1887
Volume 34, Issue 4
  • E-ISSN: 1365-2117

Abstract

[Abstract

Thorough understanding of seabed fluid flow system is of great significance to geohazard identification and hydrocarbon exploration as it can reshape the seabed and act as an indicator of subsurface hydrocarbon resources. For the first time, an integrated study of side‐scan sonar, single‐ and multi‐channel seismic data and magnetic data reveals a complex fluid flow system composed of various seafloor expressions (i.e. pockmarks and mounds) and shallow fluid migration pathways in the central‐west Bohai Sea off northeast China. Gas chimneys, mud diapirs and a dense network of Quaternary faults are the main fluid migration pathways in the shallow subsurface. The gas chimneys can be classified into three categories (Type A formed by relatively rapid gas escape, Type B formed by episodic fluid expulsion and Type C formed by fluid escape from mud diapirs), based on their distribution and seismic character, implying variability in the formation processes. Sediment remobilization and basement‐involved faults contribute to deep fluid migration into shallow depths. As a seal for up‐moving fluids, the nature and thickness of Holocene marine sediments generally decide the permeability and overburden pressure that may control the distribution of pockmarks and mounds since they are almost distributed above relatively thin Holocene deposits (thickness <20 m) and localized coarse surface sediments. The results of the interpretation gain an improved understanding of the geological processes controlling the genesis and spatial distribution of gas chimney formation and show the significance of gas chimney classification. The distribution pattern of different types of gas chimneys may signify the difference of geological background and fluid flow process, like fluid migration through faults or flow of mobilized sediments, that is crucial for the evaluation of global petroleum systems and Carbon Capture and Storage studies.

,

The Bohai Sea hosts a complex fluid flow system composed of various seafloor expressions and shallow fluid migration pathways (gas chimneys, mud diapirs, and dense Quaternary faults). Gas chimneys are classified into three types based on their distribution and seismic character, implying variability in formation processes.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12666
2022-07-16
2024-04-25
Loading full text...

Full text loading...

References

  1. Allen, M., Macdonald, D., Xun, Z., Vincent, S., & Brouet‐Menzies, C. (1997). Early Cenozoic two‐phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China. Marine and Petroleum Geology, 14, 951–972. https://doi.org/10.1016/S0264‐8172(97)00027‐5
    [Google Scholar]
  2. Andresen, K. (2012). Fluid flow features in hydrocarbon plumbing systems: What do they tell us about the basin evolution?Marine Geology, 332–334, 89–108. https://doi.org/10.1016/j.margeo.2012.07.006
    [Google Scholar]
  3. Andresen, K., Clausen, O., & Jorgensen, R. (2010). A composite mud volcano system in the Chalk Group of the North Sea Central Graben. Journal of the Geological Society, 167, 1209–1224. https://doi.org/10.1144/0016‐76492010‐037
    [Google Scholar]
  4. Arntsen, B., Wensaas, L., Løseth, H., & Hermanrud, C. (2007). Seismic modeling of gas chimneys. Geophysics, 72, SM251–SM259. https://doi.org/10.1190/1.2749570
    [Google Scholar]
  5. Bachu, S. (2000). Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change. Energy Conversion and Management, 41, 953–970. https://doi.org/10.1016/S0196‐8904(99)00149‐1
    [Google Scholar]
  6. Benjamin, U., Huuse, M., & Hodgetts, D. (2015). Canyon‐confined pockmarks on the western Niger Delta slope. Journal of African Earth Sciences, 107, 15–27. https://doi.org/10.1016/j.jafrearsci.2015.03.019
    [Google Scholar]
  7. Berndt, C. (2005). Focused fluid flow on continental margins. Philosophical Transactions. Series A, Mathematical, Physical and Engineering Sciences, 363, 2855–2871.
    [Google Scholar]
  8. Brown, K. (1990). The nature of hydrogeologic significance of mud diapirs and diatremes for accretionary systems. Journal of Geophysical Research, 95, 8969–8982.
    [Google Scholar]
  9. Callow, B., Bull, J. M., Provenzano, G., Böttner, C., Birinci, H., Robinson, A. H., Henstock, T. J., Minshull, T. A., Bayrakci, G., Lichtschlag, A., Roche, B., Yilo, N., Gehrmann, R., Karstens, J., Falcon‐Suarez, I. H., & Berndt, C. (2021). Seismic chimney characterisation in the North Sea—Implications for pockmark formation and shallow gas migration. Marine and Petroleum Geology, 133, 105301. https://doi.org/10.1016/j.marpetgeo.2021.105301
    [Google Scholar]
  10. Cartwright, J., Aplin, A., & Huuse, M. (2007). Seal bypass system. AAPG Bulletin, 91, 1141–1166.
    [Google Scholar]
  11. Cartwright, J., Kirkham, C., Foschi, M., Hodgson, N., Rodriguez, K., & James, D. (2021). Quantitative reconstruction of pore‐pressure history in sedimentary basins using fluid escape pipes. Geology, 49, 576–580. https://doi.org/10.1130/G48406.1
    [Google Scholar]
  12. Cartwright, J., & Santamarina, C. (2015). Seismic characteristics of fluid escape pipes in sedimentary basins: Implications for pipe genesis. Marine and Petroleum Geology, 65, 126–140. https://doi.org/10.1016/j.marpetgeo.2015.03.023
    [Google Scholar]
  13. Cathles, L., Su, Z., & Chen, D. (2010). The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration. Marine and Petroleum Geology, 27, 82–91. https://doi.org/10.1016/j.marpetgeo.2009.09.010
    [Google Scholar]
  14. Chen, S., Sun, Q., Lu, K., Hovland, M., Li, R., & Luo, P. (2017). Anomalous depressions in the northern Yellow Sea Basin: Evidences for their evolution processes. Marine and Petroleum Geology, 84, 179–194. https://doi.org/10.1016/j.marpetgeo.2017.03.030
    [Google Scholar]
  15. Chen, X., Li, S., Dong, Y., Pang, X., Wang, Z., Ren, M., & Zhang, H. (2016). Characteristics and genetic mechanisms of offshore natural gas in the Nanpu Sag, Bohai Bay Basin, eastern China. Organic Geochemistry, 94, 68–82. https://doi.org/10.1016/j.orggeochem.2016.01.011
    [Google Scholar]
  16. Chen, Y., Deng, B., & Zhang, J. (2020). Shallow gas in the Holocene mud wedge along the inner East China Sea shelf. Marine and Petroleum Geology, 114, 104233. https://doi.org/10.1016/j.marpetgeo.2020.104233
    [Google Scholar]
  17. Cheng, C., Jiang, T., Kuang, Z., Yang, C., Zhang, C., He, Y., Cheng, Z., Tian, D., & Xiong, P. (2020). Characteristics of gas chimneys and their implications on gas hydrate accumulation in the Shenhu area, northern South China Sea. Journal of Natural Gas Science and Engineering, 84, 103629. https://doi.org/10.1016/j.jngse.2020.103629
    [Google Scholar]
  18. Cheng, Y., Wu, Z., Lu, S., Li, X., Lin, C., Huang, Z., Su, W., Jiang, C., & Wang, S. (2018). Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China. Tectonophysics, 730, 11–28. https://doi.org/10.1016/j.tecto.2018.02.010
    [Google Scholar]
  19. Christodoulou, D., Papatheodorou, G., Ferentinos, G., & Masson, M. (2003). Active seepage in two contrasting pockmark fields in the Patras and Corinth gulfs, Greece. Geo‐Marine Letters, 23, 194–199. https://doi.org/10.1007/s00367‐003‐0151‐0
    [Google Scholar]
  20. Clausen, O. R., Andresen, K. J., Rasmussen, M. L., & Egholm, D. L. (2019). Discrete‐element modelling of hanging wall deformation along the D‐1 fault system, Danish North Sea, with implications for gas chimney interpretations. Journal of Structural Geology, 118, 250–264. https://doi.org/10.1016/j.jsg.2018.11.005
    [Google Scholar]
  21. Clayton, C., & Hay, S. (1994). Gas migration mechanisms from accumulation to surface. Bulletin of the Geological Society of Denmark, 41, 12–23. https://doi.org/10.37570/bgsd‐1995‐41‐03
    [Google Scholar]
  22. Cowley, R., & O'Brien, G. W. (2000). Identification and interpretation of leaking hydrocarbons using seismic data: A comparative montage of examples from the major fields in Australia's Northwest Shelf and Gippsland Basin. Journal of the Australian Petroleum Production & Exploration Association, 40, 119–150.
    [Google Scholar]
  23. Dai, L., Li, Q., Li, S., Guo, L., Somerville, L., Xu, L., Cao, X., & Suo, Y. (2015). Numerical modelling of stress fields and earthquakes jointly controlled by NE‐ and NW‐trending fault zones in the Central North China Block. Journal of Asian Earth Sciences, 114, 28–40. https://doi.org/10.1016/j.jseaes.2015.05.021
    [Google Scholar]
  24. Davies, R., & Stewart, S. A. (2005). Emplacement of giant mud volcanoes in the South Caspian Basin: 3D seismic reflection imaging of their root zones. Journal of the Geological Society, 162, 1–4. https://doi.org/10.1144/0016‐764904‐082
    [Google Scholar]
  25. De Beukelaer, S., Macdonald, I., Guinasso, N., & Murray, J. A. (2003). Distinct side‐scan sonar, RADARSAT SAR, and acoustic profiler signatures of gas and oil seeps on the Gulf of Mexico slope. Geo‐Marine Letters, 23, 177–186. https://doi.org/10.1007/s00367‐003‐0139‐9
    [Google Scholar]
  26. de Melo Goulart, J. P. D. M., & de Castro, D. L. (2021). Models of hydrocarbon traps associated with gas chimney in Parnaíba Basin (NE Brazil). Journal of South American Earth Sciences, 105, 102908. https://doi.org/10.1016/j.jsames.2020.102908
    [Google Scholar]
  27. Diez, R., Garcia‐Gil, S., Durán, R., & Vilas, F. (2007). Gas accumulations and their association with particle size distribution patterns in the Ría de Arousa seabed (Galicia, NW Spain): An application of discriminant analysis. Geo‐Marine Letters, 27, 89–102. https://doi.org/10.1007/s00367‐007‐0064‐4
    [Google Scholar]
  28. Donda, F., Civile, D., Forlin, E., Volpi, V., Zecchin, M., Gordini, E., Merson, B., & Santis, L. D. (2013). The northernmost Adriatic Sea: a potential location for CO2 geological storage?Marine and Petroleum Geology, 42, 148–159. https://doi.org/10.1016/j.marpetgeo.2012.10.006
    [Google Scholar]
  29. Dumke, I., Berndt, C., Crutchley, G., Krause, S., Liebetrau, V., Gay, A., & Couillard, M. (2014). Seal bypass at the Giant Gjallar Vent (Norwegian Sea): Indications for a new phase of fluid venting at a 56‐Ma‐old fluid migration system. Marine Geology, 351, 38–52. https://doi.org/10.1016/j.margeo.2014.03.006
    [Google Scholar]
  30. Dupré, S., Scalabrin, C., Grall, C., Henry, P., Sengor, A. M. C., Görür, N., Çağatay, M. N., & Geli, L. (2015). Tectonic and sedimentary controls on widespread gas emissions in the Sea of Marmara: Results from systematic, shipborne multibeam echo sounder water column imaging. Journal of Geophysical Research: Solid Earth, 120, 2891–2912.
    [Google Scholar]
  31. Ekwok, S. E., Akpan, A. E., & Kudamnya, E. A. (2020). Exploratory mapping of structures controlling mineralization in Southeast Nigeria using high resolution airborne magnetic data. Journal of African Earth Sciences, 162, 103700. https://doi.org/10.1016/j.jafrearsci.2019.103700
    [Google Scholar]
  32. Emeis, K., Brüchert, V., Currie, B., Endler, R., Ferdelman, T., Kiessling, A., Leipe, T., Noli‐Peard, K., Struck, U., & Vogt, T. (2004). Shallow gas in shelf sediments of the Namibian coastal upwelling ecosystem. Continental Shelf Research, 24, 627–642. https://doi.org/10.1016/j.csr.2004.01.007
    [Google Scholar]
  33. Eng, C., & Tsuji, T. (2019). Influence of faults and slumping on hydrocarbon migration inferred from 3D seismic attributes: Sanriku‐Oki forearc basin, northeast Japan. Marine and Petroleum Geology, 99, 175–189. https://doi.org/10.1016/j.marpetgeo.2018.10.013
    [Google Scholar]
  34. Fauria, K. E., & Rempel, A. W. (2011). Gas invasion into water‐saturated, unconsolidated porous media: Implications for gas hydrate reservoirs. Earth and Planetary Science Letters, 312, 188–193. https://doi.org/10.1016/j.epsl.2011.09.042
    [Google Scholar]
  35. Feenstra, E. J., Birgel, D., Heindel, K., Wehrmann, L. M., Jaramillo‐Vogel, D., Grobéty, B., Frank, N., Hancock, L. G., Van Rooij, D., Peckmann, J., & Foubert, A. (2020). Constraining the formation of authigenic carbonates in a seepage‐affected cold‐water coral mound by lipid biomarkers. Geobiology, 18, 185–206. https://doi.org/10.1111/gbi.12373
    [Google Scholar]
  36. Foote, R. S. (2007). Method helps find hydrocarbon areas aids optimum seismic survey planning. Oil and Gas Journal, 105, 35–40.
    [Google Scholar]
  37. Foucher, J. P., Dupré, S., Scalabrin, C., Feseker, T., Harmegnies, F., & Nouzé, H. (2010). Changes in seabed morphology, mud temperature and free gas venting at the Håkon Mosby Mud Volcano, offshore Northern Norway, over the time period 2003–2006. Geo‐Marine Letters, 30, 157–167. https://doi.org/10.1007/s00367‐010‐0193‐z
    [Google Scholar]
  38. Gay, A., Lopez, M., Cochonat, P., Séranne, M., Levaché, D., & Sermondadaz, G. (2006). Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene‐Miocene turbiditic palaeochannels in the Lower Congo Basin. Marine Geology, 226, 25–40. https://doi.org/10.1016/j.margeo.2005.09.018
    [Google Scholar]
  39. Gay, A., Mourgues, R., Berndt, C., Bureau, D., Planke, S., Laurent, D., Gautier, S., Lauer‐Leredde, C., & Loggia, D. (2012). Anatomy of a fluid pipe in the Norway Basin: Initiation, propagation and 3D shape. Marine Geology, 332–334, 75–88. https://doi.org/10.1016/j.margeo.2012.08.010
    [Google Scholar]
  40. Gong, S. Y., Mii, H. S., Wu, M. S., Lin, K. A., Wang, S. W., Chou, T. F., Chou, Y. W., Wu, J. C., & Wang, Y. R. (2010). Hydrocarbon‐derived carbonate cements of subsurface origin in the Vulcan Sub‐Basin, Timor Sea. Terrestrial Atmospheric and Oceanic Sciences, 21, 923–937. https://doi.org/10.3319/TAO.2010.01.14.01(TT)
    [Google Scholar]
  41. Gong, Z. S. (2004). Neotectonics and petroleum accumulation in offshore Chinese basins. Journal of China University of Geosciences, 29, 513–517 (in Chinese with English abstract).
    [Google Scholar]
  42. Gong, Z. S., Huang, L. F., & Chen, P. H. (2011). Neotectonic controls on petroleum accumulations offshore China. Journal of Petroleum Geology, 34, 5–27. https://doi.org/10.1111/j.1747‐5457.2011.00490.x
    [Google Scholar]
  43. Gong, Z., Zhu, W., & Chen, P. (2010). Revitalization of a mature oil‐bearing basin by a paradigm shift in the exploration concept. A case history of Bohai Bay, offshore China. Marine and Petroleum Geology, 27, 1011–1027. https://doi.org/10.1016/j.marpetgeo.2009.11.010
    [Google Scholar]
  44. Granli, J., Arntsen, B., Sollid, A., & Hilde, E. (1999). Imaging through gas‐filled sediments using marine shear‐wave data. Geophysics, 64, 668–677. https://doi.org/10.1190/1.1444576
    [Google Scholar]
  45. Hansen, J. P., Cartwright, J. A., Huuse, M., & Clausen, O. (2005). 3D seismic expression of fluid migration and mud remobilization on the Gjallar Ridge, offshore mid‐Norway. Basin Research, 17, 123–139. https://doi.org/10.1111/j.1365‐2117.2005.00257.x
    [Google Scholar]
  46. Hao, F., Zhou, X., Zhu, Y., & Yang, Y. (2009). Mechanisms for oil depletion and enrichment on the Shijiutuo uplift, Bohai Bay Basin, China. AAPG Bulletin, 93, 1015–1037. https://doi.org/10.1306/04140908156
    [Google Scholar]
  47. Hao, F., Zhou, X., Zhu, Y., Zou, H., Bao, X., & Kong, Q. (2009). Mechanisms of petroleum accumulation in the Bozhong sub‐basin, Bohai Bay Basin, China. Part 1: Origin and occurrence of crude oils. Marine and Petroleum Geology, 26, 1528–1542. https://doi.org/10.1016/j.marpetgeo.2008.09.005
    [Google Scholar]
  48. Hao, F., Zhou, X., Zhu, Y., Zou, H., & Yang, Y. (2010). Charging of oil fields surrounding the Shaleitian uplift from multiple source rock intervals and generative kitchens, Bohai Bay Basin, China. Marine and Petroleum Geology, 27, 1910–1926. https://doi.org/10.1016/j.marpetgeo.2010.07.005
    [Google Scholar]
  49. Hao, F., Zou, H., Gong, Z., & Deng, Y. (2007). Petroleum migration and accumulation in the Bozhong sub‐basin, Bohai Bay Basin, China: Significance of preferential petroleum migration pathways (PPMP) for the formation of large oilfields in lacustrine fault basins. Marine and Petroleum Geology, 24, 1–13. https://doi.org/10.1016/j.marpetgeo.2006.10.007
    [Google Scholar]
  50. Hao, T. Y., Zhu, Z. H., Zhang, M. H., Huang, X. X., Song, H. B., & Jiang, W. W. (2001). Alteration zone from the marine oil‐gas seepage and its geophysical detection methods. Chinese Journal of Geophysics, 44, 245–254 (in Chinese with English abstract).
    [Google Scholar]
  51. Hart, B., & Hamilton, T. (1993). High‐resolution acoustic mapping of shallow gas in unconsolidated sediments beneath the strait of Georgia, British Columbia. Geo‐Marine Letters, 13, 49–55. https://doi.org/10.1007/BF01204392
    [Google Scholar]
  52. Horozal, S., Bahk, J. J., Urgeles, R., Kim, G. Y., Cukur, D., Kim, S. P., Lee, G. H., Lee, S. H., Ryu, B. J., & Kim, J. H. (2017). Mapping gas hydrate and fluid flow indicators and modeling gas hydrate stability zone (GHSZ) in the Ulleung Basin, East (Japan) Sea: Potential linkage between the occurrence of mass failures and gas hydrate dissociation. Marine and Petroleum Geology, 80, 171–191. https://doi.org/10.1016/j.marpetgeo.2016.12.001
    [Google Scholar]
  53. Hovland, M., & Curzi, P. V. (1989). Gas seepage and assumed mud diapirism in the Italian central Adriatic Sea. Marine and Petroleum Geology, 6, 161–169. https://doi.org/10.1016/0264‐8172(89)90019‐6
    [Google Scholar]
  54. Hovland, M., & Judd, A. G. (1988). Seabed pockmarks and seepages: Impact on geology, biology and the marine environment. Graham & Trotman.
    [Google Scholar]
  55. Hovland, M., & Svensen, H. (2006). Submarine pingoes: Indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea. Marine Geology, 228, 15–23. https://doi.org/10.1016/j.margeo.2005.12.005
    [Google Scholar]
  56. Hsiao, L. Y., Graham, S. A., & Tilander, N. (2004). Seismic reflection imaging of a major strike‐slip fault zone in a rift system: Paleogene structure and evolution of the Tan‐Lu fault system, Liaodong Bay, Bohai, offshore China. AAPG Bulletin, 88, 71–97. https://doi.org/10.1306/09090302019
    [Google Scholar]
  57. Hu, L., Guo, Z., Feng, J., Yang, Z., & Fang, M. (2009). Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China. Marine Chemistry, 113, 197–211. https://doi.org/10.1016/j.marchem.2009.02.001
    [Google Scholar]
  58. Hu, S., O'Sullivan, P., Raza, A., & Kohn, B. (2001). Thermal history and tectonic subsidence of the Bohai Basin, Northern China: A Cenozoic rifted and local pull‐apart basin. Physics of the Earth and Planetary Interiors, 126, 221–235. https://doi.org/10.1016/S0031‐9201(01)00257‐6
    [Google Scholar]
  59. Huang, L., Liu, C. Y., Zhou, X. H., & Wang, Y. B. (2012). The important turning points during evolution of Cenozoic basin offshore the Bohai Sea: Evidence and regional dynamics analysis. Science China Earth Science, 55, 476–487. https://doi.org/10.1007/s11430‐011‐4359‐y
    [Google Scholar]
  60. Hurst, A., Scott, A., & Vigorito, M. (2011). Physical characteristics of sand injectites. Earth‐Science Reviews, 106, 215–246. https://doi.org/10.1016/j.earscirev.2011.02.004
    [Google Scholar]
  61. Hustoft, S., Bünz, S., & Mienert, J. (2010). Three‐dimensional seismic analysis of the morphology and spatial distribution of chimneys beneath the Nyegga pockmark field, offshore mid‐Norway. Basin Research, 22, 465–480. https://doi.org/10.1111/j.1365‐2117.2010.00486.x
    [Google Scholar]
  62. Huuse, M., Jackson, C., Rensbergen, P., Davies, R., Flemings, P., & Dixon, R. (2010). Subsurface sediment remobilization and fluid flow in sedimentary basins: An overview. Basin Research, 22, 342–360. https://doi.org/10.1111/j.1365‐2117.2010.00488.x
    [Google Scholar]
  63. Ismail, A., Ewida, H. F., Al‐Ibiary, M. G., Nazeri, S., Salama, N. S., Gammaldi, S., & Zollo, A. (2021). The detection of deep seafloor pockmarks, gas chimneys, and associated features with seafloor seeps using seismic attributes in the West offshore Nile Delta, Egypt. Exploration Geophysics, 52, 388–408. https://doi.org/10.1080/08123985.2020.1827229
    [Google Scholar]
  64. Judd, A. G., & Hovland, M. (2007). Seabed fluid flow: The impact on geology, biology and marine environment. Cambridge University Press.
    [Google Scholar]
  65. Kang, N., Yoo, D., Yi, B., & Park, S. (2016). Distribution and origin of seismic chimneys associated with gas hydrate using 2D multi‐channel seismic reflection and well log data in the Ulleung Basin, East Sea. Quaternary International, 392, 99–111. https://doi.org/10.1016/j.quaint.2015.08.002
    [Google Scholar]
  66. Karstens, J., & Berndt, C. (2015). Seismic chimneys in the Southern Viking Graben—Implications for palaeo fluid migration and overpressure evolution. Earth and Planetary Science Letters, 412, 88–100. https://doi.org/10.1016/j.epsl.2014.12.017
    [Google Scholar]
  67. Kim, Y.‐J., Cheong, S., Chun, J.‐H., Cukur, D., Kim, S.‐P., Kim, J.‐K., & Kim, B.‐Y. (2020). Identification of shallow gas by seismic data and AVO processing: Example from the southwestern continental shelf of the Ulleung Basin, East Sea, Korea. Marine and Petroleum Geology, 117, 104346. https://doi.org/10.1016/j.marpetgeo.2020.104346
    [Google Scholar]
  68. Kopf, A. (2002). Significance of mud volcanism. Reviews of Geophysics, 40, 1005. https://doi.org/10.1029/2000RG000093
    [Google Scholar]
  69. Lee, M. (2004). Elastic velocities of partially gas‐saturated unconsolidated sediments. Marine and Petroleum Geology, 21, 641–650. https://doi.org/10.1016/j.marpetgeo.2003.12.004
    [Google Scholar]
  70. Li, S., Zhao, G., Dai, L., Zhou, L., Liu, X., Suo, Y., & Santosh, M. (2012). Cenozoic faulting of the Bohai Bay Basin and its bearing on the destruction of the eastern North China Craton. Journal of Asian Earth Sciences, 47, 80–93. https://doi.org/10.1016/j.jseaes.2011.06.011
    [Google Scholar]
  71. Li, Z., Zuo, Y., Qiu, N., & Gao, J. (2017). Meso‐Cenozoic lithospheric thermal structure in the Bohai Bay Basin, eastern North China Craton. Geoscience Frontiers, 8, 977–987. https://doi.org/10.1016/j.gsf.2016.09.003
    [Google Scholar]
  72. Liang, C., Liu, C., Xie, X., Yu, X., He, Y., Su, M., Chen, H., Zhou, Z., Tian, D., Mi, H., Li, M., & Zhang, H. (2021). Basal shear zones of recurrent mass transport deposits serve as potential reservoirs for gas hydrates in the Central Canyon area, South China Sea. Marine Geology, 441, 106631. https://doi.org/10.1016/j.margeo.2021.106631
    [Google Scholar]
  73. Liang, J., Zhang, W., Lu, J. A., Wei, J., Kuang, Z., & He, Y. (2019). Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: Insights from site GMGS5‐W9‐2018. Marine Geology, 418, 106042. https://doi.org/10.1016/j.margeo.2019.106042
    [Google Scholar]
  74. Liang, Q., Xiao, X., Zhao, J., Zhang, W., Li, Y., Wu, X., Ye, J., Qin, X., Qiu, H., Liang, J., Lu, J., Dong, Y., Zhang, T., Xiong, Y., Jiang, W., & Guo, B. (2022). Geochemistry and sources of hydrate‐bound gas in the Shenhu area, northern south China sea: Insights from drilling and gas hydrate production tests. Journal of Petroleum Science and Engineering, 208, 109459. https://doi.org/10.1016/j.petrol.2021.109459
    [Google Scholar]
  75. Ligtenberg, J. (2005). Detection of fluid migration pathways in seismic data: Implications for fault seal analysis. Basin Research, 17, 141–153. https://doi.org/10.1111/j.1365‐2117.2005.00258.x
    [Google Scholar]
  76. Liu, B., Chen, J., Yang, L., Duan, M., Liu, S., Guan, Y., & Shu, P. (2021). Multi‐beam and seismic investigations of the active Haima cold seeps, northwestern South China Sea. Acta Oceanologica Sinica, 40, 183–197. https://doi.org/10.1007/s13131‐021‐1721‐6
    [Google Scholar]
  77. Liu, J., Wang, H., Wang, F., Qiu, J., Saito, Y., Lu, J., Zhou, L., Xu, G., Du, X., & Chen, Q. (2016). Sedimentary evolution during the last ~1.9 Ma near the western margin of the modern Bohai Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 451, 84–96. https://doi.org/10.1016/j.palaeo.2016.03.012
    [Google Scholar]
  78. Liu, L., Hao, T., Lü, C., You, Q., Pan, J., Wang, F., Xu, Y., Zhao, C., & Zhang, J. (2015). Crustal structure of Bohai Sea and adjacent area (North China) from two onshore–offshore wide‐angle seismic survey lines. Journal of Asian Earth Sciences, 98, 457–469. https://doi.org/10.1016/j.jseaes.2014.11.034
    [Google Scholar]
  79. Liu, Y., Cao, Q., & Zhang, Q. (2019). Distribution characteristics and main controlling factors of oil and gas in the Bohai Sea Area. Journal of Coastal Research, 98, 243–246. https://doi.org/10.2112/SI98‐060.1
    [Google Scholar]
  80. Løseth, H., Gading, M., & Wensaas, L. (2009). Hydrocarbon leakage interpreted on seismic data. Marine and Petroleum Geology, 26, 1304–1319. https://doi.org/10.1016/j.marpetgeo.2008.09.008
    [Google Scholar]
  81. Løseth, H., Wensaas, L., Arntsen, B., Hanken, N.‐M., Basire, C., & Graue, K. (2011). 1000 m long gas blow‐out pipes. Marine and Petroleum Geology, 28, 1047–1060.
    [Google Scholar]
  82. Løseth, H., Wensaas, L., Arntsen, B., & Hovland, M. (2003). Gas and fluid injection triggering shallow mud mobilization in the Hordaland Group, North Sea. Geological Society, London, Special Publications, 216, 139–157. https://doi.org/10.1144/GSL.SP.2003.216.01.10
    [Google Scholar]
  83. Macelloni, L., Lutken, C., Ingrassia, M., Emidio, M., & Pizzi, M. (2016). Mesoscale biogeophysical characterization of Woolsey Mound (northern Gulf of Mexico), a new attribute of natural marine hydrocarbon seeps architecture. Marine Geology, 380, 330–344. https://doi.org/10.1016/j.margeo.2016.03.016
    [Google Scholar]
  84. Machel, H. (1995). Magnetic mineral assemblages and magnetic contrasts in diagenetic environments—With implications for studies of palaeomagnetism, hydrocarbon migration and exploration. Geological Society, London, Special Publications, 98, 9–29. https://doi.org/10.1144/GSL.SP.1995.098.01.02
    [Google Scholar]
  85. Maestrelli, D., Iacopini, D., Jihad, A., Bond, C., & Bonini, M. (2017). Seismic and structural characterization of fluid escape pipes using 3D and partial stack seismic from the Loyal Field (Scotland, UK): A multiphase and repeated intrusive mechanism. Marine and Petroleum Geology, 88, 489–510. https://doi.org/10.1016/j.marpetgeo.2017.08.016
    [Google Scholar]
  86. Mazumdar, A., Peketi, A., Dewangan, P., Badesab, F., Ramprasad, T., Ramana, M., Patil, D., & Dayal, A. (2009). Shallow gas charged sediments off the Indian west coast: Genesis and distribution. Marine Geology, 267, 71–85. https://doi.org/10.1016/j.margeo.2009.09.005
    [Google Scholar]
  87. Meng, Q. R., Wu, G. L., Fan, L. G., & Wei, H. H. (2019). Tectonic evolution of early Mesozoic sedimentary basins in the North China block. Earth‐Science Reviews, 190, 416–438. https://doi.org/10.1016/j.earscirev.2018.12.003
    [Google Scholar]
  88. Nakajima, T., Kakuwa, Y., Yasudomi, Y., Itaki, T., Motoyama, I., Tomiyama, T., Machiyama, H., Katayama, H., Okitsu, O., Morita, S., Tanahashi, M., & Matsumoto, R. (2014). Formation of pockmarks and submarine canyons associated with dissociation of gas hydrates on the Joetsu Knoll, eastern margin of the Sea of Japan. Journal of Asian Earth Sciences, 90, 228–242. https://doi.org/10.1016/j.jseaes.2013.10.011
    [Google Scholar]
  89. O’Brien, G., Lisk, M., Duddy, I., Hamilton, J., Woods, P., & Cowley, R. (1999). Plate convergence, foreland development and fault reactivation: Primary controls on brine migration, thermal histories and trap breach in the Timor Sea, Australia. Marine and Petroleum Geology, 16, 533–560.
    [Google Scholar]
  90. Peng, J., Wei, A., Sun, Z., Chen, X., & Zhao, D. (2018). Sinistral strike slip of the Zhangjiakou‐Penglai Fault and its control on hydrocarbon accumulation in the northeast of Shaleitian Bulge, Bohai Bay Basin, East China. Petroleum Exploration and Development, 45, 215–226. https://doi.org/10.1016/S1876‐3804(18)30025‐9
    [Google Scholar]
  91. Petersen, C. J., Bünz, S., Hustoft, S., Mienert, J., & Klaeschen, D. (2010). High‐resolution P‐Cable 3D seismic imaging of gas chimney structures in gas hydrated sediments of an Arctic sediment drift. Marine and Petroleum Geology, 27, 1981–1994. https://doi.org/10.1016/j.marpetgeo.2010.06.006
    [Google Scholar]
  92. Plaza‐Faverola, A., Bünz, S., & Mienert, J. (2010). Fluid distributions inferred from P‐wave velocity and reflection seismic amplitude anomalies beneath the Nyegga pockmark field of the mid‐Norwegian margin. Marine and Petroleum Geology, 27, 46–60. https://doi.org/10.1016/j.marpetgeo.2009.07.007
    [Google Scholar]
  93. Qi, J., & Yang, Q. (2010). Cenozoic structural deformation and dynamic processes of the Bohai Bay Basin Province, China. Marine and Petroleum Geology, 27, 757–771. https://doi.org/10.1016/j.marpetgeo.2009.08.012
    [Google Scholar]
  94. Rajan, A., Bünz, S., Mienert, J., & Smith, A. (2013). Gas hydrate systems in petroleum provinces of the SW‐Barents Sea. Marine and Petroleum Geology, 46, 92–106. https://doi.org/10.1016/j.marpetgeo.2013.06.009
    [Google Scholar]
  95. Ringrose, P. S., & Meckel, T. A. (2019). Maturing global CO2 storage resources on offshore continental margins to achieve 2DS emissions reductions. Scientific Reports, 9, 1–10. https://doi.org/10.1038/s41598‐019‐54363‐z
    [Google Scholar]
  96. Robinson, A. H., Callow, B., Böttner, C., Yilo, N., Provenzano, G., Falcon‐Suarez, I. H., Marín‐Moreno, H., Lichtschlag, A., Bayrakci, G., Gehrmann, R., Parkes, L., Roche, B., Saleem, U., Schramm, B., Waage, M., Lavayssière, A., Li, J., Jedari‐Eyvazi, F., Sahoo, S., … Reinardy, B. (2021). Multiscale characterisation of chimneys/pipes: Fluid escape structures within sedimentary basins. International Journal of Greenhouse Gas Control, 106, 103245. https://doi.org/10.1016/j.ijggc.2020.103245
    [Google Scholar]
  97. Roche, B., Bull, J. M., Marin‐Moreno, H., Leighton, T., Falcon‐Suarez, I. H., White, P. R., Provenzano, G., Tholen, M., Lichtschlag, A., Li, J., & Faggetter, M. (2021). Time‐lapse imaging of CO2 migration within near‐surface sediments during a controlled sub‐seabed release experiment. International Journal of Greenhouse Gas Control, 109, 103363. https://doi.org/10.1016/j.ijggc.2021.103363
    [Google Scholar]
  98. Rogers, J. N., Kelley, J. T., Belknap, D. F., Gontz, A., & Barnhardt, W. A. (2006). Shallow‐water pockmark formation in temperate estuaries: A consideration of origins in the western gulf of Maine with special focus on Belfast Bay. Marine Geology, 225, 45–62. https://doi.org/10.1016/j.margeo.2005.07.011
    [Google Scholar]
  99. Serié, C., Huuse, M., Schødt, N., Brooks, J., & Williams, A. (2017). Subsurface fluid flow in the deep‐water Kwanza Basin, offshore Angola. Basin Research, 29, 149–179. https://doi.org/10.1111/bre.12169
    [Google Scholar]
  100. Shen, Z. H. (2016). Genetic classification and distribution characteristics of overpressure in the Paleogene of Bohai oilfields. China Offshore Oil and Gas, 28, 31–36 (in Chinese with English abstract).
    [Google Scholar]
  101. Singh, D., Kumar, P. C., & Sain, K. (2016). Interpretation of gas chimney from seismic data using artificial neural network: A study from Maari 3D prospect in the Taranaki basin, New Zealand. Journal of Natural Gas Science and Engineering, 36, 339–357.
    [Google Scholar]
  102. Somoza, L., León, R., Medialdea, T., Pérez, L. F., González, F. J., & Maldonado, A. (2014). Seafloor mounds, craters and depressions linked to seismic chimneys breaching fossilized diagenetic bottom simulating reflectors in the central and southern Scotia Sea, Antarctica. Global and Planetary Change, 123, 359–373. https://doi.org/10.1016/j.gloplacha.2014.08.004
    [Google Scholar]
  103. Suess, E. (2014). Marine cold seeps and their manifestations: Geological control, biogeochemical criteria and environmental conditions. International Journal of Earth Sciences, 103, 1889–1916.
    [Google Scholar]
  104. Sultan, N., Bohrmann, G., Ruffine, L., Pape, T., Riboulot, V., Colliat, J. L., de Alexis, P., Dennielou, B., Garziglia, S., Himmler, T., Marsset, T., Peters, C., Rabiu, A., & Wei, J. (2014). Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution: Pockmark formation and evolution. Journal of Geophysical Research: Solid Earth, 119, 2679–2694.
    [Google Scholar]
  105. Sun, Q., Wu, S., Hovland, M., Luo, P., Lu, Y., & Qu, T. (2011). The morphologies and genesis of mega‐pockmarks near the Xisha Uplift, South China Sea. Marine and Petroleum Geology, 28, 1146–1156. https://doi.org/10.1016/j.marpetgeo.2011.03.003
    [Google Scholar]
  106. Tang, L. J., Wan, G. M., Zhou, X. H., Jin, W. Z., & Yu, Y. X. (2008). Cenozoic geotectonic evolution of the Bohai Basin. Geological Journal of China Universities, 14, 191–198 (in Chinese with English abstract).
    [Google Scholar]
  107. Taylor, M. H., Dillon, W. P., & Pecher, I. A. (2000). Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge Diapir: New insights from seismic data. Marine Geology, 164, 79–89. https://doi.org/10.1016/S0025‐3227(99)00128‐0
    [Google Scholar]
  108. Teng, C., Zou, H., & Hao, F. (2014). Control of differential tectonic evolution on petroleum occurrence in Bohai Bay Basin. Science China Earth Sciences, 57, 1117–1128. https://doi.org/10.1007/s11430‐013‐4771‐6
    [Google Scholar]
  109. Waage, M., Serov, P., Andreassen, K., Waghorn, K., & Bünz, S. (2020). Geological controls of giant crater development on the Arctic seafloor. Scientific Reports, 10, 1–12. https://doi.org/10.1038/s41598‐020‐65018‐9
    [Google Scholar]
  110. Wan, Z. F., Zhang, W., Ma, C., Liang, J. Q., Li, A., Meng, D. J., Huang, W., Yang, C. Z., Zhang, J. F., & Sun, Y. F. (2022). Dissociation of gas hydrates by hydrocarbon migration and accumulation‐derived slope failures: An example from the South China Sea. Geoscience Frontiers, 13(2), 101345. https://doi.org/10.1016/j.gsf.2021.101345
    [Google Scholar]
  111. Wang, X., He, S., Jones, S. J., Yang, R., Wei, A., Liu, C., Liu, Q., Cheng, C., & Liu, W. (2019). Overpressure and its positive effect in deep sandstone reservoir quality of Bozhong Depression, offshore Bohai Bay Basin, China. Journal of Petroleum Science and Engineering, 182, 106362. https://doi.org/10.1016/j.petrol.2019.106362
    [Google Scholar]
  112. Wei, J., Li, J., Wu, T., Zhang, W., Li, J., Wang, J., Tao, J., Chen, Z., Wu, Z., & Chen, W. (2020). Geologically controlled intermittent gas eruption and its impact on bottom water temperature and chemosynthetic communities—A case study in the “HaiMa” cold seeps, South China Sea. Geological Journal, 55(9), 6066–6078. https://doi.org/10.1002/gj.3780
    [Google Scholar]
  113. Wood, W., Hart, P., Hutchinson, D., Dutta, N., Snyder, F., Coffin, R., & Gettrust, J. (2008). Gas and gas hydrate distribution around seafloor seeps in Mississippi Canyon, Northern Gulf of Mexico, using multi‐resolution seismic imagery. Marine and Petroleum Geology, 25, 952–959. https://doi.org/10.1016/j.marpetgeo.2008.01.015
    [Google Scholar]
  114. Wynn, R. B., Huvenne, V. A. I., Le Bas, T. P., Murton, B. J., Connelly, D. P., Bett, B. J., Ruhl, H. A., Morris, K. J., Peakall, J., Parsons, D. R., Sumner, E. J., Darby, S. E., Dorrell, R. M., & Hunt, J. E. (2014). Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Marine Geology, 352, 451–468. https://doi.org/10.1016/j.margeo.2014.03.012
    [Google Scholar]
  115. Xu, J., Zhang, J., Zhou, B. G., Lü, Y. J., Chen, G. G., Ji, F. J., & Gao, X. L. (2007). The newly‐generated NE‐trending Yellow River Estuary‐Northwest Miao fault zone in southeastern Bohai basin. Seismology and Geology, 29, 845–854 (in Chinese with English abstract).
    [Google Scholar]
  116. Xu, J., Zhou, B., Ji, F., Gao, X., Lü, Y., Wang, M., & Chen, G. (2011). A primary study on the neotectonic pattern of the Bohai area in China. Acta Petrolei Sinica, 32, 442–449 (in Chinese with English abstract).
    [Google Scholar]
  117. Xu, S., Hao, F., Xu, C., Wang, Y., Zou, H., & Gong, C. (2015). Differential compaction faults and their implications for fluid expulsion in the northern Bozhong Subbasin, Bohai Bay Basin, China. Marine and Petroleum Geology, 63, 1–16. https://doi.org/10.1016/j.marpetgeo.2015.02.013
    [Google Scholar]
  118. Xu, S., Hao, F., Xu, C., Zou, H., & Quan, Y. (2016). Oil migration through preferential petroleum migration pathway (PPMP) and polycyclic faults: A case study from the Shijiutuo Uplift, Bohai Bay basin, China. Marine and Petroleum Geology, 73, 539–553. https://doi.org/10.1016/j.marpetgeo.2016.03.025
    [Google Scholar]
  119. Yang, Y., & Xu, T. (2004). Hydrocarbon habitat of the offshore Bohai Basin, China. Marine and Petroleum Geology, 21, 691–708. https://doi.org/10.1016/j.marpetgeo.2004.03.008
    [Google Scholar]
  120. Yao, Z., Guo, Z., Xiao, G., Wang, Q., Shi, X., & Wang, X. (2012). Sedimentary history of the western Bohai coastal plain since the late Pliocene: Implications on tectonic, climatic and sea‐level changes. Journal of Asian Earth Sciences, 54–55, 192–202. https://doi.org/10.1016/j.jseaes.2012.04.013
    [Google Scholar]
  121. Yao, Z., Shi, X., Liu, Q., Liu, Y., Larrasoaña, J., Liu, J., Ge, S., Wang, K., Qiao, S., Li, X., Shi, F., Fang, X., Yu, Y., Yang, G., & Duan, Z. (2014). Paleomagnetic and astronomical dating of sediment core BH08 from the Bohai Sea, China: Implications for glacial‐interglacial sedimentation. Palaeogeography, Palaeoclimatology, Palaeoecology, 393, 90–101. https://doi.org/10.1016/j.palaeo.2013.11.012
    [Google Scholar]
  122. Zhang, N., Li, S., Cheng, R., Gong, J., & Wang, J. (2016). Geochemical anomaly and genetic type of acidolysis hydrocarbon in seabed sediments of Qikou sag and its adjacent regions in Bohai Bay Basin. Geochimica (Beijing), 45, 77–86 (in Chinese with English abstract).
    [Google Scholar]
  123. Zhang, Y., Chen, B., & Zhai, W. (2020). Exploring sources and biogeochemical dynamics of dissolved methane in the Central Bohai Sea in summer. Frontiers in Marine Science, 7, 79. https://doi.org/10.3389/fmars.2020.00079
    [Google Scholar]
  124. Zhu, H., Yang, X., Liu, K., & Zhou, X. (2014). Seismic‐based sediment provenance analysis in continental lacustrine rift basins: An example from the Bohai Bay Basin, China. AAPG Bulletin, 98, 1995–2018. https://doi.org/10.1306/05081412159
    [Google Scholar]
  125. Zou, H., Gong, Z., Teng, C., & Zhuang, X. (2011). Late‐stage rapid accumulation of the PL19‐3 giant oilfield in an active fault zone during Neotectonism in the Bozhong depression, Bohai Bay. Science China Earth Sciences, 54, 388–398. https://doi.org/10.1007/s11430‐010‐4144‐3
    [Google Scholar]
  126. Zuo, Y., Qiu, N., Li, J., Hao, Q., Pang, X., Zhao, Z., & Zhu, Q. (2015). Meso‐cenozoic tectono‐thermal evolution history in Bohai Bay Basin, North China. Journal of Earth Science, 26, 352–360. https://doi.org/10.1007/s12583‐014‐0500‐0
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12666
Loading
/content/journals/10.1111/bre.12666
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Bohai Sea; fluid escape; fluid migration pathway; gas chimney; seabed fluid flow

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error