1887
Volume 34, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

Tectonic and paleo‐environmental reconstructions of rift evolution typically rely on the interpretation of sedimentary sequences, but this is rarely possible in early‐stage rifts where sediment volumes are low. To overcome this challenge, we use geomorphology to investigate landscape evolution and the role of different forcing mechanisms during basin development. Here, we focus on the humid Middle Shire River basin, located within the zone of progressive interaction and linkage between the southern Malawi Rift and Shire Rift Zone, East Africa. We used a digital elevation model to map knickpoints and knickpoint morphologies in the Middle Shire River basin and examined the relationships with pre‐rift and syn‐rift structures within the rift interaction zone. The main axial stream, Shire River, descends steeply, 372 m over a 50 km distance, across exposed metamorphic basement along the rift floor, exhibiting a strongly disequilibrated longitudinal elevation profile with both ‘mobile’ and ‘fixed’ knickpoints. In particular, we identify two clusters of mobile knickpoints, which we interpret as associated with baselevel fall events at the downstream end of the exposed basement that triggered knickpoint migration through the fluvial network since at least the Mid. Pleistocene. We infer that after the integration of the axial stream across the Middle Shire Basin, the knickpoints migrate upstream in response to fault‐related subsidence in the Shire Rift Zone. Conversely, the fixed knickpoints are interpreted to reflect local differential bedrock erodibility at lithologic contacts or basement‐hosted fault scarps along the basin floor. The results suggest that Middle Shire basin opening, associated with rift linkage, is likely a recent event (at least Mid. Pleistocene) relative to the Late Oligocene activation of Cenozoic rifting in the East African Rift's Western Branch. These findings support the hypothesis that the Western Branch developed from the gradual propagation, linkage and coalescence of initially nucleated distinct rift basins.

,

Knickpoint mapping in the Middle Shire Basin shows to main sets of mobile knickpoints associated with baselevel fall events at the downstream end of the Middle Shire River.The baselevel fall events triggered knickpoint migration through the fluvial network since at least the Mid. Pleistocene. We suggest that Middle Shire basin opening, associated with rift linkage, is likely a recent event (at least Mid. Pleistocene) relative to the Late Oligocene activation of Cenozoic rifting in the East African Rift’s Western Branch

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12687
2022-11-18
2022-11-30
Loading full text...

Full text loading...

References

  1. Abram, N., Gagan, M., Hantoro, W., MCCulloch, M., Chappell, J., & Suwargadi, B. (2007). Seasonal characteristics of the Indian Ocean Dipole during the Holocene epoch. Nature, 445, 299–302.
    [Google Scholar]
  2. Anoop, A., Prasad, S., Basavaiah, N., Brauer, A., Shahzad, F., & Deenadayalan, K. (2012). Tectonic versus climate influence on landscape evolution: A case study from the upper Spiti valley, NW Himalaya. Geomorphology, 145–146, 32–44.
    [Google Scholar]
  3. Azanon, J. M., Galve, J. P., Perez‐Pena, J. V., Giaconia, F., Carvajal, R., Booth‐Rea, G., Jabaloy, A., Vazquez, M., Azor, A., & Roldan, F. J. (2015). Relief and drainage evolution during the exhumation of the Sierra Nevada (SE Spain): Is denudation keeping pace with uplift?Tectonophysics, 663, 19–32.
    [Google Scholar]
  4. Bailey, G., Manighetti, I., & King, G. (2000). Tectonics, volcanism, landscape structure and human evolution in the African Rift. In G.Bailey, R.Charles, N.Winder, G.Bailey, R.Charles, & N.Winder (Eds.), Human ecodynamics. Symposia of the Association for Environmental Archaeology (pp. 31–46). Oxbow Books.
    [Google Scholar]
  5. Beuning, K. R. M., Zimmerman, K. A., Ivory, S. J., & Cohen, A. S. (2011). Vegetation response to glacial–interglacial climate variability near Lake Malawi in the southern African tropics. Palaeogeography, Palaeoclimatology, Palaeoecology, 303, 81–92.
    [Google Scholar]
  6. Bloomfield, K., 1958. The geology of the Port Herald area. Bulletin of the Geological Survey of Malawi, 9, 1‐76 (Government Printer, Zomba).
    [Google Scholar]
  7. Bloomfield, K., 1965. The geology of the Middle Shire hydro‐electric power sites in. Records of the Geological Survey of MalawiVII, 29‐44 (Government Printer, Zomba).
    [Google Scholar]
  8. Bloomfield, K., Garson, M.S., 1965a. The geology of the Kirk Range‐Lisungwe valley area. Bulletin of the Geological Survey of Malawi, 17, 1‐234 (Government Printer, Zomba).
    [Google Scholar]
  9. Bloomfield, K., Garson, M.S., 1965b. The geology of the Zomba area. Bulletin of the Geological Survey of Malawi, 16, 1‐193 (Government Printer, Zomba).
    [Google Scholar]
  10. Bloomfield, K., & Young, A. (1961). The geology and geomorphology of Zomba Mountain. The Nyasaland Journal, 14, 54–80.
    [Google Scholar]
  11. Bookhagen, B., & Burbank, D. W. (2006). Topography, relief, and TRMM‐derived rainfall variations along the Himalaya. Geophysical Research Letters, 33, 1–5.
    [Google Scholar]
  12. Bookhagen, B., Thiede, R. C., & Strecker, M. R. (2005). Late quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology, 33(2), 149–152.
    [Google Scholar]
  13. Boulton, S. J., & Stokes, M. (2018). Which DEM is best for analyzing fluvial landscape development in mountainous terrains?Geomorphology, 310, 168–187.
    [Google Scholar]
  14. Boulton, S. J., Stokes, M., & Mather, A. E. (2014). Transient fluvial incision as an indicator of active faulting and Plio‐Quaternary uplift of the Moroccan High Atlas. Tectonophysics, 633, 16–33.
    [Google Scholar]
  15. Breetzke, G. D., Koomen, E., & Critchley, W. R. S. (2013). GIS‐assisted modelling in a South African catchment: Evaluating the USLE and SLEMSA approach. In R.Wurbs (Ed.), Water Resources. Intertech Open.
    [Google Scholar]
  16. Carter, G.S., Bennet, J.D., 1973. The geology and mineral resources of Malawi. Bulletin of the Geological Survey of Malawi, 6, 1‐62 (Government Printer, Zomba).
    [Google Scholar]
  17. Castaing, C. (1991). Post‐Pan African tectonic evolution of South Malawi in relation to the Karoo and recent East African Rift Systems. Tectonophysics, 191(1–2), 55–73.
    [Google Scholar]
  18. Castillo, M., Bishop, P., & Jansen, J. (2013). Knickpoint retreat and transient bedrock channel morphology triggered by base‐level fall in small bedrock river catchments: The case of the Isle of Jura, Scotland. Geomorphology, 180–181, 1–9.
    [Google Scholar]
  19. Chen, S. A., Michaelides, K., Grieve, S. W., & Singer, M. B. (2019). Aridity is expressed in river topography globally. Nature, 573(7775), 573–577.
    [Google Scholar]
  20. Chenin, P., Schmalholz, S. M., Manatschal, G., & Karner, G. D. (2018). Necking of the lithosphere: A reappraisal of basic concepts with thermo‐mechanical numerical modeling. Journal of Geophysical Research: Solid Earth, 123(6), 5279–5299.
    [Google Scholar]
  21. Chisenga, C., Dulanya, Z., & Jianguo, Y. (2019). The structural re‐interpretation of the Lower Shire Basin in the Southern Malawi rift using gravity data. Journal of African Earth Sciences, 149, 280–290.
    [Google Scholar]
  22. Chisenga, C., Dulanya, Z., & Yan, J. (2018). The structural re‐interpretation of the Lower Shire Basin using edge detection and gravity inversion methods of basement topography. Journal of African Earth Science, 149, 280–290.
    [Google Scholar]
  23. Chorowicz, J. (2005). The East African Rift system. Journal of African Earth Sciences, 43, 379–410. https://doi.org/10.1016/j.jafrearsci.2005.07.019
    [Google Scholar]
  24. Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., & McCabe, A. M. (2009). The last glacial maximum. Science, 325, 710–714.
    [Google Scholar]
  25. Cooper, W.G.G., Bloomfield, K., 1961. The geology of the Tambani‐Salambidwe area. Bulletin of the Geological Survey of Malawi, 13, 1‐63 (Government Printer, Zomba).
    [Google Scholar]
  26. Corti, G., van Wijk, J., Cloetingh, S., & Morley, C. K. (2007). Tectonic inheritance and continental rift architecture: Numerical and analogue models of the East African Rift system. Tectonics, 26(6), 1‐13.
    [Google Scholar]
  27. Crosby, B. T., & Whipple, K. X. (2006). Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand. Geomorphology, 82, 16–38.
    [Google Scholar]
  28. de Menocal, P. B. (1995). Plio‐pleistocene African climate. Science, 270, 53–59.
    [Google Scholar]
  29. DiBiase, R. A., & Whipple, K. X. (2011). The influence of erosion thresholds and runoff variability on the relationships among topography, climate, and erosion rate. JGR Earth Surface, 116(F4), 1–17. https://doi.org/10.1029/2011JF002095
    [Google Scholar]
  30. Dixey, F. (1924). Lake level in relation to rainfall and sunspots. Nature, 2870(114), 659–661.
    [Google Scholar]
  31. Dixey, F. (1939). The early Cretaceous valley‐floor peneplain of the Lake Nyasa region and its relation to tertiary rift structures. The Quarterly journal of the Geological Society of London, 95, 75–108.
    [Google Scholar]
  32. Drayton, R. S. (1984). Variations in the level of Lake Malawi. Hydrological Sciences Journal, 29(1), 1–12.
    [Google Scholar]
  33. Dulanya, Z. (2017). A review of the geomorphotectonic evolution of the south Malawi rift. Journal of African Earth Sciences, 129, 728–738.
    [Google Scholar]
  34. Ebinger, C. (2005). Ebinger: The Bullerwell Lecture: Continental break‐up: The East African perspective. Astronomy & Geophysics, 46(2), 2.16–2.21.
    [Google Scholar]
  35. Ebinger, C., & Scholz, C. A. (2011). Continental rift basins: The East African perspective, tectonics of sedimentary basins (pp. 183–208). John Wiley & Sons, Ltd.
    [Google Scholar]
  36. Ebinger, C. J., Deino, A. L., Drake, R. E., & Tesha, A. L. (1989). Chronology of volcanism and rift basin propagation: Rungwe volcanic province, East Africa. Journal of Geophysical Research: Solid Earth, 94(B11), 15785–15803.
    [Google Scholar]
  37. Eby, G. N., Roden, T. M., Krueger, H. L., Ewing, W., Faxon, E. H., & Woolley, A. R. (1995). Geochronology and cooling history of the northern part of the Chilwa alkaline province, Malawi. Journal of African Earth Sciences, 20, 275–288.
    [Google Scholar]
  38. Evans, K., 1965. The geology of the Shire Highlands. Bulletin of the Geological Survey of Malawi, 18, 1–54. (Government Printer, Zomba).
    [Google Scholar]
  39. Ferrier, K. L., Huppert, K. L., & Perron, J. T. (2013). Climatic control of bedrock river incision. Nature, 496(7444), 206–209.
    [Google Scholar]
  40. Fielding, E. J., Isacks, B. L., Barazangi, M., & Duncan, C. (1994). How flat is Tibet?Geology, 22, 163–167.
    [Google Scholar]
  41. Filippi, M. L., & Talbot, M. R. (2005). The palaeolimnology of northern Lake Malawi over the last 25ka based upon the elemental and stable isotopic composition of sedimentary organic matter. Quaternary Science Reviews, 24, 1303–1328.
    [Google Scholar]
  42. Flint, J. J. (1974). Stream gradient as a function of order, magnitude, and discharge. Water Resources Research, 10, 969–973.
    [Google Scholar]
  43. Flores‐Prieto, E., Quénéhervé, G., Bachofer, F., Shahzad, F., & Maerker, M. (2015). Morphotectonic interpretation of the Makuyuni catchment in Northern Tanzania using DEM and SAR data. Geomorphology, 248, 427–439.
    [Google Scholar]
  44. Fullgraf, T., Dombola, K., Hyvonen, E., Thomas, B., & Zammit, C. (2017). The provisional GEMMAP 1:1 million scale structural and geological maps of Malawi. Geological Survey of Malawi.
    [Google Scholar]
  45. Fritz, H., Abdelsalam, M., Ali, K. A., Bingen, B., Collins, A. S., Fowler, A. R., Ghebreab, W., Hauzenberger, C. A., Johnson, P. R., Kusky, T. M., Macey, P., Muhongo, S., Stern, R. J., & Viola, I. J. (2013). Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution. Journal of African Earth Sciences, 86, 65–106. https://doi.org/10.1016/j.jafrearsci.2013.06.004
    [Google Scholar]
  46. Gailleton, B., Mudd, S. M., Clubb, F. J., Peifer, D., & Hurst, M. D. (2019). A segmentation approach for the reproducible extraction and quantification of knickpoints from river long profiles. Earth Surface Dynamics, 7, 211–230. https://doi.org/10.5194/esurf‐7‐211‐2019
    [Google Scholar]
  47. Gallen, S. F. (2018). Lithologic controls on landscape dynamics and aquatic species evolution in post‐orogenic mountains. Earth and Planetary Science Letters, 493, 150–160.
    [Google Scholar]
  48. Gallen, S. F., & Fernández‐Blanco, D. (2021). A new data‐driven Bayesian inversion of fluvial topography clarifies the tectonic history of the corinth rift and reveals a channel steepness threshold. Journal of Geophysical Research: Earth Surface, 126(3), e2020JF005651.
    [Google Scholar]
  49. Gallen, S. F., Wegmann, K. W., & Bohnenstiehl, D. R. (2013). Miocene rejuvenation of topographic relief in the southern Appalachians. GSA Today, 23(2), 4–10.
    [Google Scholar]
  50. Gallen, S. F., & Wegmann, K. W. (2017). River profile response to normal fault growth and linkage: an example from the Hellenic forearc of south‐central Crete, Greece. Earth Surface Dynamics, 5, 161–186https://doi.org/10.5194/esurf‐5‐161‐2017
    [Google Scholar]
  51. Gasse, F. (2000). Hydrological changes in the African tropics since the last glacial maximum. Quaternary Science Reviews, 19, 189–211.
    [Google Scholar]
  52. Gasse, F., Chalié, F., Vincens, A., Williams, M. A., & Williamson, D. (2008). Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near‐shore proxy data. Quaternary Science Reviews, 27(25–26), 2316–2340.
    [Google Scholar]
  53. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12(3–4), 195–218.
    [Google Scholar]
  54. Gilbert, G. (1877). Geology of the Henry Mountains. USGS Unnumbered Series, Government Printing Office.
    [Google Scholar]
  55. Gonga‐Saholiariliva, N., Gunnell, Y., Harbor, D., & Mering, C. (2011). An automated method for producing synoptic regional maps of river gradient variation: Procedure, accuracy tests, and comparison with other knickpoint mapping methods. Geomorphology, 134, 394–407.
    [Google Scholar]
  56. Gyamfi, C., Ndambuki, J. M., & Salim, R. W. (2016). Spatial variability modeling of soil erodibility index in relation to some soil properties at field scale. Environment and Natural Resources Research, 6(2), 16–27.
    [Google Scholar]
  57. Habgood, F., 1963. The geology of the country west of the Shire River between Chikwawa and Chiromo. Bulletin (Nyasaland. Geological Survey Department), (Vol. 14, pp. 1–60). Government Printer.
  58. Habgood, F., Walshaw, R. D., 1965. The geology of the Cholo [Thyolo] area. Bulletin of the Geological Survey of Malawi, (Vol. 22, pp. 1–24). Government Printer.
    [Google Scholar]
  59. Habgood, F., Holt, D. N., & Walshaw, R. D. (1973). The geology of the Thyolo area. Bulletin of the Geological Survey of Malawi (Vol. 22). Government Printer.
  60. Hack, J. T. (1957). Studies of longitudinal stream profiles in Virginia and Maryland. In US Geological Survey Professional Paper 249B, pp. 45–97. U.S.
    [Google Scholar]
  61. Harel, M. A., Mudd, S. M., & Attal, M. (2016). Global analysis of the stream power law parameters based on worldwide 10Be denudation rates. Geomorphology, 268, 184–196.
    [Google Scholar]
  62. Hartshorn, K., Hovius, N., Dade, W. B., & Slingerland, R. L. (2002). Climate‐driven bedrock incision in an active mountain belt. Science, 297(5589), 2036–2038.
    [Google Scholar]
  63. Hayakawa, Y. S., & Oguchi, T. (2006). DEM‐based identification of fluvial knickzones and its application to Japanese mountain rivers. Geomorphology, 78, 90–106.
    [Google Scholar]
  64. Heilman, E., Kolawole, F., Atekwana, E. A., & Mayle, M. (2019). Controls of basement fabric on the linkage of rift segments. Tectonics, 38, 1337–1366. https://doi.org/10.1029/2018TC005362.
    [Google Scholar]
  65. Hensley, S., Munjy, R., & Rosen, P. (2001). Interferometric synthetic aperture radar (InSAR). In D. F.Maune (Ed.), Digital Elevation Model Technologies and Applications: The DEM User’s Manual (pp. 143–206). American Society for Photogrammetry and Remote Sensing.
    [Google Scholar]
  66. Hodge, M., Biggs, J., Fagereng, Å., Mdala, H., Wedmore, L. N. J., & Williams, J. N. (2020). Evidence from high‐resolution topography for multiple earthquakes on high slip‐to‐length fault scarps: The Bilila‐Mtakataka fault, Malawi. Tectonics, 39(2), e2019TC005933.
    [Google Scholar]
  67. Holland, W. N., & Pickup, G. (1976). Flume study of knickpoint development in stratified sediment. Geological Society of America Bulletin, 87(1), 76–82.
    [Google Scholar]
  68. Howard, A. D. (1994). A detachment‐limited model of drainage basin evolution. Water Resources Research, 30, 2261–2285.
    [Google Scholar]
  69. Ivory, S. J., Blome, M. W., King, J. W., McGlue, M. M., Cole, J. E., & Cohen, A. S. (2016). Environmental change explains cichlid adaptive radiation at Lake Malawi over the past 1.2 million years. Proceedings of the National Academy of Sciences, 113(42), 11895–11900.
    [Google Scholar]
  70. Jess, S., Koehn, D., Fox, M., Enkelmann, E., Sachau, T., & Aanyu, K. (2020). Paleogene initiation of the Western Branch of the East African Rift: The uplift history of the Rwenzori Mountains, Western Uganda. Earth and Planetary Science Letters, 552, 116593.
    [Google Scholar]
  71. Jiang, W., Han, Z., Zhang, J., & Jiao, Q. (2016). Stream profile analysis, tectonic geomorphology and neotectonic activity of the Damxung‐Yangbajain rift in the south Tibetan Plateau. Earth Surface Processes and Landforms, 41(10), 1312–1326.
    [Google Scholar]
  72. Kent, E., Boulton, S. J., Whittaker, A. C., Stewart, I. S., & Alçiçek, M. (2017). Normal fault growth and linkage in the Gediz (Alaşehir) Graben, Western Turkey, revealed by transient river long‐profiles and slope‐break knickpoints. Earth Surface Processes and Landforms, 42(5), 836–852.
    [Google Scholar]
  73. Kent, E., Whittaker, A. C., Boulton, S. J., & Alçiçek, M. C. (2021). Quantifying the competing influences of lithology and throw rate on bedrock river incision. GSA Bulletin, 133(7‐8), 1649–1664.
    [Google Scholar]
  74. Kirby, E., & Whipple, K. X. (2001). Quantifying differential rock‐uplift rates via stream profile analysis. Geology, 29, 415–418.
    [Google Scholar]
  75. Kirby, E., & Whipple, K. X. (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44, 54–75.
    [Google Scholar]
  76. Kolawole, F., Firkins, M. C., Al Wahaibi, T. S., Atekwana, E. A., & Soreghan, M. J. (2021). Rift transfer zones and the stages of rift linkage in active segmented continental rift systems. Basin Research, 33(6), 2984–3020.
    [Google Scholar]
  77. Kolawole, F., Vick, T., Atekwana, E.A., Laó‐Dávila, D.A., Costa, A.G., and Carpenter, B.M. (2022 preprint). Strain Localization and Migration During the Pulsed Lateral Propagation of the Shire Rift Zone, East Africa. Earth and Space Science Open Archive. https://doi.org/10.1002/essoar.10510192.1. ESSOAr preprint: https://www.essoar.org/doi/abs/10.1002/essoar.10510192.1
    [Google Scholar]
  78. Konecky, B. L., Russell, J. M., Johnson, T. C., Brown, E. T., Berke, M. A., Werne, J. P., & Huang, Y. (2011). Atmospheric circulation patterns during late Pleistocene climate changes at Lake Malawi, Africa. Earth and Planetary Science Letters, 312, 318–326.
    [Google Scholar]
  79. Kroner, A., Willner, A. P., Hegner, E., Jaeckel, P., & Nemchin, A. (2001). Single zircon ages, PT evolution and Nd isotopic systematics of high‐grade gneisses in southern Malawi and their bearing on the evolution of the Mozambique belt in southeastern Africa. Precambrian Research, 109, 257–291.
    [Google Scholar]
  80. Lague, D. (2014). The stream power river incision model: evidence, theory and beyond. Earth Surface Processes and Landforms, 39(1), 38–61. https://doi.org/10.1002/esp.3462
    [Google Scholar]
  81. Laker, M. C. (2004). Advances in soil erosion, soil conservation, land suitability evaluation and land use planning research in South Africa, 1978‐2003. South African Journal of Plant and Soil, 21(5), 345–368.
    [Google Scholar]
  82. Laó‐Dávila, D. A., Al‐Salmi, H. S., Abdelsalam, M. G., & Atekwana, E. A. (2015). Hierarchical segmentation of the Malawi Rift: The influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts. Tectonics, 34, 2399–2417.
    [Google Scholar]
  83. Lister, L. A. (1965). Erosion surfaces in Malawi. Records Geological Survey of Malawi (Vol. 7, pp. 15‐28). Government Printe, Zomba.
    [Google Scholar]
  84. Lyons, R. P., Scholz, C. A., Cohen, A. S., King, J. W., Brown, E. T., Ivory, S. J., Johnson, T. C., Deino, A. L., Reinthal, P. N., McGlue, M. M., & Blome, M. W. (2015). Continuous 1.3‐million‐year record of East African hydroclimate, and implications for patterns of evolution and biodiversity. Earth, Atmospheric, and Planetary Sciences, 112(51), 15568–15573. https://doi.org/10.1073/pnas.1512864112
    [Google Scholar]
  85. Mackin, J. H. (1948). Concept of the graded river. GSA Bulletin, 59, 463–512.
    [Google Scholar]
  86. Manda, B. W., Cawood, P. A., Spencer, C. J., Prave, T., Robinson, R., & Roberts, N. M. (2019). Evolution of the Mozambique Belt in Malawi constrained by granitoid U‐Pb, Sm‐Nd and Lu‐Hf isotopic data. Gondwana Research, 68, 93–107.
    [Google Scholar]
  87. Marrucci, M., Zeilinger, G., Ribolini, A., & Schwanghart, W. (2018). Origin of knickpoints in an alpine context subject to different perturbing factors, Stura Valley, Maritime Alps (North‐Western Italy). Geosciences, 8(12), 443.
    [Google Scholar]
  88. Molin, P., & Corti, G. (2015). Topography, river network and recent fault activity at the margins of the Central Main Ethiopian Rift (East Africa). Tectonophysics, 664, 67–82.
    [Google Scholar]
  89. Moore, A., Blenkinsop, T., & Cotterill, F. (2009). Southern African topography and erosional history: Plumes or plate tectonics?Terra Nova, 21, 310–315.
    [Google Scholar]
  90. Moore, A. E., Coterrill, F. P. D., Mian, M. P. L., & Williams, H. B. (2007). The Zambezi River. In A.Gupta (Ed.), Large rivers: Geomorphology and management (pp. 311–332). John Wiley and Sons Ltd.
    [Google Scholar]
  91. Morel, S. W. (1958). The geology of the Middle Shire Area. Bulletin of the Geological Survey of Nyasaland [Malawi], 10, 1–66.
    [Google Scholar]
  92. Morisawa, M. E. (1962). Quantitative Geomorphology of Some Watersheds in the Appalachian Plateau. Geological Society of America Bulletin, 73, 1025–1049.
    [Google Scholar]
  93. Mortimer, E. J., Paton, D. A., Scholz, C. A., & Strecker, M. R. (2016). Implications of structural inheritance in oblique rift zones for basin compartmentalization: Nkhata Basin, Malawi Rift (EARS). Marine and Petroleum Geology, 72, 110–121.
    [Google Scholar]
  94. Mudd, S. M., Attal, M., Milodowski, D. T., Grieve, S. W. D., & Valters, D. A. (2014). A statistical framework to quantify spatial variation in channel gradients using the integral method of channel profile analysis. Journal of Geophysical Research: Earth Surface, 119, 138–152.
    [Google Scholar]
  95. Mughogho, M. T. (1998). Evaluation of the Revised Universal Soil Loss Equation (RUSLE) and the Soil Loss Estimation Model for Southern Africa (SLEMSA) under Malawi conditions: A case study of Kamundi Catchment Near Mangochi (Unpublished BSc Dissertation). University of Malawi. https://cals.arizona.edu/oals/malawi/Papers/Mughogho98.html
    [Google Scholar]
  96. Nelson, R. A., Patton, T., & Morley, C. K. (1992). Rift segment interaction and its relation to hydrocarbon exploration in rift systems. American Association of Petroleum Geologists Bulletin, 76(8), 1153–1169.
    [Google Scholar]
  97. Neely, A. B., Bookhagen, B., & Burbank, D. W. (2017). An automated knickzone selection algorithm (KZ‐Picker) to analyze transient landscapes: Calibration and validation. Journal of Geophysical Research: Earth Surface, 122(6), 1236–1261.
    [Google Scholar]
  98. Nicholson, S. E. (2001). Climatic and environmental change in Africa during the last two centuries. Climate Research, 17, 123–144.
    [Google Scholar]
  99. Nicholson, S. E., Klotter, D., & Chavula, G. (2014). A detailed rainfall climatology for Malawi, Southern Africa. International Journal of Climatology, 34, 315–325.
    [Google Scholar]
  100. Niemann, J. D., Gasparini, N. M., Tucker, G. E., & Bras, R. L. (2001). A quantitative evaluation of Playfair's law and its use in testing long‐term stream erosion models. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 26(12), 1317–1332.
    [Google Scholar]
  101. Ojo, O. O., Ohenhen, L. O., Kolawole, F., Johnson, S. G., Chindandali, P. R., Atekwana, E. A., & Laó‐Dávila, D. A. (2022). Under‐displaced normal faults: Strain accommodation along an early‐stage rift‐bounding fault in the Southern Malawi Rift. Frontiers in Earth Science, 10, 53–56.
    [Google Scholar]
  102. Ojo, O. O., Thomson, S., Laó‐Dávila, D. A. (2022 preprint). Neogene‐quaternary initiation of the Southern Malawi rift linked to reactivation of the Carboniferous‐Jurassic Shire rift. Geol. Soc. America Abstr. Programs 53–6. https://doi.org/10.1130/abs/2021AM‐368982
    [Google Scholar]
  103. Perron, J. T., & Royden, L. (2013). An integral approach to bedrock river profile analysis. Earth Surface Processes and Landforms, 38, 570–576. https://doi.org/10.1002/esp.3302
    [Google Scholar]
  104. Phillips, J. D., McCormack, S., Duan, J., Russo, J. P., Schumacher, A. M., Tripathi, G. N., Brockman, R. B., Mays, A. B., & Pulugurtha, S. (2010). Origin and interpretation of knickpoints in the Big South Fork River basin, Kentucky–Tennessee. Geomorphology, 114, 188–198.
    [Google Scholar]
  105. Queiroz, G. L., Salamuni, E., & Nascimento, E. R. (2015). Knickpoint finder: A software tool that improves neotectonic analysis. Computers and Geosciences, 76, 80–87.
    [Google Scholar]
  106. Roberts, E. M., Stevens, N. J., O'Connor, P. M., Dirks, P. H. G. M., Gottfried, M. D., Clyde, W. C., Armstrong, R. A., Kemp, A. I. S., & Hemming, S. (2012). Initiation of the western branch of the East African Rift coeval with the eastern branch. Nature Geoscience, 5(4), 289–294.
    [Google Scholar]
  107. Royden, L., & Taylor Perron, J. (2013). Solutions of the stream power equation and application to the evolution of river longitudinal profiles. Journal of Geophysical Research: Earth Surface, 118(2), 497–518.
    [Google Scholar]
  108. Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.
    [Google Scholar]
  109. Scherler, D., & Schwanghart, W. (2020). Drainage divide networks – Part 1: Identification and ordering in digital elevation models. Earth Surface Dynamics, 8, 245–259.
    [Google Scholar]
  110. Scholz, C. A., Cohen, A. S., Johnson, T. C., King, J., Talbot, M. R., & Brown, E. T. (2011). Scientific drilling in the Great Rift Valley: The 2005 Lake Malawi Scientific Drilling Project—An overview of the past 145,000 years of climate variability in Southern Hemisphere East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 303(1–4), 3–19.
    [Google Scholar]
  111. Scholz, C. A., Johnson, T. C., Cohen, A. S., King, J. W., Peck, J. A., Overpeck, J. T., Talbot, M. R., Brown, E. T., Kalindekafe, L., Amoako, P. Y. O., Lyons, R. P., Shanahan, T. M., Castaneda, I. S., Heil, C. W., Forman, S. L., Mchargue, L. R., Beuning, K. R., Gomez, J., & Pierson, J. (2007). East African Mega‐Droughts Between 135 And 75 Thousand Years Ago And Bearing On Early‐Modern Human Origins. PNAS, 104(42), 16416–16421.
    [Google Scholar]
  112. Scholz, C. A., Shillington, D. J., Wright, L. J. M., Accardo, N., Gaherty, J. B., & Chindandali, P. (2020). Intrarift fault fabric, segmentation, and basin evolution of the Lake Malawi (Nyasa) Rift. East Africa Geosphere, 16(5), 1293–1311. https://doi.org/10.1130/GES02228.1
    [Google Scholar]
  113. Schwanghart, W., & Scherler, D. (2014). TopoToolbox 2—MATLAB‐based software for topographic analysis and modelling in Earth surface sciences. Earth Surface Dynamics, 2, 1–7.
    [Google Scholar]
  114. Scotti, V. N., Molin, P., Faccenna, C., Soligo, M., & Casas‐Sainz, A. (2014). The influence of surface and tectonic processes on landscape evolution of the Iberian Chain (Spain): Quantitative geomorphological analysis and geochronology. Geomorphology, 206, 37–57.
    [Google Scholar]
  115. Seybold, H., Berghuijs, W. R., Prancevic, J. P., & Kirchner, J. W. (2021). Global dominance of tectonics over climate in shaping river longitudinal profiles. Nature Geoscience, 14(7), 503–507.
    [Google Scholar]
  116. Shahzad, F., & Gloaguen, R. (2011a). TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part 1: Drainage network preprocessing and stream profile analysis. Computers in Geosciences, 37(2), 250–260.
    [Google Scholar]
  117. Shahzad, F., & Gloaguen, R. (2011b). TecDEM: A MATLAB based toolbox for tectonic geomorphology, part 2: Surface dynamics and basin analysis. Computers in Geosciences, 37(2), 261–271.
    [Google Scholar]
  118. Shela, O.N. (2010). Naturalisation of lake Malawi levels and shire river flows: Challenges of water resources research and sustainable utilisation of the Lake Malawi ‐ Shire River System. First WARFSA/WaterNet Symp. on Sustainable Use of Water Resources, Maputo, Mozambique, WARFSA/WaterNet, 1–12. [Available online at http://www.waternetonline.ihe.nl/downloads/uploads/symposium/mozambique‐2000/SHELA.PDF]
  119. Smith, H. J. (1999). Application of empirical soil loss models in Southern Africa: A review. South African Journal of Plant and Soil, 16(3), 158–163.
    [Google Scholar]
  120. Snyder, N. P., Whipple, K. X., Tucker, G. E., & Merritts, D. J. (2000). Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geological Society of America Bulletin, 112(8), 1250–1263.
    [Google Scholar]
  121. Songu, G. A., Abu, R. D., Temwa, N. M., Yiye, S. T., Wahab, S., & Mohammed, B. G. (2021). Analysis of soil erodibility factor for hydrologic processes in Kereke watershed, North Central Nigeria. Journal of Applied Sciences and Environmental Management, 25(3), 425–432.
    [Google Scholar]
  122. Stamps, D. S., Saria, E., & Kreemer, C. (2018). A Geodetic Strain Rate Model for the East African Rift System. Scientific Reports, 8(732), 1–8. https://doi.org/10.1038/s41598‐017‐19097‐w
    [Google Scholar]
  123. Stock, J. D., & Montgomery, D. R. (1999). Geologic constraints on bedrock river incision using the stream power law. Journal of Geophysical Research, 104(B3), 4983–4993.
    [Google Scholar]
  124. Stolle, A., Schwanghart, W., Andermann, C., Bernhardt, A., Fort, M., Jansen, J. D., Wittmann, H., Merchel, S., Rugel, G., Adhikari, B. R., & Korup, O. (2019). Protracted river response to medieval earthquakes. Earth Surface Processes and Landforms, 44, 331–341.
    [Google Scholar]
  125. Stone, A. E. C. (2014). Last Glacial Maximum conditions in southern Africa: Are we any closer to understanding the climate of this time period?Progress in Physical Geography: Earth and Environment, 38(5), 519–542.
    [Google Scholar]
  126. Taulo, J. L., Gondwe, K. J., & Sebitosi, A. B. (2015). Energy supply in Malawi: Options and issues. Journal of Energy in Southern Africa, 26(2), 19–32.
    [Google Scholar]
  127. Thomas, D. S. G., Bailey, R., Shaw, P. A., Durcan, J. A., & Singarater, J. S. (2009). Late Quaternary highstands at Lake Chilwa, Malawi: Frequency, timing and possible forcing mechanisms in the last 44 ka. Quaternary Science Reviews, 28, 526–539.
    [Google Scholar]
  128. Tiercelin, J. J. (1990). Rift‐basin sedimentation: Responses to climate, tectonism and volcanism. Examples of the East African Rift. Journal of African Earth Sciences, 10(1–2), 283–305.
    [Google Scholar]
  129. Tweddle, D., Lewis, D. S. C., & Willoughby, N. G. (1979). The nature of barrier separating the Lake Malawi and Zambezi Fish Faunas. Ichtyological Buletin, 39, 1–10.
    [Google Scholar]
  130. van Bocxlaer, B., Salenbien, W., Praet, N., & Verniers, J. (2012). Stratigraphy and paleoenvironments of the early to middle Holocene Chipalamawamba Beds (Malawi Basin, Africa). Biogeosciences, 9, 4497–4512.
    [Google Scholar]
  131. Vargas, R. R., & Omuto, C. T. (2016). Soil loss assessment in Malawi. FAO, UNEP and UNDP, 1‐104. [Available online at https://www.greengrowthknowledge.org/sites/default/files/downloads/resource/Soil_nutrient_Malawi_econ_UNEP.pdf]
  132. Vita‐Finzi, C. (2012). Introduction: River history. Philosophical Transactions of the Royal Society, 370(1966), 2029–2039.
    [Google Scholar]
  133. Walshaw, R. D., 1965. The geology of the Ntcheu‐Balaka area. Bulletin of the Geological Survey of Malawi, 19, 1–96.
    [Google Scholar]
  134. Wedmore, L. N., Biggs, J., Floyd, M., Fagereng, Å., Mdala, H., Chindandali, P., Williams, J. N., & Mphepo, F. (2021). Geodetic constraints on cratonic microplates and broad strain during rifting of thick Southern African lithosphere. Geophysical Research Letters, 48(17), e2021GL093785. https://doi.org/10.1029/2021GL093785
    [Google Scholar]
  135. Wedmore, L. N. J., Biggs, J., Williams, J. N., Fagereng, Å., Dulanya, Z., Mphepo, F., & Mdala, H. (2020). Active fault scarps in southern Malawi and their implications for the distribution of strain in incipient continental rifts. Tectonics, 39, e2019TC005834. https://doi.org/10.1029/2019TC005834
    [Google Scholar]
  136. Wedmore, L. N. J., Williams, J. N., Biggs, J., Fagereng, Å., Mphepo, F., Dulanya, Z., Willoughby, J., Mdala, H., & Adams, B. (2020). Depth‐dependent controls on structure, reactivation and geomorphology of the active Thyolo border fault, Malawi rift. Journal of Structural geology., 139, 104097. https://doi.org/10.31223/osf.io/4bs9x
    [Google Scholar]
  137. Whipple, K. X., DiBiase, R. A., & Crosby, B. T. (2013). Bedrock rivers. In J. F.Shroder (Ed.), Treatise on geomorphology (pp. 550–573). Academic Press.
    [Google Scholar]
  138. Whipple, K. (2004). Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth and Planetary Sciences, 32, 151–185. https://doi.org/10.1146/annurev.earth.32.101802.120356
    [Google Scholar]
  139. Whipple, K. X., Kirby, E., & Brocklehurst, S. H. (1999). Geomorphic limits to climate‐induced increases in topographic relief. Nature, 401, 39–43.
    [Google Scholar]
  140. Whipple, K. X., & Tucker, G. E. (1999). Dynamics of the stream‐power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. JGR Solid Earth, 104(B8), 17661–17674.
    [Google Scholar]
  141. Willett, S. D., McCoy, S. W., Taylor Perron, J., Goren, L., & Chen, C. Y. (2014). Dynamic reorganization of River Basins. Science, 343, 1248765. https://doi.org/10.1126/science.1248765
    [Google Scholar]
  142. Williams, J. N., Fagereng, A., Wedmore, L., Biggs, J., Mphepo, F., Dulanya, Z., Mdala, H., & Blenkinsop, T. (2019). How do variably striking faults re‐activate during rifting? Insights from southern Malawi?Geochemistry, Geophysics, Geosystems, 20, 3588–3607. https://doi.org/10.1029/2019GC008219
    [Google Scholar]
  143. Williams, J. N., Mdala, H., Fagereng, Å., Wedmore, L. N., Biggs, J., Dulanya, Z., Chindandali, P., & Mphepo, F. (2021). A systems‐based approach to parameterize seismic hazard in regions with little historical or instrumental seismicity: Active fault and seismogenic source databases for southern Malawi. Solid Earth, 12(1), 187–217.
    [Google Scholar]
  144. Williams, J. N., Wedmore, L. N. J., Scholz, C. A., Kolawole, F., Wright, L. J. M., Shillington, D. J., Fagereng, Å., Biggs, J., Mdala, H., Dulanya, Z., Mphepo, F., Chindandali, P., & Werner, M. J. (2022). The Malawi active fault database: An onshore‐offshore database for regional assessment of seismic hazard and tectonic evolution. Geochemistry, Geophysics, Geosystems, 23(5), 1–25. https://doi.org/10.1029/2022GC010425
    [Google Scholar]
  145. Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., & Sheehan, D. (2006). Tectonics from topography: Procedures, promise, and pitfalls. Geological Society of America Special Papers, 398, 55–74.
    [Google Scholar]
  146. Woolley, A. R. (2001). Alkaline rocks and carbonatite of the world. Geological Society of London, 139(3):367–368.
    [Google Scholar]
  147. Zahra, T., Paudel, U., Hayakawa, Y. S., & Oguchi, T. (2017). Knickzone extraction tool (KET) ‐ A new ArcGIS toolset for automatic extraction of knickzones from a DEM based on multi‐scale stream gradients. Open Geosciences, 9, 73–88.
    [Google Scholar]
  148. Zhang, H., Kirby, E., Pitlick, J., Anderson, R. S., & Zhang, P. (2017). Characterizing the transient geomorphic response to base‐level fall in the northeastern Tibetan Plateau. Journal of Geophysical Research: Earth Surface, 122, 546–572.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12687
Loading
/content/journals/10.1111/bre.12687
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Knickpoints; Malawi Rift; Rift Interaction Zones; Tectonics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error