1887
Volume 34, Issue 4
  • E-ISSN: 1365-2117

Abstract

[Abstract

This study proposes a unique workflow to unravel complex burial diagenetic histories of overpressured basins based on the integration of seismic and well log data, biostratigraphy, petrography, clumped isotope analyses and basin modelling. This approach is demonstrated with an example from the Chalk Group in the Danish Central Graben, where a seismic‐scale palaeo‐lithification front has been observed and studied in detail to elucidate the timing of the establishment of overpressured conditions and its relation to changing diagenetic activity. The palaeo‐lithification front separates high‐porosity chalks above, that dominantly underwent mechanical compaction and contact cementation, from low‐porosity chalk below, that dominantly underwent severe pressure dissolution and pore‐filling cementation. Analysis of chalk buried under hydrostatic conditions shows a strikingly similar lithification front between 1000 and 1200 m burial, much shallower than the lithification front in the Danish Central Graben at a current depth between 2100 and 2400 m below seafloor. The discrepancy of 1200 m is due to the establishment of overpressured conditions that limited the increase in effective stress as burial continued, finally halting burial compaction when formation fluids started to carry the lithostatic weight. Basin modelling data indicate that this occurred at the end of the Oligocene for large parts of the Danish Central Graben, which is much earlier than the Middle Miocene timing that is currently assumed. The results imply a regional occurrence of a relict lithification front in the North Sea Basin, its position guided by stratigraphy, but mainly dependent on the maximum effective stress experienced during its burial history. The study shows that the porosity bipartition is a remnant of the past and not from ongoing compaction as has previously been suggested. Since it was established before the thermal maturity of the main source rocks, chalk below the lithification front must have formed a sealing unit during hydrocarbon migration. The recognition of the lithification front is also of importance to velocity modelling and depth‐conversion since a non‐linear increase between velocity and depth is expected across this boundary. The methodology may be applied in other overpressured basins where the diagenetic state of reservoir rocks at the end of hydrostatic conditions must be constrained.

,

Based on the integration of seismic and well log data, biostratigraphy, petrography, clumped isotope analyses, and basin modelling, a burial model is proposed for the Chalk Group that experienced hydrostatic and subsequently overpressured conditions, which resulted in the recognition of a palaeo‐lithification front.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12662
2022-07-16
2024-04-19
Loading full text...

Full text loading...

References

  1. Andresen, K. J., Huuse, M., & Clausen, O. R. (2008). Morphology and distribution of Oligocene and Miocene pockmarks in the Danish North Sea–Implications for bottom current activity and fluid migration. Basin Research, 20(3), 445–466. https://doi.org/10.1111/j.1365‐2117.2008.00362.x
    [Google Scholar]
  2. Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146(1), 54–62.
    [Google Scholar]
  3. Arfai, J., Jähne, F., Lutz, R., Franke, D., Gaedicke, C., & Kley, J. (2014). Late Palaeozoic to Early Cenozoic geological evolution of the northwestern German North Sea (Entenschnabel): New results and insights. Netherlands Journal of Geosciences, 93(4), 147–174. https://doi.org/10.1017/njg.2014.22
    [Google Scholar]
  4. Banner, J. L., & Hanson, G. N. (1990). Calculation of simultaneous isotopic and trace element variations during water‐rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54, 3123–3137. https://doi.org/10.1016/0016‐7037(90)90128‐8
    [Google Scholar]
  5. Bjørlykke, K., & Høeg, K. (1997). Effects of burial diagenesis on stresses, compaction and fluid flow in sedimentary basins. Marine and Petroleum Geology, 14(3), 267–276. https://doi.org/10.1016/S0264‐8172(96)00051‐7
    [Google Scholar]
  6. Blinkenberg, K. H., Anderskouv, K., Sheldon, E., Bjerrum, C. J., & Stemmerik, L. (2020). Stratigraphically controlled silicification in Danian chalk and its implications for reservoir properties, southern Danish Central Graben. Marine and Petroleum Geology, 115, 104134. https://doi.org/10.1016/j.marpetgeo.2019.104134
    [Google Scholar]
  7. Brand, W. A., Assonov, S. S., & Coplen, T. B. (2010). Correction for the O‐17 interference in ∆13C measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report). Pure and Applied Chemistry, 82, 1719–1733.
    [Google Scholar]
  8. Brewster, J., & Dangerfield, J. A. (1984). Chalk fields along the Lindesnes Ridge, Eldfisk. Marine and Petroleum Geology, 1(3), 239–278. https://doi.org/10.1016/0264‐8172(84)90148‐X
    [Google Scholar]
  9. Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24, 1025–1028.
    [Google Scholar]
  10. Cartwright, J. (2011). Diagenetically induced shear failure of fine‐grained sediments and the development of polygonal fault systems. Marine and Petroleum Geology, 28, 1593–1610. https://doi.org/10.1016/j.marpetgeo.2011.06.004
    [Google Scholar]
  11. Cartwright, J., Huuse, M., & Aplin, A. (2007). Seal bypass systems. AAPG Bulletin, 91(8), 1141–1166. https://doi.org/10.1306/04090705181
    [Google Scholar]
  12. Cartwright, J., James, D., & Bolton, A. (2003). The genesis of polygonal fault systems: A review. Geological Society, London, Special Publications, 216(1), 223–243. https://doi.org/10.1144/GSL.SP.2003.216.01.15
    [Google Scholar]
  13. Cherret, A. J., Escobar, I., & Hansen, H. P. (2011). Fast deterministic geostatiscal inversion, In 73rd EAGE Conference and Exhibition Incorporating SPE EUROPEC 2011.
    [Google Scholar]
  14. Craig, H. (1957). Isotopic standards for carbon and oxygen and correction factors for mass‐spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta, 12(1–2), 133–149. https://doi.org/10.1016/0016‐7037(57)90024‐8
    [Google Scholar]
  15. Craig, H. (1965). The measurement of oxygen isotope paleotemperatures. In E.Tongiorigi (Ed.), Stable isotopes in oceanographic studies and paleotemperatures (pp. 161–182). CNR Lab. Geo. Nucl.
    [Google Scholar]
  16. Czerniakowski, L. A., Lohmann, K. C., & Wilson, J. (1984). Closed‐system marine burial diagenesis: Isotopic data from the Austin Chalk and its components. Sedimentology, 31(6), 863–877. https://doi.org/10.1111/j.1365‐3091.1984.tb00892.x
    [Google Scholar]
  17. Daëron, M., Blamart, D., Peral, M., & Affek, H. P. (2016). Absolute isotopic abundance ratios and the accuracy of Delta(47) measurements. Chemical Geology, 442, 83–96.
    [Google Scholar]
  18. Dale, A., John, C. M., Mozley, P. S., Smalley, P. C., & Muggeridge, A. H. (2014). Time‐capsule concretions: Unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes. Earth and Planetary Science Letters, 394, 30–37. https://doi.org/10.1016/j.epsl.2014.03.004
    [Google Scholar]
  19. Danielsen, M., Michelsen, O., & Clausen, O. R. (1997). Oligocene sequence stratigraphy and basin development in the Danish North Sea sector based on log interpretations. Marine and Petroleum Geology, 14(7–8), 931–950. https://doi.org/10.1016/S0264‐8172(97)00043‐3
    [Google Scholar]
  20. Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., & Eiler, J. M. (2011). Defining an absolute reference frame for ‘clumped’ isotope studies of CO2. Geochimica et Cosmochimica Acta, 75, 7117–7131. https://doi.org/10.1016/j.gca.2011.09.025
    [Google Scholar]
  21. D'Heur, M. (1984). Porosity and hydrocarbon distribution in the North Sea chalk reservoirs. Marine and Petroleum Geology, 1(3), 211–238. https://doi.org/10.1016/0264‐8172(84)90147‐8
    [Google Scholar]
  22. Duan, W., Li, C. F., Luo, C., Chen, X. G., & Bao, X. (2018). Effect of formation overpressure on the reservoir diagenesis and its petroleum geological significance for the DF11 block of the Yinggehai Basin, the South China Sea. Marine and Petroleum Geology, 97, 49–65. https://doi.org/10.1016/j.marpetgeo.2018.06.033
    [Google Scholar]
  23. Eiler, J. M., & Schauble, E. (2004). 18O13C16O in Earth’s atmosphere. Geochimica et Cosmochimica Acta, 68, 4767–4777. https://doi.org/10.1016/j.gca.2004.05.035
    [Google Scholar]
  24. Epstein, S., Buchsbaum, R., Lowenstam, H. A., & Urey, H. C. (1953). Revised carbonate‐water isotopic temperature scale. Geological Society of America Bulletin, 64(11), 1315–1326. https://doi.org/10.1130/0016‐7606(1953)64005B1315:RCITS005D2.0.CO;2
    [Google Scholar]
  25. Fabricius, I. L. (2003). How burial diagenesis of chalk sediments controls sonic velocity and porosity. American Association of Petroleum Geologists Bulletin, 87, 1755–1778. https://doi.org/10.1306/06230301113
    [Google Scholar]
  26. Fabricius, I. L. (2007). Chalk: Composition, diagenesis and physical properties. Bulletin of the Geological Society of Denmark, 55, 97–128. https://doi.org/10.37570/bgsd‐2007‐55‐08
    [Google Scholar]
  27. Fabricius, I. L. (2014). Burial stress and elastic strain of carbonate rocks. Geophysical Prospecting, 62, 1327–1336. https://doi.org/10.1111/1365‐2478.12184
    [Google Scholar]
  28. Fabricius, I. L., & Borre, M. K. (2007). Stylolites, porosity, depositional texture, and silicates in chalk facies sediments. Ontong Java Plateau—Gorm and Tyra fields, North Sea. Sedimentology, 54, 183–205. https://doi.org/10.1111/j.1365‐3091.2006.00828.x
    [Google Scholar]
  29. Fabricius, I. L., Gommesen, L., Krogsbøll, A., & Olsen, D. (2008). Chalk porosity and sonic velocity versus burial depth: Influence of fluid pressure, hydrocarbons, and mineralogy. American Association of Petroleum Geologists Bulletin, 92, 201–223. https://doi.org/10.1306/10170707077
    [Google Scholar]
  30. Faÿ‐Gomord, O., Allanic, C., Verbiest, M., Honlet, R., Champenois, F., Bonifacie, M., Chaduteau, C., Wouters, S., Muchez, P., Lasseur, E., & Swennen, R. (2018). Understanding fluid flow during tectonic reactivation: An example from the Flamborough Head Chalk Outcrop (UK). Geofluids, 2018, 1–17. https://doi.org/10.1155/2018/9352143
    [Google Scholar]
  31. Fowler, P., & Sellar, A. (2014). WesternGeco report. Data processing report. Regional time & depth re‐processing. Maersk Oil and Gas AS in‐house.
  32. Gao, J., Zhang, J.‐K., He, S., Zhao, J.‐X., He, Z.‐L., Wo, Y.‐J., Feng, Y.‐X., & Li, W. (2019). Overpressure generation and evolution in Lower Paleozoic gas shales of the Jiaoshiba region, China: Implications for shale gas accumulation. Marine and Petroleum Geology, 102, 844–859. https://doi.org/10.1016/j.marpetgeo.2019.01.032
    [Google Scholar]
  33. Gennaro, M., Wonham, J. P., Gawthorpe, R., & Sælen, G. (2013). Seismic stratigraphy of the Chalk Group in the Norwegian Central Graben, North Sea. Marine and Petroleum Geology, 45, 236–266. https://doi.org/10.1016/j.marpetgeo.2013.04.010
    [Google Scholar]
  34. Ghosh, P., Eiler, J., Campana, S. E., & Feeney, R. F. (2007). Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths. Geochimica et Cosmochimica Acta, 71, 2736–2744. https://doi.org/10.1016/j.gca.2007.03.015
    [Google Scholar]
  35. Goffey, G., Attree, M., Curtis, P., Goodfellow, F., Lynch, J., Mackertich, D., & Tyrrell, W. (2018). New exploration discoveries in a mature basin: Offshore Denmark. Geological Society, London, Petroleum Geology Conference Series, 8(1), 287–306.
    [Google Scholar]
  36. Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (Eds.). (2012). The geologic time scale 2012. Elsevier.
    [Google Scholar]
  37. Harding, R., & Huuse, M. (2015). Salt on the move: Multistage evolution of salt diapirs in the Netherlands North Sea. Marine and Petroleum Geology, 61, 39–55. https://doi.org/10.1016/j.marpetgeo.2014.12.003
    [Google Scholar]
  38. He, B., Olack, G. A., & Colman, A. S. (2012). Pressure baseline correction and high‐precision CO2 clumped‐isotope (δ47) measurements in bellows and micro‐volume modes. Rapid Communications in Mass Spectrometry, 26, 2837–2853.
    [Google Scholar]
  39. Hjuler, M. L., & Fabricius, I. L. (2009). Engineering properties of chalk related to diagenetic variations of Upper Cretaceous onshore and offshore chalk in the North Sea area. Journal of Petroleum Science and Engineering, 68, 151–170.
    [Google Scholar]
  40. Huntington, K. W., Budd, D. A., Wernicke, B. P., & Eiler, J. M. (2011). Use of clumped‐isotope thermometry to constrain the crystallization temperature of diagenetic calcite. Journal of Sedimentary Research, 81(9), 656–669. https://doi.org/10.2110/jsr.2011.51
    [Google Scholar]
  41. Huntington, K. W., Eiler, J. M., Affek, H. P., Guo, W., Bonifacie, M., Yeung, L. Y., Thiagarajan, N., Passey, B., Tripati, A., Daeron, M., & Came, R. (2009). Methods and limitations of ‘clumped’ CO2 isotope (δ (47)) analysis by gas‐source isotope ratio mass spectrometry. Journal of Mass Spectrometry, 44, 1318–1329.
    [Google Scholar]
  42. Huuse, M., & Clausen, O. R. (2001). Morphology and origin of major Cenozoic sequence boundaries in the Eastern North Sea Basin: Top Eocene, near‐top Oligocene and the mid‐Miocene unconformity. Basin Research, 13, 17–41. https://doi.org/10.1046/j.1365‐2117.2001.00123.x
    [Google Scholar]
  43. Huuse, M., Lykke‐Andersen, H., & Michelsen, O. (2001). Cenozoic evolution of the eastern Danish North Sea. Marine Geology, 177(3–4), 243–269. https://doi.org/10.1016/S0025‐3227(01)00168‐2
    [Google Scholar]
  44. Jackson, C. A. L., Carruthers, D. T., Mahlo, S. N., & Briggs, O. (2014). Can polygonal faults help locate deep‐water reservoirs?AAPG Bulletin, 98(9), 1717–1738. https://doi.org/10.1306/03131413104
    [Google Scholar]
  45. Jansa, L. F., & Urrea, V. H. N. (1990). Geology and diagenetic history of overpressured sandstone reservoirs, venture gas field, offshore Nova Scotia, Canada. AAPG Bulletin, 74(10), 1640–1658.
    [Google Scholar]
  46. Japsen, P. (1998). Regional velocity‐depth anomalies, North Sea Chalk: A record of overpressure and Neogene uplift and erosion. American Association of Petroleum Geologists Bulletin, 82(1998), 2031–2074.
    [Google Scholar]
  47. Japsen, P. (1999). Overpressured Cenozoic shale mapped from velocity anomalies relative to a baseline for marine shale, North Sea. Petroleum Geoscience, 5, 321–336. https://doi.org/10.1144/petgeo.5.4.321
    [Google Scholar]
  48. Japsen, P. (2018). Sonic velocity of chalk, sandstone and marine shale controlled by effective stress: Velocity‐depth anomalies as a proxy for vertical movements. Gondwana Research, 53, 145–158. https://doi.org/10.1016/j.gr.2017.04.013
    [Google Scholar]
  49. Japsen, P., Britze, P., & Andersen, C. (2003). Upper Jurassic‐Lower Cretaceous of the Danish Central Graben: Structural framework and nomenclature. GEUS Bulletin, 1, 231–246. https://doi.org/10.34194/geusb.v1.4653
    [Google Scholar]
  50. Japsen, P., Dysthe, D. K., Hartz, E. H., Stipp, S. L. S. S., Yarushina, V. M., & Jamtveit, B. (2011). A compaction front in North Sea chalk. Journal of Geophysical Research: Solid Earth, 116, 1–10. https://doi.org/10.1029/2011JB008564
    [Google Scholar]
  51. Japsen, P., Mavko, G., Gommesen, L., Fabricius, I. L., Jacobsen, F., Vejbæk, O. V., Rasmussen, R., & Schiøtt, C. R. (2005). Chalk background velocity: Influence of effective stress and texture. In 67th European Association of Geoscientists and Engineers, EAGE Conference and Exhibition, Incorporating SPE EUROPE2005—Extended Abstracts (pp. 1829–1832). Society of Petroleum Engineers.
    [Google Scholar]
  52. Jeans, C. V., Long, D. E., Hu, X.‐F., & Mortimore, R. N. (2014). Regional hardening of Upper Cretaceous Chalk in eastern England, UK: Trace element and stable isotope patterns in the Upper Cenomanian and Turonian Chalk and their significance. Acta Geologica Polonica, 64, 419–455. https://doi.org/10.2478/agp‐2014‐0023
    [Google Scholar]
  53. Karlo, J. F., Van Buchem, F. S. P., Moen, J., & Milroy, K. (2014). Triassic‐age salt tectonics of the Central North Sea. Interpretation, 2, SM19–SM28. https://doi.org/10.1190/INT‐2014‐0032.1
    [Google Scholar]
  54. O’NeilKim, S.‐T., & O’Neil, J. R. (1997). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61, 3461–3475. https://doi.org/10.1016/S0016‐7037(97)00169‐5
    [Google Scholar]
  55. Kubala, M., Bastow, M., Thompson, S., Scotchman, I., & Oygard, K. (2003). Geothermal regime, petroleum generation and migration. In The Millennium Atlas: Petroleum geology of the central and northern North Sea (pp. 289–315). Geological Society of London.
    [Google Scholar]
  56. Martín‐Martín, J. D., Travé, A., Gomez‐Rivas, E., Salas, R., Sizun, J.‐P., Vergés, J., Corbella, M., Stafford, S. L., & Alfonso, P. (2015). Fault‐controlled and stratabound dolostones in the Late Aptian–earliest Albian Benassal Formation (Maestrat Basin, E Spain): Petrology and geochemistry constrains. Marine and Petroleum Geology, 65, 83–102. https://doi.org/10.1016/j.marpetgeo.2015.03.019
    [Google Scholar]
  57. Megson, J. B. (1992). The North Sea Chalk play: Examples from the Danish Central Graben. In Exploration Britain: Geological insights for the next decade (Vol. 67, pp. 247–282). https://doi.org/10.1144/GSL.SP.1992.067.01.10
    [Google Scholar]
  58. Michelsen, O., Nielsen, L. H., Johannessen, P. N., Andsbjerg, J., & Surlyk, F. (2003). Jurassic lithostratigraphy and stratigraphic development onshore and offshore Denmark. Geological Survey of Denmark and Greenland (GEUS) Bulletin, 1, 145–216. https://doi.org/10.34194/geusb.v1.4651
    [Google Scholar]
  59. Michelsen, O., Thomsen, E., Danielsen, M., Heilmann‐Clausen, C., Jordt, H., & Laursen, G. V. (1998). Cenzoic sequence stratigraphy in the Eastern North Sea. Special Publication‐SEPM, 60, 91–118.
    [Google Scholar]
  60. Murray, S. T., Arienzo, M. M., & Swart, P. K. (2016). Determining the Δ47 acid fractionation in dolomites. Geochimica et Cosmochimica Acta, 174, 42–53. https://doi.org/10.1016/j.gca.2015.10.029
    [Google Scholar]
  61. Nielsen, L., Boldreel, L. O., Hansen, T. M., Lykke‐Andersen, H., Stemmerik, L., Surlyk, F., & Thybo, H. (2011). Integrated seismic analysis of the Chalk Group in eastern Denmark—Implications for estimates of maximum palaeo‐burial in southwest Scandinavia. Tectonophysics, 511, 14–26. https://doi.org/10.1016/j.tecto.2011.08.010
    [Google Scholar]
  62. Olivarius, M., Kokfelt, T. F., Friis, H., & Wilson, J. R. (2015). Proterozoic basement and Palaeozoic sediments in the Ringkøbing‐Fyn High characterized by zircon U‐Pb ages and heavy minerals from Danish onshore wells. Bulletin of the Geological Society of Denmark, 63, 29–44.
    [Google Scholar]
  63. Osborne, M. J., & Swarbrick, R. E. (1997). Mechanisms for generating overpressure in sedimentary basins: A reevaluation. AAPG Bulletin, 81(6), 1023–1041.
    [Google Scholar]
  64. Pletsch, T., Appel, J., Botor, D., Clayton, C. J., Duin, E. J. T., Faber, E., Gorecki, W., Kombrink, H., Kosakowski, P., Kuper, G., Kus, J., Lutz, R., Mathiesen, A., Ostertag‐Henning, C., Papiernek, B., & Van Bergen, F. (2010). Petroleum generation and migration. In J. C.Doornenbal & A. G.Stevenson (Eds.), Petroleum geological atlas of the southern Permian basin area (pp. 225–253). EAGE Publications b.v.
    [Google Scholar]
  65. Quesnel, B., Boulvais, P., Gautier, P., Cathelineau, M., John, C. M., Dierick, M., Agrinier, P., & Drouillet, M. (2016). Paired stable isotopes (O, C) and clumped isotope thermometry of magnesite and silica veins in the New Caledonia Peridotite Nappe. Geochimica et Cosmochimica Acta, 183, 234–249. https://doi.org/10.1016/j.gca.2016.03.021
    [Google Scholar]
  66. Rasmussen, E. S., Vejbæk, O. V., Bidstrup, T., Piasecki, S., & Dybkær, K. (2005). Late Cenozoic depositional history of the Danish North Sea Basin: Implications for the petroleum systems in the Kraka, Halfdan, Siri and Nini fields. In Petroleum geology: North‐west Europe and global perspectives ‒ Proceedings of the 6th petroleum geology conference (pp. 1347–1358). Geological Society of London.
    [Google Scholar]
  67. Ryb, U., & Eiler, J. M. (2018). Oxygen isotope composition of the Phanerozoic ocean and a possible solution to the dolomite problem. Proceedings of the National Academy of Sciences, 115(26), 6602–6607. https://doi.org/10.1073/pnas.1719681115
    [Google Scholar]
  68. Safaricz, M., & Davison, I. (2005). Pressure solution in chalk. AAPG Bulletin, 89(3), 383–401. https://doi.org/10.1306/10250404015
    [Google Scholar]
  69. Sagi, D. A., De Paola, N., McCaffrey, K. J. W., & Holdsworth, R. E. (2016). Fault and fracture patterns in low porosity chalk and their potential influence on sub‐surface fluid flow—A case study from Flamborough Head, UK. Tectonophysics, 690, 35–51. https://doi.org/10.1016/j.tecto.2016.07.009
    [Google Scholar]
  70. Sathar, S., & Jones, S. (2016). Fluid overpressure as a control on sandstone reservoir quality in a mechanical compaction dominated setting: Magnolia Field, Gulf of Mexico. Terra Nova, 28(3), 155–162. https://doi.org/10.1111/ter.12203
    [Google Scholar]
  71. Schauble, E. A., Ghosh, P., & Eiler, J. M. (2006). Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first‐principles lattice dynamics. Geochimica et Cosmochimica Acta, 70, 2510–2529. https://doi.org/10.1016/j.gca.2006.02.011
    [Google Scholar]
  72. Schauer, A. J., Kelson, J., Saenger, C., & Huntington, K. W. (2016). Choice of 17O correction affects clumped isotope (Δ47) values of CO2 measured with mass spectrometry. Rapid Communications in Mass Spectrometry, 30, 2607–2616.
    [Google Scholar]
  73. Schiøler, P., Andsbjerg, J., Clausen, O. R., Dam, G., Dybkjær, K., Hamberg, L., Heilmann‐Clausen, C., Johannessen, E. P., Kristensen, L. E., Prince, I., & Rasmussen, J. A. (2007). Lithostratigraphy of the Palaeogene–lower Neogene succession of the Danish North Sea. GEUS Bulletin, 12, 1–77. https://doi.org/10.34194/geusb.v12.5249
    [Google Scholar]
  74. Scholle, P. A. (1974). Diagenesis of Upper Cretaceous chalks from England, Northern Ireland, and the North Sea. In K. J.Hsü & H. C.Jenkyns (Eds.), Pelagic sediments: On land and under the sea (p. 447). The International Association of Sedimentologists.
    [Google Scholar]
  75. Scholle, P. A. (1977). Chalk diagenesis and its relation to petroleum exploration: Oil from chalks, a modern miracle?AAPG Bulletin, 61(7), 982–1009. https://doi.org/10.1306/C1EA43B5‐16C9‐11D7‐8645000102C1865D
    [Google Scholar]
  76. Scholle, P. A., & Halley, R. B. (1985). Burial diagenesis: Out of sight, out of mind! In Carbonate sedimentology and petrology (pp. 135–160). American Geophysical Union.
    [Google Scholar]
  77. Shenton, B. J., Grossman, E. L., Passey, B. H., Henkes, G. A., Becker, T. P., Laya, J. C., Perez‐Huerta, A., Becker, S. P., & Lawson, M. (2015). Clumped isotope thermometry in deeply buried sedimentary carbonates: The effects of bond reordering and recrystallization. GSA Bulletin, 127(7–8), 1036–1051. https://doi.org/10.1130/B31169.1
    [Google Scholar]
  78. Sheriff, R. E. (1980). Nomogram for Fresnel‐zone calculation. Geophysics, 45(5), 968–972. https://doi.org/10.1190/1.1441101
    [Google Scholar]
  79. Smit, F. W. H. (2014). Seismic stratigraphy, basin evolution and seismic geomorphology of the Late Cretaceous and earliest Paleocene Chalk Group in the Danish Central Graben. Aarhus University.
    [Google Scholar]
  80. Smit, F. W. H. (2018). Integrated seismic geomorphological analysis of syn‐ and post‐depositional fluid migration features in the Chalk Group of the Danish North Sea [PhD thesis]. Technical University of Denmark.
    [Google Scholar]
  81. Smit, F. W., Stemmerik, L., Lüthje, M., & van Buchem, F. S. (2021). Characterization and origin of large Campanian depressions within the Chalk Group of the Danish Central Graben–Implications for hydrocarbon exploration and development. Geological Society, London, Special Publications, 509(1), 249–282. https://doi.org/10.1144/SP509‐2019‐126
    [Google Scholar]
  82. Smit, F. W. H., Van Buchem, F. S. P., Holst, J. H. C., Lüthje, M., Anderskouv, K., Thibault, N., Buijs, G. J. A., Welch, M. J., & Stemmerik, L. (2018). Seismic geomorphology and origin of diagenetic geobodies in the Upper Cretaceous Chalk of the North Sea Basin (Danish Central Graben). Basin Research, 30(5), 895–925. https://doi.org/10.1111/bre.12285
    [Google Scholar]
  83. Staudigel, P. T., & Swart, P. K. (2019). A diagenetic origin for isotopic variability of sediments deposited on the margin of Great Bahama Bank, insights from clumped isotopes. Geochimica et Cosmochimica Acta, 258, 97–119.
    [Google Scholar]
  84. Staudigel, P. T., Murray, S., Dunham, D., Frank, T., Fielding, C. R., & Swart, P. K. (2018). Cryogenic brines as diagenetic fluids: Reconstructing the alteration history of the Victoria Land Basin using clumped isotopes. Geochimica et Cosmochimica Acta, 224, 154–170.
    [Google Scholar]
  85. Stolper, D. A., & Eiler, J. M. (2015). The kinetics of solid‐state isotope‐exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples. American Journal of Science, 315(5), 363–411. https://doi.org/10.2475/05.2015.01
    [Google Scholar]
  86. Surlyk, F., Dons, T., Clausen, C. K., & Higham, J. (2003). Upper cretaceous. In The Millennium Atlas: Petroleum geology of the central and northern North Sea (pp. 213–233).
    [Google Scholar]
  87. Surlyk, F., Rasmussen, S. L., Boussaha, M., Schiøler, P., Schovsbo, N. H., Sheldon, E., Stemmerik, L., & Thibault, N. (2013). Upper Campanian‐Maastrichtian holostratigraphy of the eastern Danish Basin. Cretaceous Research, 46, 232–256.
    [Google Scholar]
  88. Swart, P. K., Cantrell, D. L., Arienzo, M. M., & Murray, S. T. (2016). Evidence for high temperature and 18 O‐enriched fluids in the Arab‐D of the Ghawar Field, Saudi Arabia. Sedimentology, 63, 1739–1752.
    [Google Scholar]
  89. Swart, P. K., Murray, S. T., Staudigel, P. T., & Hodell, D. A. (2019). Oxygen isotopic exchange between CO2 and phosphoric acid: Implications for the measurement of clumped isotopes in carbonates. Geochemistry, Geophysics, Geosystems, 20(7), 3730–3750.
    [Google Scholar]
  90. Tagliavento, M., John, C. M., & Stemmerik, L. (2019). Tropical temperature in the Maastrichtian Danish Basin: Data from coccolith Δ47 and δ18O. Geology, 47, 1074–1078. https://doi.org/10.1130/G46671.1
    [Google Scholar]
  91. Van Buchem, F. S. P., Smit, F. W. H., Buijs, G. J. A., Trudgill, B., & Larsen, P.‐H. (2018). Tectonostratigraphic framework and depositional history of the Cretaceous‐Danian succession of the Danish Central Graben (North Sea)—New light on a mature area. Geological Society, London, Petroleum Geology Conference Series, 8(1), 9–46. https://doi.org/10.1144/PGC8.24
    [Google Scholar]
  92. Van der Molen, A. S., van Heel, H. D., & Wong, T. E. (2005). The influence of tectonic regime on chalk deposition: Examples of the sedimentary development and 3D‐seismic stratigraphy of the Chalk Group in the Netherlands offshore area. Basin Research, 17(1), 63–81. https://doi.org/10.1111/j.1365‐2117.2005.00261.x
    [Google Scholar]
  93. Van Der Voet, E. V. A., Heijnen, L., & Reijmer, J. J. (2019). Geological evolution of the Chalk Group in the northern Dutch North Sea: Inversion, sedimentation and redeposition. Geological Magazine, 156(7), 1265–1284. https://doi.org/10.1017/S0016756818000572
    [Google Scholar]
  94. Vejbæk, O., & Andersen, C. (2002). Post mid‐cretaceous inversion tectonics in the Danish Central Graben—Regionally synchronous tectonic events?Bulletin of the Geological Society of Denmark, 49, 139–144. https://doi.org/10.37570/bgsd‐2003‐49‐11
    [Google Scholar]
  95. Vejbæk, O. V., Frykman, P., Bech, N., & Nielsen, C. M. (2005). The history of hydrocarbon filling of Danish chalk fields. In Petroleum geology: North‐West Europe and global perspectives ‒ Proceedings of the 6th petroleum geology conference (pp. 1331–1345). Geological Society of London.
    [Google Scholar]
  96. Wagner, H. (2014). Tove acoustic inversion. In Maersk oil in‐house report GST QI geophysics.
  97. Wrona, T., Magee, C., Jackson, C. A., Huuse, M., & Taylor, K. G. (2017). Kinematics of polygonal fault systems: Observations from the northern North Sea. Frontiers in Earth Science, 5, 101. https://doi.org/10.3389/feart.2017.00101
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12662
Loading
/content/journals/10.1111/bre.12662
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): burial compaction; clumped isotope analysis; diagenesis; effective stress; North Sea

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error