
    [Google Scholar]
  22. Davies, R. J., Turner, J. D., & Underhill, J. R. (2001). Sequential dip‐slip fault movement during rifting: A new model for the evolution of the Jurassic trilete North Sea rift system. Petroleum Geoscience, 7(4), 371–388. https://doi.org/10.1144/petgeo.7.4.371
    [Google Scholar]
  23. Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., Ruzhich, V., & San’kov, V. (1997). Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics, 282(1–4), 1–38. https://doi.org/10.1016/S0040‐1951(97)00210‐2
    [Google Scholar]
  24. Deng, H., & McClay, K. (2021). Three‐dimensional geometry and growth of a basement‐involved fault network developed during multiphase extension, Enderby Terrace, North West Shelf of Australia. GSA Bulletin, 133(9–10), 2051–2078. https://doi.org/10.1130/B35779.1
    [Google Scholar]
  25. Deng, H., McClay, K., & Bilal, A. (2020). 3D structure and evolution of an extensional fault network of the eastern Dampier Sub‐basin, North West Shelf of Australia. Journal of Structural Geology, 132, 103972. https://doi.org/10.1016/j.jsg.2019.103972
    [Google Scholar]
  26. Deng, H., McClay, K., & Bilal, A. (2021). Multiphase activation of the boundary fault system of the eastern Dampier subbasin, Northwest Shelf of Australia. AAPG Bulletin, 105(1), 157–188. https://doi.org/10.1306/03022019160
    [Google Scholar]
  27. Di, H., & Gao, D. (2017). Seismic attribute‐aided fault detection in petroleum industry: A review. In D.Martion (Ed.), Fault detection: Methods, Applications and Technology (pp. 53–80). Nova Science Publishers.
    [Google Scholar]
  28. Edwards, H. E., Becker, A. D., & Howell, J. A. (1993). Compartmentalisation of an aeolian sandstone by structural heterogeneities: Permo‐Triassic Hopeman Sandstone, Moray Firth, Scotland. In C. P.North, & D. J.Prosser (Eds.), Characterisation of Fluvial and Aeolian Reservoirs (Vol. 73, pp. 339–365). Geological Society, London, Special Publications. https://doi.org/10.1144/GSL
    [Google Scholar]
  29. Farrell, N. J. C., Healy, D., & Taylor, C. W. (2014). Anisotropy of permeability in faulted porous sandstones. Journal of Structural Geology, 63, 50–67. https://doi.org/10.1016/j.jsg.2014.02.008
    [Google Scholar]
  30. Fazlikhani, H., Aagotnes, S. S., Refvem, M. A., Wright, J. H., Bell, R. E., Fossen, H., Gawthorpe, R. L., Jackson, C.‐A.‐L., & Rotevatn, A. (2020). Strain migration during multiphase extension, Stord Basin, northern North Sea rift. Basin Research, 33, 1474–1496. https://doi.org/10.1111/bre.12522
    [Google Scholar]
  31. Fossen, H., Schultz, R. A., Shipton, Z. K., & Mair, K. (2007). Deformation bands in sandstone: A review. Journal of the Geological Society, 164(4), 755–769. https://doi.org/10.1144/0016‐76492006‐036
    [Google Scholar]
  32. Fournier, M., Bellahsen, N., Fabbri, O., & Gunnell, Y. (2004). Oblique rifting and segmentation of the NE Gulf of Adenpassive margin. Geochemistry, Geophysics, Geosystems, 5, Q11005. https://doi.org/10.1029/2004GC000731
    [Google Scholar]
  33. Frostick, L., Reid, I., Jarvis, J., & Eardley, H. (1988). Triassic sediments of the Inner Moray Firth, Scotland: Early rift deposits. Journal of the Geological Society, 145(2), 235–248.
    [Google Scholar]
  34. Giba, M., Walsh, J. J., & Nicol, A. (2012). Segmentation and growth of an obliquely reactivated normal fault. Journal of Structural Geology, 39, 253–267. https://doi.org/10.1016/j.jsg.2012.01.004
    [Google Scholar]
  35. Glennie, K. W., Higham, J., & Stemmerik, L. (2003). Permian. In D.Evans, & C.Graham (Eds.), The Millenium Atlas: Petroleum Geology of the Central and Northern North Sea (pp. 91–103). Geological Society.
    [Google Scholar]
  36. Glennie, K., & Hurst, A. (2007). Fluidization and associated soft‐sediment deformation in eolian sandstones: Hopeman Sandstone (Permian), Scotland, and Rotliegend, North Sea. In A.Hurst, & J.Cartwright (Eds.), Sand Injectites: Implications for Hydrocarbon Exploration and Production (Vol. 87, pp. 245–252). AAPG Memoir.
    [Google Scholar]
  37. Goldsmith, P. J., Hudson, G., & van Veen, P. (2003). Triassic. In D.Evans, C.Graham, A.Armour, & P.Bathurst (Eds. and coordinators), The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (pp. 105–128). The geological society of London.
    [Google Scholar]
  38. Hansen, J.‐A., Bergh, S. G., & Henningsen, T. (2012). Mesozoic rifting and basin evolution on the Lofoten and Vesterålen Margin, North‐Norway; Time constraints and regional implications. Norwegian Journal of Geology, 91, 203–228. https://doi.org/10.1111/bre.12358
    [Google Scholar]
  39. Henstra, G. A., Berg Kristensen, T., Rotevatn, A., & Gawthorpe, R. L. (2019). How do pre‐existing normal faults influence rift geometry? A comparison of adjacent basins with contrasting underlying structure on the Lofoten Margin, Norway. Basin Research, 31(6), 1083–1097. https://doi.org/10.1111/bre.12358
    [Google Scholar]
  40. Johnstone, G. S., & Mykura, W. (1989). British Regional Geology: The Northern Highlands of Scotland (Vol. 2). HM Stationery Office.
    [Google Scholar]
  41. Kamb, W. B. (1959). Ice petrofabric observations from Blue Glacier, Washington, in relation to theory and experiment. Journal of Geophysical Research, 64(11), 1891–1909. https://doi.org/10.1029/JZ064i011p01891
    [Google Scholar]
  42. Koson, S., Chenrai, P., & Choowong, M. (2014). Seismic attributes and their applications in seismic geomorphology. Bulletin of Earth Sciences of Thailand, 6(1), 1–9.
    [Google Scholar]
  43. Lăpădat, A., Imber, J., Yielding, G., Iacopini, D., McCaffrey, K. J. W., Long, J. J., & Jones, R. R. (2016). Occurrence and development of folding related to normal faulting within a mechanically heterogeneous sedimentary sequence: A case study from Inner Moray Firth, UK. Geological Society, London, Special Publications, 439, 373–394. https://doi.org/10.1144/SP439.18
    [Google Scholar]
  44. Le Breton, E., Cobbold, P. R., & Zanella, A. (2013). Cenozoic reactivation of the Great Glen Fault, Scotland: Additional evidence and possible causes. Journal of the Geological Society, 170(3), 403–415.
    [Google Scholar]
  45. Linsley, P. N., Potter, H. C., Mcnab, G., & Racher, D. (1980). The Beatrice field, Inner Moray Firth, U.K. North Sea. In M. T.Halbouty (Ed.), Giant Oil and Gas Fields of the Decade 1968‐1978 (Vol. 30, pp. 117–129). Memoir of the American Association of Petroleum Geologists.
    [Google Scholar]
  46. Long, J. J., & Imber, J. (2010). Geometrically coherent continuous deformation in the volume surrounding a seismically imaged normal fault‐array. Journal of Structural Geology, 32, 222–234. https://doi.org/10.1016/j.jsg.2009.11.009
    [Google Scholar]
  47. Lovecchio, J. P., Rohais, S., Joseph, P., Bolatti, N. D., Kress, P. R., Gerster, R., & Ramos, V. A. (2018). Multistage rifting evolution of the Colorado basin (offshore Argentina): Evidence for extensional settings prior to the South Atlantic opening. Terra Nova, 30, 359–368. https://doi.org/10.1111/ter.12351
    [Google Scholar]
  48. Macgregor, D. (2015). History of the development of the East African Rift System: A series of interpreted maps through time. Journal of African Earth Sciences, 101, 232–252. https://doi.org/10.1016/j.jafrearsci.2014.09.016
    [Google Scholar]
  49. Maithel, S. A., Garner, P. A., & Whitmore, J. H. (2015). Preliminary assessment of the petrology of the Hopeman Sandstone (Permo‐Triassic), Moray Firth Basin, Scotland. Scottish Journal of Geology, 51(2), 177–184. https://doi.org/10.1144/sjg2014‐028
    [Google Scholar]
  50. McQuillin, R., Donato, J. A., & Tulstrup, J. (1982). Development of basins in the Inner Moray Firth and the North Sea by crustal extension and dextral displacement of the Great Glen Fault. Earth and Planetary Science Letters, 60(1), 127–139.
    [Google Scholar]
  51. Michael, A. J. (1984). Determination of stress from slip data: Faults and folds. Journal of Geophysical Research: Solid Earth (1978–2012), 89(B13), 11517–11526.
    [Google Scholar]
  52. Morley, C. K. (2016). The impact of multiple extension events, stress rotation and inherited fabrics on normal fault geometries and evolution in the Cenozoic rift basins of Thailand. In C.Childs, R. E.Holdsworth, C.‐A.‐L.Jackson, T.Manzocchi, J. J.Walsh, & G.Yielding (Eds.), The Geometry and Growth of Normal Faults (Vol. 439). Geological Society, London, Special Publications. https://doi.org/10.1144/SP439.3
    [Google Scholar]
  53. Mostafa, M. E. (2005). Iterative direct inversion: An exact complementary solution for inverting fault‐slip data to obtain palaeostresses. Computers & Geosciences, 31, 1059. https://doi.org/10.1016/j.cageo.2005.02.012
    [Google Scholar]
  54. Naylor, H., Turner, P., Vaughan, D. J., & Fallick, A. E. (1989). The Cherty Rock, Elgin: A petrographic and isotopic study of a Permo‐Triassic calcrete. Geological Journal, 24, 205–221. https://doi.org/10.1002/gj.3350240305
    [Google Scholar]
  55. Peacock, J. D., Berridge, N. G., Harris, A. L., & May, F. (1968). Geology of the Elgin District. In Memoirs of the Geological Survey (p. 54e77). H.M.S.O.
    [Google Scholar]
  56. Petrel . (2021). Petrel Guru software support for background theory.
  57. Pigott, J. D., Kang, M. H., & Han, H. C. (2013). First order seismic attributes for clastic seismic facies interpretation: Examples from the East China Sea. Journal of Asian Earth Sciences, 66, 34–54. https://doi.org/10.1016/j.jseaes.2012.11.043
    [Google Scholar]
  58. Quinn, O. F. (2005). Fault Controlled Fluid Flow and Quartz Cementation in Porous Sandstones [Unpublished PhD thesis]. University of Edinburgh.
    [Google Scholar]
  59. Ragon, T., Nutz, A., Schuster, M., Ghienne, J. F., Ruffet, G., & Rubino, J. L. (2018). Evolution of the northern Turkana Depression (East African Rift System, Kenya) during the Cenozoic rifting: New insights from the Ekitale Basin (28–25.5Ma). Geological Journal, 54, 3468–3488. https://doi.org/10.1002/gj.3339
    [Google Scholar]
  60. Rawson, P., & Riley, L. A. (1982). Latest Jurassic‐Early Cretaceous events and the late Cimmerian unconformity in North Sea area. AAPG Bulletin, 66, 2628–2648. https://doi.org/10.1306/03B5AC87‐16D1‐11D7‐8645000102C1865D
    [Google Scholar]
  61. Roberts, A. M., Badley, M. E., Price, J. D., & Huck, I. W. (1990). The structural history of a transtensional basin: Inner Moray Firth, NE Scotland. Journal of the Geological Society, 147(1), 87–103.
    [Google Scholar]
  62. Roberts, A. M., Price, J. D., & Badley, M. E. (1989). Discussion on Triassic sediments of the Inner Moray Firth, Scotland: Early rift deposits. Journal of the Geological Society, 146, 361–363. https://doi.org/10.1144/gsjgs.146.2.0361
    [Google Scholar]
  63. Rotevatn, A., Fossmark, H. S. S., Bastesen, E., Thorsheim, E., & Torabi, A. (2016). Do deformation bands matter for flow? Insights from permeability measurements and flow simulations in porous carbonate rocks. Petroleum Geoscience, 23, 104–119. https://doi.org/10.1144/petgeo2016‐038
    [Google Scholar]
  64. Rotevatn, A., Kristensen, T. B., Ksienzyk, A. K., Wemmer, K., Henstra, G. A., Midtkandal, I., Grundvåg, S.‐A., & Andresen, A. (2018). Structural inheritance and rapid rift‐length establishment in a multiphase rift: The East Greenland rift system and its Caledonian orogenic ancestry. Tectonics, 37, 1858–1875. https://doi.org/10.1029/2018TC005018
    [Google Scholar]
  65. Rotevatn, A., Sandve, T. H., Keilegavlen, E., Kolyukhin, D., & Fossen, H. (2013). Fossen Deformation bands and their impact on fluid flow in sandstone reservoirs: the role of natural thickness variations. Geofluids, 13, 359–371. https://doi.org/10.1111/gfl.12030
    [Google Scholar]
  66. Sasvári, Á., & Baharev, A. (2014). SG2PS (structural geology to post script converter) – A graphical solution for brittle structural data evaluation and paleostress calculation. Computers & Geosciences, 66, 81–93.
    [Google Scholar]
  67. Seranne, M. (1992). Devonian extensional tectonics versus Carboniferous inversion in the northern Orcadian basin. Journal of the Geological Society, 149(1), 27–37. https://doi.org/10.1144/gsjgs.149.1.0027
    [Google Scholar]
  68. Shipton, Z. K., Evans, J. P., Robeson, K. R., Forster, C. B., & Snelgrove, S. (2002). Structural heterogeneity and permeability in faulted eolian sandstone: Implications for subsurface modeling of faults. AAPG Bulletin, 86(5), 863–883.
    [Google Scholar]
  69. Spang, J. (1972). Numerical method for dynamic analysis of calcite twin lamellae. Geological Society of America Bulletin, 84, 134–150. https://doi.org/10.1130/0016‐7606(1972)83[467:NMFDAO]2.0.CO;2
    [Google Scholar]
  70. Steel, R., & Ryseth, A. (1990). The Triassic — Early Jurassic succession in the northern North Sea: Megasequence stratigraphy and intra‐Triassic tectonics. Geological Society, London, Special Publications, 55, 139–168. https://doi.org/10.1144/GSL.SP.1990.055.01.07
    [Google Scholar]
  71. Stephenson, D., & Gould, D. (1995). The Grampian Highlands, 4th ed. British Regional Geology Series, x 261 pp. London: HMSO for the British Geological Survey. ISBN 0 11 884521 7. Geological Magazine, 133(4), 506. https://doi.org/10.1017/S0016756800007779
    [Google Scholar]
  72. Tamas, A., Holdsworth, R. E., Underhill, J. R., Tamas, D. M., Dempsey, E. D., Hardman, K., Bird, A., McCarthy, D., McCaffrey, K. J. W., & Selby, D. (2021). New onshore insights into the role of structural inheritance during Mesozoic opening of the Inner Moray Firth Basin, Scotland. Journal of the Geological Society, 179(2), jgs2021‐066. https://doi.org/10.1144/jgs2021‐066
    [Google Scholar]
  73. Thomson, K. (1993). Tertiary Tectonics and Uplift of the Inner Moray Firth and Adjacent Areas [PhD thesis]. University of Edinburgh.
    [Google Scholar]
  74. Thomson, K., & Hillis, R. R. (1995). Tertiary structuration and erosion of the Inner Moray Firth. In R. A.Scrutton, M. S.Stoker, G. B.Shimmield, & A. W.Tudhope (Eds.), The Tectonics, Sedimentation and Palaeoceanography of the North Atlantic Region (Vol. 90, pp. 249–269). Geological Society, London, Special Publications.
    [Google Scholar]
  75. Thomson, K., & Underhill, J. R. (1993). Controls on the development and evolution of structural styles in the Inner Moray Firth Basin. In Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference on Petroleum Geology of NW (pp. 1167–1178). Europe, London.
    [Google Scholar]
  76. Tomasso, M., Underhill, J. R., Hodgkinson, R. A., & Young, M. J. (2008). Structural styles and depositional architecture in the Triassic of the Ninian and Alwyn North fields: Implications for basin development and prospectivity in the Northern North Sea. Marine and Petroleum Geology, 25, 588–605. https://doi.org/10.1016/j.marpetgeo.2007.11.007
    [Google Scholar]
  77. Trewin, N., & Hurst, A. (2009). Excursion Guide to the Geology of East Sutherland and Caithness, 2nd ed. Aberdeen Geological Society and Dunedin Press. Geological Magazine, 147(5), 798–799.
    [Google Scholar]
  78. Underhill, J. R. (1991). Implications of Mesozoic ‐ Recent basin development in the western Inner Moray Firth, UK. Marine and Petroleum Geology, 8, 359–369.
    [Google Scholar]
  79. Underhill, J. R., & Brodie, J. A. (1993). Structural geology of Easter Ross, Scotland: Implications for movement on the Great Glen fault zone. Journal of the Geological Society, 150(3), 515–527.
    [Google Scholar]
  80. Underhill, J. R., & Woodcock, N. H. (1987). Faulting mechanisms in high‐porosity sandstones; New Red Sandstone, Arran, Scotland. In M. E.Jones, & R. M. F.Preston (Eds.), Deformation of Sediments and Sedimentary Rocks (Vol. 29, pp. 91–105). Geological Society Special Publication.
    [Google Scholar]
  81. Walker, A. D. (1973). The age of the Cuttie’s Hillock sandstone (Permo‐Triassic) of the Elgin area. Scottish Journal of Geology, 9, 177–183. https://doi.org/10.1144/sjg09030177
    [Google Scholar]
  82. Wallace, R. E. (1951). Geometry of shearing stress and relation to faulting. The Journal of Geology, 59(2), 118–130.
    [Google Scholar]
  83. Wilson, R. W., Holdsworth, R. E., Wild, L. E., McCaffrey, K. J. W., England, R. W., Imber, J., & Strachan, R. A. (2010). Basement influenced rifting and basin development: a reappraisal of post‐Caledonian faulting patterns from the North Coast Transfer Zone, Scotland. Geological Society, London, Special Publications, 335, 795–826.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12661
Loading
/content/journals/10.1111/bre.12661
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): fault reactivation; Inner Moray Firth Basin; North Sea; superimposed deformation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error