1887
Volume 34, Issue 4
  • E-ISSN: 1365-2117

Abstract

[

We performed a measurement of the siliciclastic sediment volumes of the Pyrenean retro‐foreland basin—the Aquitaine Basin and the Bay of Biscay during Cenozoic times—for a better understanding of the erosion and the sediment transfer and deposition during the convergence (syn‐orogenic) to post‐convergence (post‐orogenic) periods of the Pyrenees Mountain.

, Abstract

Sediment accumulation rates in foreland basins result from a complex interplay between surface and deep processes in both the exhumed relief domain and sedimentary basins. The growth and decay of a mountain belt during orogenic and post‐orogenic phases have been largely studied, thanks to thermochronological and structural studies. The sedimentary response of the orogenic phases in the preserved sediments of the surrounding basins is well known in terms of sedimentary filling patterns and architecture, but much less better quantified. Here, we performed a measurement of the siliciclastic sediment volumes of the Pyrenean retro‐foreland basin—the Aquitaine Basin and the Bay of Biscay during Cenozoic times—for a better understanding of the erosion and the sediment transfer and deposition during the convergence (syn‐orogenic) to post‐convergence (post‐orogenic) periods of the Pyrenees Mountain. The measurement of the compacted siliciclastic sediment is based on sediment thickness (isopach) maps of known lithologies, derived from the interpretation of 40,000 kms of seismic profiles. Thanks to the siliciclastic sediment volumes quantification and a well‐known retro‐foreland basin tectono‐sedimentary evolution, we bring quantitative results as:

  1. The amount of preserved sediments is of 51,500 ± 16,800 km3 for the Cenozoic.
  2. The siliciclastic sediment rate curve during Cenozoic shows two major increases around 26.0 and 2.5 Ma. The 26.0 Ma increase is clearly related to the erosion of the Pyrenees of tectonic origin. The major 2.5 Ma one would be mainly related to a climatic forcing.
  3. The mass balance between the Aquitaine Platform and the deepest domains changes through time in favour of the deep domain. This might be explained by the ratio between subsidence that created accommodation space and the sediments feed by the mountain belt and stored in the Aquitaine Platform.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12665
2022-07-16
2022-08-18
Loading full text...

Full text loading...

References

  1. Al Reda, S. M., Barbarand, J., Gautheron, C., Lasseur, E., Loget, N., Pinna‐Jamme, R., & Briais, J. (2021). Thermal record of the building of an orogen in the retro‐foreland basin: Insight from basement and detrital thermochronology in the eastern Pyrenees and the north Pyrenean basin (France). Basin Research, 33(5), 2763–2791. https://doi.org/10.1111/bre.12583
    [Google Scholar]
  2. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment. John Wiley & Sons.
    [Google Scholar]
  3. Angrand, P., Ford, M., & Watts, A. B. (2018). Lateral variations in foreland flexure of a rifted continental margin: The Aquitaine Basin (SW France). Tectonics, 37, 430–449. https://doi.org/10.1002/2017TC004670
    [Google Scholar]
  4. Arche, A., Evans, G., & Clavell, E. (2013). Some considerations on the initiation of the present SE Ebro river drainage system: Post‐or pre‐Messinian?Ene, 13, 10.
    [Google Scholar]
  5. Armitage, J. J., Allen, P. A., Burgess, P. M., Hampson, G. J., Whittaker, A. C., Duller, R. A., & Michael, N. A. (2015). Sediment transport model for the Eocene Escanilla sediment‐routing system: Implications for the uniqueness of sequence stratigraphic architectures. Journal of Sedimentary Research, 85, 1510–1524. https://doi.org/10.2110/jsr.2015.97
    [Google Scholar]
  6. Babault, J., Loget, N., Van Den Driessche, J., Castelltort, S., Bonnet, S., & Davy, P. (2006). Did the Ebro basin connect to the Mediterranean before the Messinian salinity crisis?Geomorphology, 81(1–2), 155–165. https://doi.org/10.1016/j.geomorph.2006.04.004
    [Google Scholar]
  7. Babault, J., Van Den Driessche, J., Bonnet, S., Castelltort, S., & Crave, A. (2005). Origin of the highly elevated Pyrenean peneplain. Tectonics, 24(2). https://doi.org/10.1029/2004TC001697
    [Google Scholar]
  8. Beamud, E., Muñoz, J. A., Fitzgerald, P. G., Baldwin, S. L., Garcés, M., Cabrera, L., & Metcalf, J. R. (2011). Magnetostratigraphy and detrital apatite fission track thermochronology in syntectonic conglomerates: Constraints on the exhumation of the South‐Central Pyrenees. Basin Research, 23(3), 309–331. https://doi.org/10.1111/j.1365‐2117.2010.00492.x
    [Google Scholar]
  9. Beaumont, C. (1981). Foreland basins. Geophysical Journal International, 65, 291–329. https://doi.org/10.1111/j.1365‐246X.1981.tb02715.x
    [Google Scholar]
  10. Beaumont, C., Fullsack, P., & Hamilton, J. (1992). Erosional control of active compressional orogens. In K.McClay (Ed.), Thrust tectonics (pp. 1–18). Chapman & Hall.
    [Google Scholar]
  11. Bosch, G. V., Teixell, A., Jolivet, M., Labaume, P., Stockli, D., Domènech, M., & Monié, P. (2016). Timing of Eocene‐Miocene thrust activity in the Western Axial Zone and Chainons Béarnais (west‐central Pyrenees) revealed by multi‐method thermochronology. Comptes Rendus Geoscience, 348, 246–256.
    [Google Scholar]
  12. Bosch, G. V., Van Den Driessche, J., Babault, J., Robert, A., Carballo, A., Le Carlier, C., Loget, N., Prognon, C., Wyns, R., & Baudin, T. (2016). Peneplanation and lithosphere dynamics in the Pyrenees. Comptes Rendus Géoscience, 348(3–4), 194–202. https://doi.org/10.1016/j.crte.2015.08.005
    [Google Scholar]
  13. Braun, J. (2003). Pecube: A new finite‐element code to solve the 3D heat transport equation including the effects of a time‐varying, finite amplitude surface topography. Computers & Geosciences, 29(6), 787–794. https://doi.org/10.1016/S0098‐3004(03)00052‐9
    [Google Scholar]
  14. Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Glotzbach, C., Pedersen, V., Perry, C., Simon‐Labric, T., & Prigent, C. (2012). Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, 524, 1–28. https://doi.org/10.1016/j.tecto.2011.12.035
    [Google Scholar]
  15. Brocheray, S., Cremer, M., Zaragosi, S., Schmidt, S., Eynaud, F., Rossignol, L., & Gillet, H. (2014). 2000 years of frequent turbidite activity in the Capbreton Canyon (Bay of Biscay). Marine Geology, 347, 136–152.
    [Google Scholar]
  16. Brunet, M. F. (1984). Subsidence history of the Aquitaine basin determined from subsidence curves. Geological Magazine, 121(5), 421–428. https://doi.org/10.1017/S0016756800029952
    [Google Scholar]
  17. Brunet, M. F. (1994). Subsidence in the Parentis Basin (Aquitaine, France): Implications of the thermal evolution. In Hydrocarbon and petroleum geology of France (pp. 187–198). Springer.
    [Google Scholar]
  18. Burbank, D. W., & Anderson, R. S. (2009). Tectonic geomorphology. John Wiley & Sons.
    [Google Scholar]
  19. Calvet, M., Delmas, M., Gunnell, Y., Braucher, R., & Bourlès, D. (2011). Recent advances in research on Quaternary glaciations in the Pyrenees. Developments in Quaternary Sciences, 15, 127–139.
    [Google Scholar]
  20. Clerc, C., Lagabrielle, Y., Labaume, P., Ringenbach, J.‐C., Vauchez, A., Nalpas, T., Bousquet, R., Ballard, J.‐F., Lahfid, A., & Fourcade, S. (2016). Basement‐Cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the Northeastern Pyrenean analog. Tectonophysics, 686, 82–97. https://doi.org/10.1016/j.tecto.2016.07.022
    [Google Scholar]
  21. Clerc, C., Lagabrielle, Y., Neumaier, M., Reynaud, J. Y., & de Saint Blanquat, M. (2012). Exhumation of subcontinental mantle rocks: evidence from ultramafic‐bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees. Bulletin de la Société Géologique de France, 183(5), 443–459. https://doi.org/10.2113/gssgfbull.183.5.443
    [Google Scholar]
  22. Clift, P. D. (2006). Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth and Planetary Science Letters, 241, 571–580. https://doi.org/10.1016/j.epsl.2005.11.028
    [Google Scholar]
  23. Costa, E., Garces, M., López‐Blanco, M., Beamud, E., Gómez‐Paccard, M., & Larrasoaña, J. C. (2010). Closing and continentalization of the South Pyrenean foreland basin (NE Spain): magnetochronological constraints. Basin Research, 22(6), 904–917. https://doi.org/10.1111/j.1365‐2117.2009.00452.x
    [Google Scholar]
  24. Cremer, M. (1983). Approches sédimentologique et géophysique des accumulations turbiditiques: l'éventail profond du Cap‐Ferret (Golfe de Gascogne), la série des grès d'Annot (Alpes‐de‐Haute‐Provence) 1 Thèse, Université de Bordeaux.
    [Google Scholar]
  25. DeFelipe, I., Pedreira, D., Pulgar, J. A., Van der Beek, P. A., Bernet, M., & Pik, R. (2019). Unraveling the Mesozoic and Cenozoic tectonothermal evolution of the eastern Basque‐Cantabrian zone–western Pyrenees by low‐temperature thermochronology. Tectonics, 38(9), 3436–3461. https://doi.org/10.1029/2019TC005532
    [Google Scholar]
  26. Delmas, M., Calvet, M., Gunnell, Y., Braucher, R., & Bourlès, D. (2011). Palaeogeography and 10Be exposure‐age chronology of Middle and Late Pleistocene glacier systems in the northern Pyrenees: implications for reconstructing regional palaeoclimates. Palaeogeography, Palaeoclimatology, Palaeoecology, 305(1–4), 109–122. https://doi.org/10.1016/j.palaeo.2011.02.025
    [Google Scholar]
  27. Delmas, M., Gunnell, Y., Braucher, R., Calvet, M., & Bourlès, D. (2008). Exposure age chronology of the last glaciation in the eastern Pyrenees. Quaternary Research, 69(2), 231–241. https://doi.org/10.1016/j.yqres.2007.11.004
    [Google Scholar]
  28. Desegaulx, P. A. S. C. A. L., & Brunet, M. F. (1990). Tectonic subsidence of the Aquitaine basin since Cretaceous times. Bulletin de la Société Géologique de France, 6(2), 295–306. https://doi.org/10.2113/gssgfbull.VI.2.295
    [Google Scholar]
  29. Dubreuilh, J., Capdeville, J. P., Farjanel, G., Karnay, G., Platel, J. P., & Simon‐Coinçon, R. (1995). Dynamique d’un comblement continental néogène et quaternaire: l'exemple du bassin d'Aquitaine. Géologie de la France, 4, 3–26.
    [Google Scholar]
  30. Ducoux, M., Jolivet, L., Cagnard, F., & Baudin, T. (2021). Basement‐cover decoupling during the inversion of a hyperextended basin: Insights from the Eastern Pyrenees. Tectonics, 40(5), e2020TC006512. https://doi.org/10.1029/2020TC006512
    [Google Scholar]
  31. Ducoux, M., Jolivet, L., Callot, J.‐P., Aubourg, C., Masini, E., Lahfid, A., Homonnay, E., Cagnard, F., Gumiaux, C., & Baudin, T. (2019). The Nappe des Marbres unit of the Basque‐Cantabrian Basin: The tectono‐thermal evolution of a fossil hyperextended rift basin. Tectonics, 38(11), 3881–3915. https://doi.org/10.1029/2018TC005348
    [Google Scholar]
  32. Dupéron‐Laudoueneix, M., & Pons, D. (1985). Nouvelle étude de Mesembrioxylon libanoticum Edwards (Conifère du Mésozoïque supérieur); intérêts paléogéographique, biostratigraphique et paléoclimatique. Plant Biosystems, 119, 151–166.
    [Google Scholar]
  33. Einsele, G. (2000). Sedimentary basins: Evolution, facies, and sediment budget. Springer Science & Business Media.
    [Google Scholar]
  34. England, P. (1981). Metamorphic pressure estimates and sediment volumes for the Alpine orogeny: An independent control on geobarometers?Earth and Planetary Science Letters, 56, 387–397. https://doi.org/10.1016/0012‐821X(81)90142‐4
    [Google Scholar]
  35. Fabriès, J., Lorand, J. P., & Bodinier, J. L. (1998). Petrogenetic evolution of orogenic lherzolite massifs in the central and western Pyrenees. Tectonophysics, 292(1–2), 145–167. https://doi.org/10.1016/S0040‐1951(98)00055‐9
    [Google Scholar]
  36. Fabriès, J., Lorand, J. P., Bodinier, J. L., & Dupuy, C. (1991). Evolution of the upper mantle beneath the Pyrenees: evidence from orogenic spinel lherzolite massifs. Journal of Petrology, 2, 55–76. https://doi.org/10.1093/petrology/Special_Volume.2.55
    [Google Scholar]
  37. Filleaudeau, P.‐Y. (2011). Croissance et dénudation des Pyrénées du Crétacé supérieur au Paléogène : Apports de l'analyse de bassin et thermochronométrie détritique. Sciences de la Terre. Université Pierre et Marie Curie ‐ Paris VI.
    [Google Scholar]
  38. Fillon, C., Mouthereau, F., Calassou, S., Pik, R., Bellahsen, N., Gautheron, C., Stockli, D., Brichau, S., Daril, N., Mouchené, M., & van der Beek, P. (2021). Post‐orogenic exhumation in the western Pyrenees: Evidence for extension driven by pre‐orogenic inheritance. Journal of the Geological Society, 178(2), jgs2020‐079. https://doi.org/10.1144/jgs2020‐079
    [Google Scholar]
  39. Fillon, C., Pedreira, D., Van Der Beek, P. A., Huismans, R. S., Barbero, L., & Pulgar, J. A. (2016). Alpine exhumation of the central Cantabrian mountains, northwest Spain. Tectonics, 35, 339–356. https://doi.org/10.1002/2015TC004050
    [Google Scholar]
  40. Fillon, C., & van der Beek, P. (2012). Post‐orogenic evolution of the southern Pyrenees: Constraints from inverse thermo‐kinematic modelling of low‐temperature thermochronology data. Basin Research, 24, 418–436. https://doi.org/10.1111/j.1365‐2117.2011.00533.x
    [Google Scholar]
  41. Fitzgerald, P. G., Muñoz, J. A., Coney, P. J., & Baldwin, S. L. (1999). Asymmetric exhumation across the Pyrenean orogen: Implications for the tectonic evolution of a collisional orogen. Earth and Planetary Science Letters, 173, 157–170. https://doi.org/10.1016/S0012‐821X(99)00225‐3
    [Google Scholar]
  42. Ford, M., Hemmer, L., Vacherat, A., Gallagher, K., & Christophoul, F. (2016). Retro‐wedge foreland basin evolution along the ECORS line, eastern Pyrenees, France. Journal of the Geological Society, 173(3), 419–437. https://doi.org/10.1144/jgs2015‐129
    [Google Scholar]
  43. Foreman, B. Z., Heller, P. L., & Clementz, M. T. (2012). Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary. Nature, 491(7422), 92–95.
    [Google Scholar]
  44. Gallagher, K., Charvin, K., Nielsen, S., Sambridge, M., & Stephenson, J. (2009). Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems. Marine and Petroleum Geology, 26(4), 525–535. https://doi.org/10.1016/j.marpetgeo.2009.01.003
    [Google Scholar]
  45. Gallastegui, J., Pulgar, J. A., & Gallart, J. (2002). Initiation of an active margin at the North Iberian continent‐ocean transition. Tectonics, 21, 11–15. https://doi.org/10.1029/2001TC901046
    [Google Scholar]
  46. Galloway, W. E., Whiteaker, T. L., & Ganey‐Curry, P. (2011). History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere, 7, 938–973. https://doi.org/10.1130/GES00647.1
    [Google Scholar]
  47. Galloway, W. E., & Williams, T. A. (1991). Sediment accumulation rates in time and space: Paleogene genetic stratigraphic sequences of the northwestern Gulf of Mexico basin. Geology, 19, 986–989. https://doi.org/10.1130/0091‐7613(1991)019<0986:SARITA>2.3.CO;2
    [Google Scholar]
  48. Garcia‐Castellanos, D., & Larrasoaña, J. C. (2015). Quantifying the post‐tectonic topographic evolution of closed basins: The Ebro basin (northeast Iberia). Geology, 43(8), 663–666. https://doi.org/10.1130/G36673.1
    [Google Scholar]
  49. Garcia‐Castellanos, D., Vergés, J., Gaspar‐Escribano, J., & Cloetingh, S. (2003). Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). Journal of Geophysical Research: Solid Earth, 108(B7). https://doi.org/10.1029/2002JB002073
    [Google Scholar]
  50. Garzanti, E. (2019). The Himalayan Foreland Basin from collision onset to the present: A sedimentary–petrology perspective. Geological Society, London, Special Publications, 483(1), 65–122. https://doi.org/10.1144/SP483.17
    [Google Scholar]
  51. Gibson, M., Sinclair, H. D., Lynn, G. J., & Stuart, F. M. (2007). Late‐to post‐orogenic exhumation of the Central Pyrenees revealed through combined thermochronological data and modelling. Basin Research, 19(3), 323–334. https://doi.org/10.1111/j.1365‐2117.2007.00333.x
    [Google Scholar]
  52. Gómez, M., Vergés, J., & Riaza, C. (2002). Inversion tectonics of the northern margin of the Basque Cantabrian Basin. Bulletin de la Société Géologique de France, 173, 449–459. https://doi.org/10.2113/173.5.449
    [Google Scholar]
  53. Goodbred, S. L., Jr., & Kuehl, S. A. (2000). The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges‐Brahmaputra delta. Sedimentary Geology, 133(3–4), 227–248. https://doi.org/10.1016/S0037‐0738(00)00041‐5
    [Google Scholar]
  54. Guillocheau, F., Brault, N., Thomas, E., Barbarand, J., Bonnet, S., Bourquin, S., Estéoule‐Choux, J., Guennoc, P., Menier, D., Neraudeau, D., Proust, J.‐N., & Wyns, R. (2003). Histoire géologique du Massif armoricain depuis 140 Ma (Crétacé‐Actuel). Bulletin d'Information des Géologues du Bassin de Paris, 40(1), 13–28.
    [Google Scholar]
  55. Guillocheau, F., Rouby, D., Robin, C., Helm, C., Rolland, N., Carlier, L. E., & Braun, J. (2012). Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: A new method applied to the Namibia‐South Africa margin. Basin Research, 24, 3–30. https://doi.org/10.1111/j.1365‐2117.2011.00511.x
    [Google Scholar]
  56. Gunnell, Y., Calvet, M., Brichau, S., Carter, A., Aguilar, J. P., & Zeyen, H. (2009). Low long‐term erosion rates in high‐energy mountain belts: Insights from thermo‐and biochronology in the Eastern Pyrenees. Earth and Planetary Science Letters, 278(3–4), 208–218. https://doi.org/10.1016/j.epsl.2008.12.004
    [Google Scholar]
  57. Hay, W. W., Shaw, C. A., & Wold, C. N. (1989). Mass‐balanced paleogeographic reconstructions. Geologische Rundschau, 78, 207–242. https://doi.org/10.1007/BF01988362
    [Google Scholar]
  58. Hay, W. W., & Wold, C. N. (1990). Relation of selected mineral deposits to the mass/age distribution of Phanerozoic sediments. Geologische Rundschau, 79, 495–512. https://doi.org/10.1007/BF01830641
    [Google Scholar]
  59. Herman, F., & Champagnac, J.‐D. (2016). Plio‐Pleistocene increase of erosion rates in mountain belts in response to climate change. Terra Nova, 28, 2–10. https://doi.org/10.1111/ter.12186
    [Google Scholar]
  60. Herman, F., Seward, D., Valla, P. G., Carter, A., Kohn, B., Willett, S. D., & Ehlers, T. A. (2013). Worldwide acceleration of mountain erosion under a cooling climate. Nature, 504(7480), 423–426.
    [Google Scholar]
  61. Hinderer, M. (2012). From gullies to mountain belts: A review of sediment budgets at various scales. Sedimentary Geology, 280, 21–59. https://doi.org/10.1016/j.sedgeo.2012.03.009
    [Google Scholar]
  62. Iglesias, J. (2009). Sedimentation on the cantabrian continental margin from late oligocene to quaternary. PhD thesis.
  63. Jammes, S., Manatschal, G., Lavier, L., & Masini, E. (2009). Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics, 28(4). https://doi.org/10.1029/2008TC002406
    [Google Scholar]
  64. Jolivet, M., Labaume, P., Monié, P., Brunel, M., Arnaud, N., & Campani, M. (2007). Thermochronology constraints for the propagation sequence of the south Pyrenean basement thrust system (France‐Spain). Tectonics, 26(5). https://doi.org/10.1029/2006TC002080
    [Google Scholar]
  65. Ketcham, R. A. (2005). Forward and inverse modeling of low‐temperature thermochronometry data. Reviews in Mineralogy and Geochemistry, 58(1), 275–314. https://doi.org/10.2138/rmg.2005.58.11
    [Google Scholar]
  66. Kuhlemann, J. (2000). Post‐collisional sediment budget of circum‐Alpine basins (Central Europe). Memorie di Scienze Geologiche Università di Padova, 52, 1–91.
    [Google Scholar]
  67. Kuhlemann, J., Frisch, W., Székely, B., Dunkl, I., & Kázmér, M. (2002). Post‐collisional sediment budget history of the Alps: tectonic versus climatic control. International Journal of Earth Sciences, 91, 818–837. https://doi.org/10.1007/s00531‐002‐0266‐y
    [Google Scholar]
  68. Labaume, P., Meresse, F., Jolivet, M., & Teixell, A. (2016). Exhumation sequence of the basement thrust units in the west‐central Pyrenees. Constraints from apatite fission track analysis. Geogaceta, 60, 11–14.
    [Google Scholar]
  69. Lagabrielle, Y., & Bodinier, J. L. (2008). Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova, 20(1), 11–21. https://doi.org/10.1111/j.1365‐3121.2007.00781.x
    [Google Scholar]
  70. Lagabrielle, Y., Labaume, P., & de Saint Blanquat, M. (2010). Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics, 29. https://doi.org/10.1029/2009TC002588
    [Google Scholar]
  71. Leroux, E., Rabineau, M., Aslanian, D., Gorini, C., Molliex, S., Bache, F., & Suc, J. P. (2017). High‐resolution evolution of terrigenous sediment yields in the Provence Basin during the last 6 Ma: relation with climate and tectonics. Basin Research, 29(3), 305–339.
    [Google Scholar]
  72. Macchiavelli, C., Vergés, J., Schettino, A., Fernàndez, M., Turco, E., Casciello, E., Torne, M., Pierantoni, P. P., & Tunini, L. (2017). A new southern North Atlantic isochron map: Insights into the drift of the Iberian plate since the Late Cretaceous. Journal of Geophysical Research: Solid Earth, 122, 9603–9626. https://doi.org/10.1002/2017JB014769
    [Google Scholar]
  73. Masini, E., Manatschal, G., Tugend, J., Mohn, G., & Flament, J.‐M. (2014). The tectono‐sedimentary evolution of a hyper‐extended rift basin: The example of the Arzacq‐Mauléon rift system (Western Pyrenees, SW France). International Journal of Earth Sciences, 103, 1569–1596. https://doi.org/10.1007/s00531‐014‐1023‐8
    [Google Scholar]
  74. Maurel, O., Monie, P., Pik, R., Arnaud, N., Brunel, M., & Jolivet, M. (2008). The Meso‐Cenozoic thermo‐tectonic evolution of the Eastern Pyrenees: An 40 Ar/39 Ar fission track and (U–Th)/He thermochronological study of the Canigou and Mont‐Louis massifs. International Journal of Earth Sciences, 97(3), 565–584. https://doi.org/10.1007/s00531‐007‐0179‐x
    [Google Scholar]
  75. Metcalf, J. R., Fitzgerald, P. G., Baldwin, S. L., & Muñoz, J. A. (2009). Thermochronology of a convergent orogen: Constraints on the timing of thrust faulting and subsequent exhumation of the Maladeta Pluton in the Central Pyrenean Axial Zone. Earth and Planetary Science Letters, 287(3–4), 488–503. https://doi.org/10.1016/j.epsl.2009.08.036
    [Google Scholar]
  76. Métivier, F., Gaudemer, Y., Tapponnier, P., & Klein, M. (1999). Mass accumulation rates in Asia during the Cenozoic. Geophysical Journal International, 137, 280–318. https://doi.org/10.1046/j.1365‐246X.1999.00802.x
    [Google Scholar]
  77. Michael, N. A., Carter, A., Whittaker, A. C., & Allen, P. A. (2014). Erosion rates in the source region of an ancient sediment routing system: Comparison of depositional volumes with thermochronometric estimates. Journal of the Geological Society of London, 171, 401–412. https://doi.org/10.1144/jgs2013‐108
    [Google Scholar]
  78. Michael, N. A., Whittaker, A. C., & Allen, P. A. (2013). The functioning of sediment routing systems using a mass balance approach: Example from the Eocene of the southern Pyrenees. The Journal of Geology, 121, 581–606. https://doi.org/10.1086/673176
    [Google Scholar]
  79. Michael, N. A., Whittaker, A. C., Carter, A., & Allen, P. A. (2014). Volumetric budget and grain‐size fractionation of a geological sediment routing system: Eocene Escanilla Formation, south‐central Pyrenees. Geological Society of America Bulletin, 126, 585–599. https://doi.org/10.1130/B30954.1
    [Google Scholar]
  80. Molnar, P. (2004). Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates?Annual Review of Earth and Planetary Sciences, 32, 67–89. https://doi.org/10.1146/annurev.earth.32.091003.143456
    [Google Scholar]
  81. Molnar, P., & England, P. (1990). Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?Nature, 346, 29–34. https://doi.org/10.1038/346029a0
    [Google Scholar]
  82. Molnar, P., & Lyon‐Caen, H. (1988). Some simple physical aspects of the support, structure, and evolution of mountain belts. Processes in Continental Lithospheric Deformation, 218, 179–207.
    [Google Scholar]
  83. Mouchené, M., van der Beek, P., Mouthereau, F., & Carcaillet, J. (2017). Controls on Quaternary incision of the Northern Pyrenean foreland: Chronological and geomorphological constraints from the Lannemezan megafan, SW France. Geomorphology, 281, 78–93. https://doi.org/10.1016/j.geomorph.2016.12.027
    [Google Scholar]
  84. Mouthereau, F., Filleaudeau, P.‐Y., Vacherat, A., Pik, R., Lacombe, O., Fellin, M. G., Castelltort, S., Christophoul, F., & Masini, E. (2014). Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics, 33(12), 2283–2314. https://doi.org/10.1002/2014TC003663
    [Google Scholar]
  85. Muñoz, J. A. (1992). Evolution of a continental collision belt: ECORS‐Pyrenees crustal balanced cross‐section. In Thrust tectonics (pp. 235–246). Springer.
    [Google Scholar]
  86. Najman, Y., & Garzanti, E. (2000). Reconstructing early Himalayan tectonic evolution and paleogeography from Tertiary foreland basin sedimentary rocks, northern India. Geological Society of America Bulletin, 112(3), 435–449. https://doi.org/10.1130/0016‐7606(2000)112<435:REHTEA>2.0.CO;2
    [Google Scholar]
  87. Nelson, C. H. (1990). Estimated post‐Messinian sediment supply and sedimentation rates on the Ebro continental margin, Spain. Marine Geology, 95(3–4), 395–418. https://doi.org/10.1016/0025‐3227(90)90126‐5
    [Google Scholar]
  88. Ortiz, A., Guillocheau, F., Lasseur, E., Briais, J., Robin, C., Serrano, O., & Fillon, C. (2020). Sediment routing system and sink preservation during the post‐orogenic evolution of a retro‐foreland basin: The case example of the North Pyrenean (Aquitaine, Bay of Biscay) Basins. Marine and Petroleum Geology, 112, 104085. https://doi.org/10.1016/j.marpetgeo.2019.104085
    [Google Scholar]
  89. Pedreira, D., Afonso, J. C., Pulgar, J. A., Gallastegui, J., Carballo, A., Fernàndez, M., Garcia‐Castellanos, D., Jiménez‐Munt, I., Semprich, J., & Garcia‐Moreno, O. (2015). Geophysical‐petrological modeling of the lithosphere beneath the Cantabrian Mountains and the North‐Iberian margin: Geodynamic implications. Lithos, 230, 46–68. https://doi.org/10.1016/j.lithos.2015.04.018
    [Google Scholar]
  90. Roest, W. R., & Srivastava, S. P. (1991). Kinematics of the plate boundaries between Eurasia, Iberia, and Africa in the North Atlantic from the Late Cretaceous to the present. Geology, 19, 613–616. https://doi.org/10.1130/0091‐7613(1991)019<0613:KOTPBB>2.3.CO;2
    [Google Scholar]
  91. Roure, F., Choukroune, P., Berastegui, X., Munoz, J. A., Villien, A., Matheron, P., Bareyt, M., Seguret, M., Camara, P., & Deramond, J. (1989). ECORS deep seismic data and balanced cross sections: Geometric constraints on the evolution of the Pyrenees. Tectonics, 8(1), 41–50. https://doi.org/10.1029/TC008i001p00041
    [Google Scholar]
  92. Saspiturry, N., Razin, P., Baudin, T., Serrano, O., Issautier, B., Lasseur, E., Allanic, C., Thinon, I., & Leleu, S. (2019). Symmetry vs. asymmetry of a hyper‐thinned rift: Example of the Mauléon Basin (Western Pyrenees, France). Marine and Petroleum Geology, 104, 86–105. https://doi.org/10.1016/j.marpetgeo.2019.03.031
    [Google Scholar]
  93. Schettino, A., & Turco, E. (2011). Tectonic history of the western Tethys since the Late Triassic. Geological Society of America Bulletin, 123(1–2), 89–105. https://doi.org/10.1130/B30064.1
    [Google Scholar]
  94. Schlunegger, F., Melzer, J., & Tucker, G. (2001). Climate, exposed source‐rock lithologies, crustal uplift and surface erosion: A theoretical analysis calibrated with data from the Alps/North Alpine Foreland Basin system. International Journal of Earth Sciences, 90(3), 484–499. https://doi.org/10.1007/s005310100174
    [Google Scholar]
  95. Schlunegger, F., & Mosar, J. (2011). The last erosional stage of the Molasse Basin and the Alps. International Journal of Earth Sciences, 100(5), 1147–1162. https://doi.org/10.1007/s00531‐010‐0607‐1
    [Google Scholar]
  96. Schlunegger, F., & Norton, K. P. (2015). Climate vs. tectonics: The competing roles of Late Oligocene warming and Alpine orogenesis in constructing alluvial megafan sequences in the North Alpine foreland basin. Basin Research, 27(2), 230–245. https://doi.org/10.1111/bre.12070
    [Google Scholar]
  97. Schmid, S. M., Pfiffner, O. A., Froitzheim, N., Schönborn, G., & Kissling, E. (1996). Geophysical‐geological transect and tectonic evolution of the Swiss‐Italian Alps. Tectonics, 15(5), 1036–1064. https://doi.org/10.1029/96TC00433
    [Google Scholar]
  98. Serrano, O. (2001). Le Crétacé Supérieur‐Paléogène du Bassin Compressif Nord‐Pyrénéen (Bassin de l’Adour). Sédimentologie, Stratigraphie, Géodynamique. Université Rennes 1.
    [Google Scholar]
  99. Serrano, O., Guillocheau, F., & Leroy, E. (2001). Évolution du bassin compressif Nord‐Pyrénéen au Paléogène (bassin de l'Adour): contraintes stratigraphiques. Comptes Rendus de l'Académie des Sciences‐Series IIA‐Earth and Planetary Science, 332(1), 37–44.
    [Google Scholar]
  100. Sinclair, H. D., Gibson, M., Naylor, M., & Morris, R. G. (2005). Asymmetric growth of the Pyrenees revealed through measurement and modeling of orogenic fluxes. American Journal of Science, 305, 369–406. https://doi.org/10.2475/ajs.305.5.369
    [Google Scholar]
  101. Sztrákos, K., Gély, J. P., Blondeau, A., & Muller, C. (1998). L'Eocène du Bassin sud‐aquitain: Lithostratigraphie, biostratigraphie et analyse séquentielle. Géologie de la France, 4, 57–105.
    [Google Scholar]
  102. Sztrákos, K., & Steurbaut, E. (2017). Révision lithostratigraphique et biostratigraphique de l'Oligocène d'Aquitaine occidentale (France). Geodiversitas, 39(4), 741–781. https://doi.org/10.5252/g2017n4a6
    [Google Scholar]
  103. Teixell, A. (1998). Crustal structure and orogenic material budget in the west central Pyrenees. Tectonics, 17(3), 395–406. https://doi.org/10.1029/98TC00561
    [Google Scholar]
  104. Ternois, S., Odlum, M., Ford, M., Pik, R., Stockli, D., Tibari, B., Vacherat, A., & Bernard, V. (2019). Thermochronological evidence of early orogenesis, eastern Pyrenees, France. Tectonics, 38, 1308–1336. https://doi.org/10.1029/2018TC005254
    [Google Scholar]
  105. Thinon, I. (1999). Structure profonde de la marge nord‐Gascogne et du bassin armoricain. Brest.
    [Google Scholar]
  106. Thinon, I., Fidalgo‐González, L., Réhault, J.‐P., & Olivet, J.‐L. (2001). Déformations pyrénéennes dans le golfe de Gascogne. Comptes Rendus de l'Académie des Sciences—Series IIA—Earth and Planetary Science, 332, 561–568. https://doi.org/10.1016/S1251‐8050(01)01576‐2
    [Google Scholar]
  107. Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., & Thinon, I. (2014). Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay‐Pyrenees. Tectonics, 33(7), 1239–1276. https://doi.org/10.1002/2014TC003529
    [Google Scholar]
  108. Vacherat, A., Mouthereau, F., Pik, R., Bellahsen, N., Gautheron, C., Bernet, M., Daudet, M., Balansa, J., Tibari, B., Pinna Jamme, R., & Radal, J. (2016). Rift‐to‐collision transition recorded by tectonothermal evolution of the northern Pyrenees. Tectonics, 35(4), 907–933. https://doi.org/10.1002/2015TC004016
    [Google Scholar]
  109. Vacherat, A., Mouthereau, F., Pik, R., Bernet, M., Gautheron, C., Masini, E., Le Pourhiet, L., Tibari, B., & Lahfid, A. (2014). Thermal imprint of rift‐related processes in orogens as recorded in the Pyrenees. Earth and Planetary Science Letters, 408, 296–306. https://doi.org/10.1016/j.epsl.2014.10.014
    [Google Scholar]
  110. Van Rooij, D., Iglesias, J., Hernández‐Molina, F. J., Ercilla, G., Gomez‐Ballesteros, M., Casas, D., Llave, E., De Hauwere, A., Garcia‐Gil, S., Acosta, J., & Henriet, J.‐P. (2010). The Le Danois Contourite Depositional System: Interactions between the Mediterranean outflow water and the upper Cantabrian slope (North Iberian margin). Marine Geology, 274, 1–20. https://doi.org/10.1016/j.margeo.2010.03.001
    [Google Scholar]
  111. Vergés, J., Fernàndez, M., & Martìnez, A. (2002). The Pyrenean orogen: Pre‐, syn‐, and post‐collisional evolution. Journal of the Virtual Explorer, 8, 55–74. https://doi.org/10.3809/jvirtex.2002.00058
    [Google Scholar]
  112. Waldner, M., Bellahsen, N., Mouthereau, F., Bernet, M., Pik, R., Rosenberg, C. L., & Balvay, M. (2021). Central Pyrenees mountain building: constraints from new LT thermochronological data from the Axial Zone. Tectonics, 40(3), e2020TC006614. https://doi.org/10.1029/2020TC006614
    [Google Scholar]
  113. Watts, A. B. (2001). Isostasy and flexure of the lithosphere. Cambridge University Press.
    [Google Scholar]
  114. Watts, A. B., & Torné, M. (1992). Crustal structure and the mechanical properties of extended continental lithosphere in the Valencia trough (western Mediterranean). Journal of the Geological Society, 149(5), 813–827. https://doi.org/10.1144/gsjgs.149.5.0813
    [Google Scholar]
  115. Whipple, K. X. (2009). The influence of climate on the tectonic evolution of mountain belts. Nature Geoscience, 2, 97–104. https://doi.org/10.1038/ngeo413
    [Google Scholar]
  116. Whitchurch, A. L., Carter, A., Sinclair, H. D., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Sediment routing system evolution within a diachronously uplifting orogen: Insights from detrital zircon thermochronological analyses from the South‐Central Pyrenees. American Journal of Science, 311(5), 442–482. https://doi.org/10.2475/05.2011.03
    [Google Scholar]
  117. Willett, S. D. (1999). Orogeny and orography: the effects of erosion on the structure of mountain belts. Journal of Geophysical Research: Solid Earth, 104(B12), 28957–28981. https://doi.org/10.1029/1999JB900248
    [Google Scholar]
  118. Wold, C. N., & Hay, W. W. (1990). Estimating ancient sediment fluxes. American Journal of Science, 290, 1069–1089. https://doi.org/10.2475/ajs.290.9.1069
    [Google Scholar]
  119. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693. https://doi.org/10.1126/science.1059412
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12665
Loading
/content/journals/10.1111/bre.12665
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): accumulation rates; Aquitaine Basin; Bay of Biscay; Cenozoic; Pyrenees; retro‐foreland
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error