1887
Volume 34, Issue 4
  • E-ISSN: 1365-2117

Abstract

[Abstract

Although being one of the most efficient tools to constrain the stratigraphy of sedimentary basins, detrital zircon geochronology may present limitations under certain conditions, and isotopic ages should be treated with caution before assigning a depositional age. This is the case of depositional environments that lack coeval volcanism, where there may exist a significant time gap between the age of the youngest detrital zircon available and the actual time of deposition of a sedimentary rock. In this paper, we put on a comprehensive analysis in which detrital geochronology is aided with other reliable geological constraints. As a case study, we evaluate the stratigraphic age and provenance of the Lapataia Formation from the Fuegian Andes of southernmost South America, a low‐grade metamorphic unit with a problematic stratigraphic definition in the context of the Rocas Verdes basin. Detrital ages show very wide age spectra, with a younger peak at ca. 267 Ma. However, based on detailed petrography and microstructural observations, as well as stratigraphic correlations at a regional scale, we conclude that the Lapataia Formation represents the earliest stages of Jurassic rifting during the opening of the Rocas Verdes basin. Erosion from older basement blocks in an environment lacking coeval volcanic activity explains the occurrence of Paleozoic and older grains, and the lack of younger zircons. This work offers a multifaceted approach, which may be essential to assist radiometric detrital geochronology at certain stages during basin evolution.

,

Deposition of the Lapataia Formation took place in the absence of coeval volcanism at the earliest stages of rifting of the Rocas Verdes basin. Thus, there is a significant time gap between the youngest detrital zircon age and the actual age of sedimentation.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12664
2022-07-16
2024-04-24
Loading full text...

Full text loading...

References

  1. Acevedo, R. D. (1988). Estudios geológicos areales y petroestructurales en el Complejo Deformado de los Andes Fueguinos (247 p.). Tesis de Doctor, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.
    [Google Scholar]
  2. Barbeau, D. L., Jr., Gombosi, D. J., Zahid, K. M., Bizimis, M., Swanson‐Hysell, N., Valencia, V., & Gehrels, G. E. (2009). U‐Pb zircon constraints on the age and provenance of the Rocas Verdes basin fill, Tierra del Fuego, Argentina. Geochemistry, Geophysics, Geosystems, 10, Q12001. https://doi.org/10.1029/2009gc002749
    [Google Scholar]
  3. Barbeau, D. L., Jr., Olivero, E. B., Swanson‐Hysell, N. L., Zahid, K. M., Murray, K. E., & Gehrels, G. E. (2009). Detrital‐zircon geochronology of the eastern Magallanes foreland basin: implications for Eocene kinematics of the northern Scotia Arc and Drake Passage. Earth and Planetary Science Letters, 284, 489–503.
    [Google Scholar]
  4. Borrello, A. (1972). Cordillera Fueguina, Geología Regional Argentina (pp. 741–754). Academia Nacional de Ciencias.
    [Google Scholar]
  5. Bruhn, R. L. (1979). Rock structures formed during back‐arc basin deformation in the Andes of Tierra del Fuego. Geological Society of America Bulletin, 90, 998–1012. https://doi.org/10.1130/0016‐7606(1979)90<998:RSFDBB>2.0.CO;2
    [Google Scholar]
  6. Bruhn, R. L., Stern, C. R., & de Wit, M. J. (1978). Field and geochemical data bearing on the development of a Mesozoic volcano‐tectonic rift zone and back‐arc basin in southernmost South America. Earth and Planetary Science Letters, 41, 32–46. https://doi.org/10.1016/0012‐821X(78)90039‐0
    [Google Scholar]
  7. Calderón, M., Fildani, A., Hervé, F., Fanning, C. M., Weislogel, A., & Cordani, U. (2007). Late Jurassic bimodal magmatism in the northern sea‐floor remnant of the Rocas Verdes basin, southern Patagonian Andes. Journal of the Geological Society, London, 164, 1011–1022. https://doi.org/10.1144/0016‐76492006‐102
    [Google Scholar]
  8. Calderón, M., Fosdick, J. C., Warren, C., Massonne, H. J., Fanning, C. M., Cury, L. F., Schwanethal, J., Fonseca, P. E., Galaz, G., Gaytán, D., & Hervé, F. (2012). The low‐grade Canal de las Montañas Shear Zone and its role in the tectonic emplacement of the Sarmiento Ophiolitic Complex and Late Cretaceous Patagonian Andes orogeny, Chile. Tectonophysics, 524–525, 165–185. https://doi.org/10.1016/j.tecto.2011.12.034
    [Google Scholar]
  9. Calderón, M., Hervé, F., Fuentes, F., Fosdick, J. C., Sepúlveda, F., & Galaz, G. (2016). Tectonic evolution of paleozoic and mesozoic andean metamorphic Complexes and the Rocas Verdes ophiolites in southern Patagonia. In M. C.Ghiglione (Ed.), Geodynamic evolution of the Southernmost Andes: Connections with the Scotia Arc (pp. 7–36). Springer International Publishing.
    [Google Scholar]
  10. Caminos, R., Haller, M. J., Lapido, O., Lizuain, A., Page, R., & Ramos, V. (1981). Reconocimiento geológico de los Andes Fueguinos. Territorio Nacional de Tierra del Fuego. Actas VIII Congreso Geológico Argentino, San Luis, pp. 759–786.
  11. Cao, S. J. (2019). Estructura y estratigrafía del Jurásico Superior‐Cretácico entre el Canal Beagle y el Lago Fagnano, Tierra del Fuego, Argentina. PhD thesis, Departamento de Geología, Universidad Nacional del Sur, Bahía Blanca. p. 313.
    [Google Scholar]
  12. Cao, S. J., Torres Carbonell, P. J., & Dimieri, L. V. (2018). Structural and petrographic constraints on the stratigraphy of the Lapataia Formation, with implications for the tectonic evolution of the Fuegian Andes. Journal of South American Earth Sciences, 84, 223–241. https://doi.org/10.1016/j.jsames.2018.04.002
    [Google Scholar]
  13. Cao, S. J., Torres Carbonell, P. J., Frisicale, M. C., & Dimieri, L. V. (2015). Evidencias meso y microestructurales de una faja milonítica regional en el Monte Olivia, Tierra del Fuego: implicancias para la evolución tectónica de los Andes Fueguinos. In V.García, F.Bechis, R.Giacosa, L.Giambiagi, & D.Orts (Eds.), XVI Reunión de Tectónica, Acta de resúmenes (pp. 126–127). Universidad Nacional de Río Negro.
    [Google Scholar]
  14. Castillo, P., Fanning, C. M., Pankhurst, R. J., Hervé, F., & Rapela, C. W. (2017). Zircon O‐ and Hf‐isotope constraints on the genesis and tectonic significance of Permian magmatism in Patagonia. Journal of the Geological Society, 174, 803–816. https://doi.org/10.1144/jgs2016‐152
    [Google Scholar]
  15. Cawood, P. A., Hawkesworth, C. J., & Dhuime, B. (2012). Detrital zircon record and tectonic setting. Geology, 40, 875–878. https://doi.org/10.1130/G32945.1
    [Google Scholar]
  16. Copeland, P. (2020). On the use of geochronology of detrital grains in determining the time of deposition of clastic sedimentary strata. Basin Research, 32(6), 1532–1546. https://doi.org/10.1111/bre.12441
    [Google Scholar]
  17. Coutts, D. S., Matthews, W. A., & Hubbard, S. M. (2019). Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geoscience Frontiers, 10(4), 1421–1435. https://doi.org/10.1016/j.gsf.2018.11.002
    [Google Scholar]
  18. Cunningham, W. D. (1995). Orogenesis at the southern tip of the Americas: The structural evolution of the Cordillera Darwin metamorphic complex, southernmost Chile. Tectonophysics, 244, 197–229. https://doi.org/10.1016/0040‐1951(94)00248‐8
    [Google Scholar]
  19. Dalziel, I. W. D. (1986). Collision and Cordilleran orogenesis: An Andean perspective. Geological Society, London, Special Publications, 19, 389–404. https://doi.org/10.1144/gsl.sp.1986.019.01.22
    [Google Scholar]
  20. Dalziel, I. W. D., & Cortés, R. (1972). Tectonic style of the southernmost Andes and the Antarctandes. XXIV International Geological Congress, 3, 316–327.
    [Google Scholar]
  21. Dalziel, I. W. D., de Wit, M. J., & Palmer, K. F. (1974). Fossil marginal basin in the southern Andes. Nature, 250, 291–294. https://doi.org/10.1038/250291a0
    [Google Scholar]
  22. Dalziel, I. W. D., Macdonald, D. I. M., Stone, P., & Storey, B. C. (2021). South Georgia microcontinent: Displaced fragment of the southernmost Andes. Earth‐Science Reviews, 220, 103671. https://doi.org/10.1016/j.earscirev.2021.103671
    [Google Scholar]
  23. Dalziel, I. W. D., & Palmer, K. F. (1979). Progressive deformation and orogenic uplift at the southern extremity of the Andes. Geological Society of America Bulletin, 90, 259–280. https://doi.org/10.1130/0016‐7606(1979)90<259:PDAOUA>2.0.CO;2
    [Google Scholar]
  24. Davis, D. W., Williams, I. S., & Krogh, T. E. (2003). Historical development of zircon geochronology. Reviews in Mineralogy and Geochemistry, 53(1), 145–181. https://doi.org/10.2113/0530145
    [Google Scholar]
  25. Dickinson, W. R., & Gehrels, G. E. (2009). Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288, 115–125. https://doi.org/10.1016/j.epsl.2009.09.013
    [Google Scholar]
  26. Fettes, D., & Desmons, J. (2007). Metamorphic rocks: A classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the systematics of metamorphic rocks (p. 256). Cambridge University Press.
    [Google Scholar]
  27. Gehrels, G. (2012). Detrital zircon U‐Pb geochronology: Current methods and new opportunities. In C.Busby & A.Azor (Eds.), Tectonics of sedimentary basins: Recent advances (pp. 47–62). Blackwell Publishing Ltd.
    [Google Scholar]
  28. Gehrels, G., Giesler, D., Olsen, P., Kent, D., Marsh, A., Parker, W., Rasmussen, C., Mundil, R., Irmis, R., Geissman, J., & Lepre, C. (2020). LA‐ICPMS U‐Pb geochronology of detrital zircon grains from the Coconino, Moenkopi, and Chinle Formations in the Petrified Forest National Park (Arizona). Geochronology, 2, 257–282. https://doi.org/10.5194/gchron‐2‐257‐2020
    [Google Scholar]
  29. Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation‐multicollector‐inductively coupled plasma–mass spectrometry. Geochemistry Geophysics Geosystems, 9, 3. https://doi.org/10.1029/2007GC001805
    [Google Scholar]
  30. Gombosi, D. J., Barbeau, D. L., Jr., & Garver, J. I. (2009). New thermochronometric constraints on the rapid Palaeogene exhumation of the Cordillera Darwin complex and related thrust sheets in the Fuegian Andes. Terra Nova, 21, 507–515. https://doi.org/10.1111/j.1365‐3121.2009.00908.x
    [Google Scholar]
  31. González Guillot, M., Urraza, I., Acevedo, R. D., & Escayola, M. (2016). Magmatismo básico jurásico‐cretácico en los Andes Fueguinos y su relación con la Cuenca Marginal Rocas Verdes. Revista de la Asociación Geológica Argentina, 73, 1–22.
    [Google Scholar]
  32. Halpern, M. (1973). Regional Geochronology of Chile South of 50° Latitude. Geological Society of America Bulletin, 84, 2407–2422. https://doi.org/10.1130/0016‐7606(1973)84<2407:RGOCSO>2.0.CO;2
    [Google Scholar]
  33. Hanson, B., & Wilson, T. (1991). Submarine rhyolitic volcanism in a Jurassic proto‐marginal basin, southern Andes, Chile and Argentina. In R.Harmon & C.Rapela (Eds.), Andean magmatism and its tectonic setting, Geologic Society of America Special Paper (pp. 13–27). Geological Society of America.
    [Google Scholar]
  34. Hawkesworth, C., Cawood, P., Kemp, T., Storey, C., & Dhuime, B. (2009). A matter of preservation. Science, 323, 49–50. https://doi.org/10.1126/science.1168549
    [Google Scholar]
  35. Hervé, F., Calderón, M., Fanning, C. M., Kraus, S., & Pankhurst, R. J. (2010). SHRIMP chronology of the Magallanes Basin basement, Tierra del Fuego: Cambrian plutonism and Permian high‐grade metamorphism. Andean Geology, 37, 253–275.
    [Google Scholar]
  36. Hervé, F., Fanning, C. M., & Pankhurst, R. J. (2003). Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile. Journal of South American Earth Sciences, 16(1), 107–123. https://doi.org/10.1016/s0895‐9811(03)00022‐1
    [Google Scholar]
  37. Hervé, F., Fanning, C. M., Pankhurst, R. J., Mpodozis, C., Klepeis, K., Calderón, M., & Thomson, S. N. (2010). Detrital zircon SHRIMP U‐Pb age study of the Cordillera Darwin Metamorphic Complex of Tierra del Fuego: Sedimentary sources and implications for the evolution of the Pacific margin of Gondwana. Journal of the Geological Society, 167, 555–568. https://doi.org/10.1144/0016‐76492009‐124
    [Google Scholar]
  38. Hervé, F., Nelson, E., Kawashita, K., & Suárez, M. (1981). New isotopic ages and the timing of orogenic events in the Cordillera Darwin, southernmost Chilean Andes. Earth and Planetary Science Letters, 55, 257–265. https://doi.org/10.1016/0012‐821X(81)90105‐9
    [Google Scholar]
  39. Hervé, F., Pankhurst, R. J., Fanning, C. M., Calderón, M., & Yaxley, G. M. (2007). The South Patagonian batholith: 150 my of granite magmatism on a plate margin. Lithos, 97, 373–394. https://doi.org/10.1016/j.lithos.2007.01.007
    [Google Scholar]
  40. Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation‐inductively coupled plasma‐mass spectrometry to in situ U‐Pb zircon geochronology. Chemical Geology, 211(1–2), 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    [Google Scholar]
  41. Johnson, C. (1990). Antecedentes estratigráficos de la ribera Sur del Seno Almirantazgo. Tesis de Geólogo, Universidad de Chile.
    [Google Scholar]
  42. Klepeis, K. A. (1994). Relationship between uplift of the metamorphic core of the southernmost Andes and shortening in the Magallanes foreland fold and thrust belt, Tierra del Fuego, Chile. Tectonics, 13, 882–904. https://doi.org/10.1029/94tc00628
    [Google Scholar]
  43. Klepeis, K. A., Betka, P., Clarke, G., Fanning, M., Hervé, F., Rojas, L., Mpodozis, C., & Thomson, S. (2010). Continental underthrusting and obduction during the Cretaceous closure of the Rocas Verdes rift basin, Cordillera Darwin, Patagonian Andes. Tectonics, 29, TC3014. https://doi.org/10.1029/2009tc002610
    [Google Scholar]
  44. Kohn, M. J., Spear, F. S., & Dalziel, I. W. D. (1993). Metamorphic P‐T Paths from Cordillera Darwin, a Core Complex in Tierra del Fuego, Chile. Journal of Petrology, 34, 519–542. https://doi.org/10.1093/petrology/34.3.519
    [Google Scholar]
  45. Kohn, M. J., Spear, F. S., Harrison, T. M., & Dalziel, I. W. D. (1995). 40Ar/39Ar geochronology and P‐T‐t paths from the Cordillera Darwin metamorphic complex, Tierra del Fuego, Chile. Journal of Metamorphic Geology, 13, 251–270. https://doi.org/10.1111/j.1525‐1314.1995.tb00217.x
    [Google Scholar]
  46. Kranck, E. H. (1932). Geological investigations in the Cordillera of Tierra del Fuego. Acta Geographica Societas Geographica Fenniae, 4, 1–231.
    [Google Scholar]
  47. Lovecchio, J. P., Naipauer, M., Cayo, L. E., Rohais, S., Giunta, D., Flores, G., Gerster, R., Bolatti, N. D., Joseph, P., Valencia, V., & Ramos, V. A. (2019). Rifting evolution of the Malvinas basin, offshore Argentina: new constrains from zircon U‐Pb geochronology and seismic characterization. Journal of South American Earth Sciences, 95, 102253. https://doi.org/10.1016/j.jsames.2019.102253
    [Google Scholar]
  48. Ludwing, K. R. (2003). User's Manual Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel. Geochronology Center Special Publication 4. Berkeley.
    [Google Scholar]
  49. Maloney, K. T., Clarke, G. L., Klepeis, K. A., Fanning, C. M., & Wang, W. (2011). Crustal growth during back‐arc closure: Cretaceous exhumation history of Cordillera Darwin, southern Patagonia. Journal of Metamorphic Geology, 29, 649–672. https://doi.org/10.1111/j.1525‐1314.2011.00934.x
    [Google Scholar]
  50. McPhie, J., Doyle, M., & Allen, R. (1993). Volcanic textures. A guide to the interpretation of textures in Volcanic Rocks. Centre for ore deposit and exploration studies (198 p.). University of Tasmania.
    [Google Scholar]
  51. Mukasa, S. B., & Dalziel, I. W. D. (1996). Southernmost Andes and South Georgia Island, North Scotia Ridge: Zircon U‐Pb and muscovite 40Ar39Ar age constraints on tectonic evolution of Southwestern Gondwanaland. Journal of South American Earth Sciences, 9, 349–365. https://doi.org/10.1016/s0895‐9811(96)00019‐3
    [Google Scholar]
  52. Muller, V. A. P., Calderón, M., Fosdick, J. C., Ghiglione, M. C., Cury, L. F., Massone, H. J., Fanning, C. M., Warren, C. J., Ramírez de Arellano, C., & Sternai, P. (2021). The closure of the Rocas Verdes Basin and early tectono‐metamorphic evolution of the Magallanes Fold‐and‐Thrust Belt, southern Patagonian Andes (52–54°S). Tectonophysics, 798, 228686. https://doi.org/10.1016/j.tecto.2020.228686
    [Google Scholar]
  53. Nelson, E. P., Dalziel, I. W. D., & Milnes, A. G. (1980). Structural geology of the Cordillera Darwin—Collisional‐style orogenesis in the southernmost Chilean Andes. Eclogae Geologicae Helvetiae, 73, 727–751.
    [Google Scholar]
  54. Olivero, E. B., Acevedo, R. D., & Martinioni, D. R. (1997). Geología del Mesozoico de bahía Ensenada, Tierra del Fuego. Revista de la Asociación Geológica Argentina, 52, 169–179.
    [Google Scholar]
  55. Olivero, E. B., & Malumián, N. (2008). Mesozoic‐Cenozoic stratigraphy of the Fuegian Andes, Argentina. Geologica Acta, 6, 5–18.
    [Google Scholar]
  56. Olivero, E. B., & Martinioni, D. R. (1996a). Sedimentología de las Formaciones Lemaire y Yahgan (Jurásico‐Cretácico) en Tierra del Fuego. Actas XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, 2, 45–59.
    [Google Scholar]
  57. Olivero, E. B., & Martinioni, D. R. (1996b). Late Albian inoceramid bivalves from the Andes of Tierra del Fuego: Age implications for the closure of the Cretaceous Marginal Basin. Journal of Paleontology, 70, 272–274. https://doi.org/10.1017/S0022336000023349
    [Google Scholar]
  58. Olivero, E. B., & Martinioni, D. R. (2001). A review of the geology of the Argentinian Fuegian Andes. Journal of South American Earth Sciences, 14, 175–188. https://doi.org/10.1016/s0895‐9811(01)00016‐5
    [Google Scholar]
  59. Palotti, P., Menichetti, M., Cerredo, M. E., & Tassone, A. (2012). A new U‐Pb zircon age determination for the Lemaire Formation of Fuegian Andes, Tierra del Fuego, Argentina. Rendiconti Online Della Società Geologica Italiana, 22, 170–173.
    [Google Scholar]
  60. Pankhurst, R. J., Riley, T. R., Fanning, C. M., & Kelley, S. P. (2000). Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: Chronology of magmatism associated with the break‐up of Gondwana. Journal of Petrology, 41, 603–625. https://doi.org/10.1093/petrology/41.5.605
    [Google Scholar]
  61. Panza, J., Sacomani, L., & Cobos, J. (2002). Mapa geológico de la provincia de Santa Cruz. Escala 1:750.000. Servicio Geológico y Minero de Argentina.
    [Google Scholar]
  62. Petersen, C. (1949). Informe sobre los trabajos de relevamiento geológico efectuados en Tierra del Fuego entre 1945 y 1948. Dirección General de Industria y Minería Buenos Aires.
    [Google Scholar]
  63. Rossignol, C., Hallot, E., Bourquin, S., Poujol, M., Jolivet, M., Pellenard, P., Ducassou, C., Nalpas, T., Heilbronn, G., Yu, J., & Dabard, M. P. (2019). Using volcaniclastic rocks to constrain sedimentation ages: To what extent are volcanism and sedimentation synchronous?Sedimentary Geology, 381, 46–64. https://doi.org/10.1016/j.sedgeo.2018.12.010
    [Google Scholar]
  64. SERNAGEOMIN . (2003). Mapa Geológico de Chile. Escala 1:1.000.000. Servicio Nacional de Geología y Minería.
    [Google Scholar]
  65. Sharman, G. R., & Malkowski, M. A. (2020). Needles in a haystack: Detrital zircon U‐Pb ages and the maximum depositional age of modern global sediment. Earth‐Science Reviews, 203, 103109. https://doi.org/10.1016/j.earscirev.2020.103109
    [Google Scholar]
  66. Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., & Whitehouse, M. J. (2008). Plešovice zircon—A new natural reference material for U‐Pb and Hf isotopic microanalysis. Chemical Geology, 249(1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
    [Google Scholar]
  67. Stern, C. R., & De Wit, M. J. (2003). Rocas Verdes ophiolites, southernmost South America: Remnants of progressive stages of development of oceanic‐type crust in a continental margin back‐arc basin. Geological Society, London, Special Publications, 218, 665–683. https://doi.org/10.1144/gsl.sp.2003.218.01.32
    [Google Scholar]
  68. Suárez, M. (1977). Aspectos geoquímicos del Complejo Ofiolítico Tortuga en la Cordillera Patagónica del Sur, Chile. Revista Geológica de Chile, 4, 3–14.
    [Google Scholar]
  69. Suárez, M. (1979). A Late Mesozoic island arc in the southern Andes, Chile. Geological Magazine, 116, 181–190. https://doi.org/10.1017/s0016756800043594
    [Google Scholar]
  70. Suárez, M., Hervé, M., & Puig, G. (1985). Hoja Isla Hoste e islas adyacentes. XII Región. Carta Geológica de Chile 65. Escala 1:250.000. Servicio Nacional de Geología y Minería.
    [Google Scholar]
  71. Torres Carbonell, P. J., Cao, S. J., & Dimieri, L. V. (2017). Spatial and temporal characterization of progressive deformation during orogenic growth: Example from the Fuegian Andes, southern Argentina. Journal of Structural Geology, 99, 1–19. https://doi.org/10.1016/j.jsg.2017.04.003
    [Google Scholar]
  72. Torres Carbonell, P. J., Cao, S. J., González Guillot, M., Mosqueira González, V., Dimieri, L. V., Duval, F., & Scaillet, S. (2020). The Fuegian thrust‐fold belt: From arc‐continent collision to thrust‐related deformation in the southernmost Andes. Journal of South American Earth Sciences, 102, 102678. https://doi.org/10.1016/j.jsames.2020.102678
    [Google Scholar]
  73. Torres Carbonell, P. J., & Dimieri, L. V. (2013). Cenozoic contractional tectonics in the Fuegian Andes, southernmost South America: A model for the transference of orogenic shortening to the foreland. Geologica Acta, 11, 359–370. https://doi.org/10.1344/105.000001874
    [Google Scholar]
  74. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
    [Google Scholar]
  75. White, J. D. L., & Houghton, B. F. (2006). Primary volcaniclastic rocks. Geology, 34, 677–680. https://doi.org/10.1130/G22346.1
    [Google Scholar]
  76. Winn, J. R. D. (1978). Upper Mesozoic flysch of Tierra del Fuego and South Georgia Island: A sedimentologic approach to lithosphere plate restoration. GSA Bulletin, 89, 533–547. https://doi.org/10.1130/0016‐7606(1978)89<533:umfotd>2.0.co;2
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12664
Loading
/content/journals/10.1111/bre.12664
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error