1887
Volume 34, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

Volcanic eruptions can provide large amounts of sedimentary materials and expose fluvial valleys or lakes to catastrophic hyperpycnal flood events, but this process has not been documented in detail. The Ordos Basin Permian fluvio‐deltaic system reveals evidence for abundant volcanism linked to the tectonic evolution of orogenic belt around the basin and provides a ‘natural laboratory’ for investigating hyperpycnal flows associated with volcanic activity. This study analysed volcanic matrix‐rich sandstone (VMS) samples for petrology, mineralogy and geochemistry in order to address current and uncertain volcanogenic material provenance explanations and the lack of systematic investigations into the depositional and diagenetic processes of volcanic related sediments in the southwestern basin. By combining tectonic background surveys, detrital zircon geochronology and spatial distribution of volcanogenic materials, it was found that volcanogenic materials were not derived from the Yinshan‐Yanshan Orogenic Belt (YYOB) as previously thought, but instead evidence a southwestern origin from the North Qinling Orogenic Belt (NQOB). Volcanogenic materials retained in the provenance area during frequent volcanic eruptions were transported to the basin via fluvial systems shortly after the eruption. The associated sediments meet the criterion for hyperpycnites based on lithofacies associations, suggesting the occurrence of hyperpycnal flows during the deposition of VMS. During the subsequent burial stage, the VMS became three distinct types defined by their volcanic matrix content and have similar paragenetic sequences but different diagenetic intensities. The differing content of authigenic minerals in the three types was closely related to the sandstone pore structure characteristics and the evolution of volcanic‐matrix alteration materials. This article proposes a possible explanation for the previously unidentified tectonothermal events in the NQOB during the Permian, validating and reinforcing the theoretical work of hyperpycnal flow. This contribution provides new insights and understanding of the depositional and diagenetic processes of lacustrine basins with similar tectonic settings.

,

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12688
2022-11-18
2024-04-20
Loading full text...

Full text loading...

References

  1. Altaner, S. P. (1990). Mineralogy, chemistry, and diagenesis of tuffs in the Sucker Creek Formation (miocene), Eastern Oregon. Clay and Clay Minerals, 38(6), 561–572. https://doi.org/10.1346/ccmn.1990.0380601
    [Google Scholar]
  2. Anjos, S. M. C., De Ros, L. F., & Silva, C. M. A. (2003). Chlorite authigenesis and porosity preservation in the Upper Cretaceous marine sediments of the Santos Basin, offshore eastern Brazil. In R. H.Worden & S.Morad (Eds.), Clay Mineral Cements in Sandstones (pp. 289–316). Blackwell Publishing. https://doi.org/10.1002/9781444304336.ch13
    [Google Scholar]
  3. Antibus, J. V., Panter, K. S., Wilch, T. I., Dunbar, N., McIntosh, W., Tripati, A., Bindeman, I., & Blusztajn, J. (2014). Alteration of volcaniclastic deposits at Minna Bluff: Geochemical insights on mineralizing environment and climate during the Late Miocene in Antarctica. Geochemistry, Geophysics, Geosystems, 15(8), 3258–3280. https://doi.org/10.1002/2014gc005422
    [Google Scholar]
  4. Bhatia, M. R., & Crook, K. A. (1986). Trace element characteristics of Graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2), 181–193. https://doi.org/10.1007/bf00375292
    [Google Scholar]
  5. Bhattacharya, J. P., & Mac Eachern, J. A. (2009). Hyperpycnal rivers and prodeltaic shelves in the Cretaceous Seaway of North America. Journal of Sedimentary Research, 79(3–4), 184–209. https://doi.org/10.2110/jsr.2009.026
    [Google Scholar]
  6. Bodnar, R. J. (1993). Revised equation and table for determining the freezing point depression of H2O‐NaCl solutions. Geochimica et Cosmochimica Acta, 57(3), 683–684. https://doi.org/10.1016/0016‐7037(93)90378‐A
    [Google Scholar]
  7. Boggs, S. (2006). Principles of sedimentology and stratigraphy (p. 64). Pearson Education.
    [Google Scholar]
  8. Burger, K., Zhou, Y., & Ren, Y. (2002). Petrography and geochemistry of tonsteins from the 4th member of the Upper Triassic Xujiahe Formation in southern Sichuan Province, China. International Journal of Coal Geology, 49(1), 1–17. https://doi.org/10.1016/s0166‐5162(01)00053‐2
    [Google Scholar]
  9. Buurman, P., Jongmans, A. G., & PiPujol, M. D. (1998). Clay illuviation and mechanical clay infiltration — Is there a difference?Quaternary International, 51–2, 66–69. https://doi.org/10.1016/s1040‐6182(98)90225‐7
    [Google Scholar]
  10. Camacho, H., Busby, C. J., & Kneller, B. (2002). A new depositional model for the classical turbidite locality at San Clemente State Beach, California. AAPG Bulletin, 86(9), 1543–1560. https://doi.org/10.1306/61eedcf6‐173e‐11d7‐8645000102c1865d
    [Google Scholar]
  11. Capo, R. C., Whipkey, C. E., Blachère, J. R., & Chadwick, O. A. (2000). Pedogenic origin of dolomite in a basaltic weathering profile, Kohala Peninsula, Hawaii. Geology, 28(3), 271–274. https://doi.org/10.1130/0091‐7613(2000)028<0271:POODIA>2.3.CO;2
    [Google Scholar]
  12. Carothers, W. W., & Kharaka, Y. K. (1978). Aliphatic acid anions in oil‐field waters—implications for origin of natural gas. AAPG Bulletin, 62, 2441–2453. https://doi.org/10.1306/c1ea5521‐16c9‐11d7‐8645000102c1865d
    [Google Scholar]
  13. Chen, H., Zhu, X., Gawthorpe, R. L., Wood, L. J., Liu, Q., Li, S., Shi, R., & Li, H. (2022). The interactions of volcanism and clastic sedimentation in rift basins: Insights from the Palaeogene‐Neogene Shaleitian uplift and surrounding sub‐basins, Bohai Bay Basin, China. Basin Research, 00, 1–29. https://doi.org/10.1111/bre.12651
    [Google Scholar]
  14. Chen, R., Wang, F., Li, Z., Evans, N. J., Chen, H. D., & Wei, X. S. (2021). Late Paleozoic provenance shift in the east‐central Ordos Basin: Implications for the tectonic evolution of the north China Craton. Journal of Asian Earth Sciences, 215(1), 104799. https://doi.org/10.1016/j.jseaes.2021.104799
    [Google Scholar]
  15. Collinson, J. D. (1996). Alluvial sediments. In H. G.Reading (Ed.), Sedimentary environments: Processes, facies and stratigraphy (pp. 37–82). Blackwell Publishing.
    [Google Scholar]
  16. Cronin, S. J., Neall, V. E., & Palmer, A. S. (1996). Geological history of the north‐eastern ring plain of Ruapehu Volcano, New Zealand. Quaternary International, 34‐36, 21–28. https://doi.org/10.1016/1040‐6182(95)00066‐6
    [Google Scholar]
  17. Crovisier, J. L., Thomassin, J. H., Juteau, T., Eberhart, J. P., Touray, J. C., & Baillif, P. (1983). Experimental seawater‐basaltic glass interaction at 50°C: Study of early developed phases by electron microscopy and X‐ray photoelectron spectrometry. Geochimica et Cosmochimica Acta, 47(3), 377–387. https://doi.org/10.1016/0016‐7037(83)90260‐0
    [Google Scholar]
  18. Cullers, R. L. (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian‐Permian Age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51, 181–203. https://doi.org/10.1016/s0024‐4937(99)00063‐8
    [Google Scholar]
  19. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J. C., Hsu, M. L., Lin, C. W., Horng, M. J., Chen, T. C., Milliman, J., & Stark, C. P. (2004). Earthquake‐triggered increase in sediment delivery from an active mountain belt. Geology, 32(8), 733. https://doi.org/10.1130/g20639.1
    [Google Scholar]
  20. Dai, S. F., Ward, C. R., Graham, I. T., French, D., Hower, J. C., Zhao, L., & Wang, X. B. (2017). Altered volcanic ashes in coal and coal‐bearing sequences: A review of their nature and significance. Earth‐Science Reviews, 175, 44–74. https://doi.org/10.1016/j.earscirev.2017.10.005
    [Google Scholar]
  21. Dickinson, W. R., & Suczek, C. A. (1979). Plate tectonics and sandstone compositions. AAPG Bulletin, 63(12), 2164–2182. https://doi.org/10.1306/2f9188fb‐16ce‐11d7‐8645000102c1865d
    [Google Scholar]
  22. Dill, H. G. (2016). Kaolin: Soil, rock and ore from the mineral to the magmatic, sedimentary and metamorphic environments. Earth‐Science Reviews, 161, 16–129. https://doi.org/10.1016/j.earscirev.2016.07.003
    [Google Scholar]
  23. Dong, Y. P., & Santosh, M. (2016). Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1), 1–40. https://doi.org/10.1016/j.gr.2015.06.009
    [Google Scholar]
  24. Dong, Y. P., Zhang, G. W., Hauzenberger, C., Neubauer, F., Yang, Z., & Liu, X. M. (2011). Palaeozoic tectonics and evolutionary history of the Qinling Orogen: Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos, 122(1–2), 39–56. https://doi.org/10.1016/j.lithos.2010.11.011
    [Google Scholar]
  25. Ebinghaus, A., Hartley, A. J., Jolley, D. W., Hole, M., & Millett, J. (2014). Lava–sediment interaction and drainage‐system development in a large igneous province: Columbia River Flood Basalt Province, Washington State, U.S.A. Journal of Sedimentary Research, 84(11), 1041–1063. https://doi.org/10.2110/jsr.2014.85
    [Google Scholar]
  26. Fan, A. P., Yang, R. C., Lenhardt, N., Wang, M., Han, Z. Z., Li, J. B., Li, Y. J., & Zhao, Z. J. (2019). Cementation and porosity evolution of tight sandstone reservoirs in the Permian Sulige gas field, Ordos Basin (Central China). Marine and Petroleum Geology, 103, 276–293. https://doi.org/10.1016/j.marpetgeo.2019.02.010
    [Google Scholar]
  27. Fisher, R. V., & Schmincke, H. U. (1984). Pyroclastic rocks (Vol. 312–345). Springer, Berlin. https://doi.org/10.1007/978‐3‐642‐74864‐6_12
    [Google Scholar]
  28. Floyd, P. A., & Leverideg, B. E. (1987). Tectonic environment of the Devonian Gramscatho basin, South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society, 144(4), 531–542. https://doi.org/10.1144/gsjgs.144.4.0531
    [Google Scholar]
  29. Folk, R. L. (1974). Petrology of sedimentary rocks (p. 184). Hemphill Publishing.
    [Google Scholar]
  30. Franks, S., & Forester, R. (1984). Relationships among secondary porosity, pore‐fluid chemistry and carbon dioxide, Texas Gulf Coast. In D. A.McDonald & R. C.Surdam (Eds.), Clastic diagenesis (Vol. 37, pp. 63–80). AAPG Memoir, Tulsa. https://doi.org/10.1306/m37435c4
    [Google Scholar]
  31. He, J. C., Zhu, X. M., Liu, M. R., Ye, L., & Xue, M. G. (2017). Parent rock types and tectonic setting of the Permian Shanxi and Shihezi Formations in Longdong area, Ordos Basin. Journal of Palaeogeography, 12(2), 285–298. https://doi.org/10.7605/gdlxb.2017.02.022
    [Google Scholar]
  32. Hesse, R., & Schacht, U. (2011). Early diagenesis of deep‐sea sediments. Developments in Sedimentology, 63, 557–713. https://doi.org/10.1016/b978‐0‐444‐53000‐4.00009‐3
    [Google Scholar]
  33. Hillier, S., Wilson, M. J., & Merriman, R. J. (2006). Clay mineralogy of the Old Red Sandstone and Devonian sedimentary rocks of Wales, Scotland and England. Clay Minerals, 41(1), 433–471. https://doi.org/10.1180/0009855064110203
    [Google Scholar]
  34. Hong, H. L., Algeo, T. J., Fang, Q., Zhao, L. L., Ji, K. P., Yin, K., Wang, C. W., & Cheng, S. (2019). Facies dependence of the mineralogy and geochemistry of altered volcanic ash beds: An example from Permian‐Triassic transition strata in southwestern China. Earth‐Science Reviews, 190, 58–88. https://doi.org/10.1016/j.earscirev.2018.12.007
    [Google Scholar]
  35. Hower, J. C., Ruppert, L. F., & Eble, C. F. (1999). Lanthanide, yttrium, and zirconium anomalies in the fire clay coal bed, Eastern Kentucky. International Journal of Coal Geology., 39(1–3), 141–153. https://doi.org/10.1016/s0166‐5162(98)00043‐3
    [Google Scholar]
  36. Huff, W. D. (2016). K‐bentonites: A review. American Mineralogist, 101(1), 43–70. https://doi.org/10.2138/am‐2016‐5339
    [Google Scholar]
  37. Jiang, Z. W., Luo, J. L., Liu, X. S., Hu, X. Y., Ma, S. W., Hou, Y. D., Fan, L. Y., & Hu, Y. H. (2020). Provenance and implication of Carboniferous‐Permian detrital zircons from the upper Paleozoic, Southern Ordos Basin, China: Evidence from U‐Pb geochronology and Hf isotopes. Minerals, 10(3), 265. https://doi.org/10.3390/min10030265
    [Google Scholar]
  38. Jin, L., Shan, X., Shi, X., Fonnesu, M., Qiao, S., Kandasamy, S., Wang, H., Liu, S., Fang, X., & Zou, X. (2021). Hybrid event beds generated by erosional bulking of modern hyperpycnal flows on the Choshui River delta front, Taiwan Strait. Sedimentology, 68, 2500–2522. https://doi.org/10.1111/sed.12862
    [Google Scholar]
  39. Kastner, M., & Gieskes, J. M. (1976). Interstitial water profiles and sites of diagenetic reactions, Leg 35, DSDP, bellingshausen abyssal plain. Earth and Planetary Science Letters, 33(1), 11–20. https://doi.org/10.1016/0012‐821x(76)90152‐7
    [Google Scholar]
  40. Kiipli, T., Hints, R., Kallaste, T., Verš, E., & Voolma, M. (2017). Immobile and mobile elements during the transition of volcanic ash to bentonite—An example from the early Palaeozoic sedimentary section of the Baltic Basin. Sedimentary Geology, 347, 148–159. https://doi.org/10.1016/j.sedgeo.2016.11.009
    [Google Scholar]
  41. Kneller, B. C., & Branney, M. J. (1995). Sustained high‐density turbidity currents and the deposition of thick massive sands. Sedimentology, 42(4), 607–616. https://doi.org/10.1111/j.1365‐3091.1995.tb00395.x
    [Google Scholar]
  42. Lenhardt, N., Hornung, J., Hinderer, M., Böhnel, H., Torres‐Alvarado, I. S., & Trauth, N. (2011). Build‐up and depositional dynamics of an arc front volcaniclastic complex: The Miocene Tepoztlán Formation (Transmexican volcanic belt, central Mexico). Sedimentology, 58, 785–823. https://doi.org/10.1111/j.1365‐3091.2010.01203.x
    [Google Scholar]
  43. Li, K., Guo, A. L., Gao, C. Y., & Li, H. A. (2015). Tentative discussion on the source area of the Late Triassic Liuyehe basin in North Qinling Mountains and its relationship with the Ordos basin: Evidence from LA‐ICP‐MS U‐Pb dating of detrital zircons. Geological Bulletin of China, 34(8), 1426–1437 (in Chinese with English abstract).
    [Google Scholar]
  44. Li, Y.H., Guo, X.J., Liang, Y., & Wang, K. (2018). Sedimentary characteristics and provenance of the Chang 10 interval of Upper Triassic Yanchang Formation in Ordos Basin. Journal of Palaeogeography, 20(5), 787–802 (in Chinese with English abstract). doi:https://doi.org/10.7605/gdlxb.2018.05.055
    [Google Scholar]
  45. Liang, J. W., Ma, X. J., & Tao, W. X. (2020). Detrital zircon U‐Pb ages of Middle‐Late Permian sedimentary rocks from the southwestern margin of the North China Craton: Implications for provenance and tectonic evolution. Gondwana Research, 88, 250–267. https://doi.org/10.1016/j.gr.2020.07.008
    [Google Scholar]
  46. Liu, J., Xian, B., Tan, X., Zhang, L., Su, M., Wu, Q., Wang, Z., Chen, P., He, Y., Zhang, S., Li, J., Gao, Y., & Yu, Q. (2022). Depositional process and dispersal pattern of a faulted margin hyperpycnal system: The Eocene Dongying depression, Bohai Bay Basin, China. Marine and Petroleum Geology, 135, 105405. https://doi.org/10.1016/j.marpetgeo.2021.105405
    [Google Scholar]
  47. Liu, L., Wen, H., Chen, H., Wang, Z., & Xu, W. (2021). Depositional architectures and evolutional processes of channel systems in lacustrine rift basins: The Eocene Shahejie Formation, Zhanhua Depression, Bohai Bay Basin. Marine and Petroleum Geology, 131, 105155. https://doi.org/10.1016/j.marpetgeo.2021.105155
    [Google Scholar]
  48. Longman, J., Gernon, T., Palmer, M., Jones, M., Stokke, E., & Svensen, H. (2021). Marine diagenesis of tephra aided the Palaeocene‐Eocene Thermal Maximum Termination. Earth and Planetary Science Letters, 571, 117101. https://doi.org/10.1016/j.epsl.2021.117101
    [Google Scholar]
  49. Luo, S.S., Pan, Z.Y., Lv, Q.Q., He, W.L., & Wen, S. (2017). The Upper Paleozoic detrital zircon U‐Pb geochronology and its tectonic significance in southwestern Ordos Basin. Geology in China, 44(3), 556–574 (in Chinese with English abstract). https://doi.org/10.12029/gc20170312
    [Google Scholar]
  50. Magee, C., Jackson, C. A. L., & Schofield, N. (2013). The influence of normal fault geometry on igneous sill emplacement and morphology. Geology, 41(4), 407–410. https://doi.org/10.1130/G33824.1
    [Google Scholar]
  51. Magee, C., Jackson, C. L., & Schofield, N. (2014). Diachronous sub‐volcanic intrusion along deep‐water margins: Insights from the Irish Rockall Basin. Basin Research, 26(1), 85–105. https://doi.org/10.1111/bre.12044
    [Google Scholar]
  52. Manville, V., Németh, K., & Kano, K. (2009). Source to sink: A review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sedimentary Geology, 220, 136–161. https://doi.org/10.1016/j.sedgeo.2009.04.022
    [Google Scholar]
  53. Miall, A. D. (1985). Architectural‐Element Analysis: A new method of facies analysis applied to fluvial deposits. Earth‐Science Reviews, 22(4), 261–308. https://doi.org/10.1016/0012‐8252(85)90001‐7
    [Google Scholar]
  54. Millett, J. M., Jerram, D. A., Manton, B., Planke, S., Ablard, P., Wallis, D., Hole, M. J., Brandsen, H., Jolley, D. W., & Dennehy, C. (2021). The Rosebank Field, NE Atlantic: Volcanic characterisation of an inter‐lava hydrocarbon discovery. Basin Research, 33, 2883–2913. https://doi.org/10.1111/bre.12585
    [Google Scholar]
  55. Mulder, T., Migeon, S., Savoye, B., & Faugères, J. C. (2001). Inversely graded turbidite sequences in the deep Mediterranean: A record of deposits from flood‐generated turbidity currents?Geo‐Marine Letters, 21(2), 86–93. https://doi.org/10.1007/s003670100071
    [Google Scholar]
  56. Mulder, T., & Syvitski, J. P. (1995). Turbidity currents generated at river mouths during exceptional discharges to the world oceans. Journal of Geology, 103(3), 285–299. https://doi.org/10.1086/629747
    [Google Scholar]
  57. Mulder, T., Syvitski, J. P. M., Migeon, S., Faugères, J. C., & Savoye, B. (2003). Marine hyperpycnal flows: Initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20(6), 861–882. https://doi.org/10.1016/j.marpetgeo.2003.01.003
    [Google Scholar]
  58. Murray, N. A., McManus, J., Palmer, M. R., Haley, B., & Manners, H. (2018). Diagenesis in tephra‐rich sediments from the Lesser Antilles volcanic arc: Pore fluid constraints. Geochimica et Cosmochimica Acta, 228(2), 119–135. https://doi.org/10.1016/j.gca.2018.02.039
    [Google Scholar]
  59. Mutti, E., Davoli, G., Tinterri, R., & Zavala, C. (1996). The importance of ancient fluvio‐deltaic systems dominated by catastrophic flooding in tectonically active basins. Memorie Di Scienze Geologiche, 48, 233–291.
    [Google Scholar]
  60. Mutti, E., Tinterri, R., Benevelli, G., Biase, D. D., & Cavanna, G. (2003). Deltaic, mixed and turbidite sedimentation of ancient foreland basins. Marine and Petroleum Geology, 20(6), 733–755. https://doi.org/10.1016/j.marpetgeo.2003.09.001
    [Google Scholar]
  61. Mutti, E., Tinterri, R., Biase, D. D., Fava, L., Mavilla, N., Angella, S., & Calabrese, L. (2000). Delta‐front facies associations of ancient flood‐dominated fluvio‐deltaic systems. Revista de la Sociedad Geológica de España, 13(2), 165–190.
    [Google Scholar]
  62. Paredes, J. M., Giacosa, R. E., & Heredia, N. (2009). Sedimentary Evolution of Neogene continental deposits (ñirihuau formation) along the ñirihuau river, North Patagonian Andes of Argentina. Journal of South American Earth Sciences, 28, 74–88. https://doi.org/10.1016/j.jsames.2009.01.002
    [Google Scholar]
  63. Petter, A. L., & Steel, R. J. (2006). Hyperpycnal flow variability and slope organization on an Eocene shelf margin, central basin, Spitsbergen. AAPG Bulletin, 90(10), 1451–1472. https://doi.org/10.1306/04240605144
    [Google Scholar]
  64. Plink‐Björklund, P., & Steel, R. J. (2004). Initiation of turbidity currents: Outcrop evidence for Eocene hyperpycnal flow turbidites. Sedimentary Geology, 165(1–2), 29–52. https://doi.org/10.1016/j.sedgeo.2003.10.013
    [Google Scholar]
  65. Ponciano, L. C., & Della‐Fávera, J. C. (2009). Flood‐dominated fluvio‐deltaic system: A new depositional model for the Devonian Cabeças Formation, Parnaíba Basin, Piauí, Brazil. Anais da Academia Brasileira de Ciências, 81(4), 769–780. https://doi.org/10.1590/s0001‐37652009000400014
    [Google Scholar]
  66. Rard, J. A. (1985). Chemistry and thermodynamics of europium and some of its simpler inorganic compounds and aqueous species. Chemical Reviews, 85, 555–582. https://doi.org/10.1021/cr00070a003
    [Google Scholar]
  67. Ratschbacher, L., Hacker, B. R., Calvert, A., Webb, L. E., Grimmer, J. C., McWilliams, M. O., Ireland, T., Dong, S. W., & Hu, J. M. (2003). Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 366, 1–53. https://doi.org/10.1016/s0040‐1951(03)00053‐2
    [Google Scholar]
  68. Reidel, S. P., & Tolan, T. L. (2013). The late Cenozoic evolution of the Columbia River system in the Columbia River Flood Basalt Province: The Columbia River Flood Basalt Province. Special Paper of the Geological Society of America, 497(8), 201–230. https://doi.org/10.1130/2013.2497(08)
    [Google Scholar]
  69. Richards, A., Argles, T., Harris, N., Parrish, R., Ahmad, T., Darbyshire, F., & Draganits, E. (2005). Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth and Planetary Science Letters, 236, 773–796. https://doi.org/10.1016/j.epsl.2005.05.034
    [Google Scholar]
  70. Sætre, C., Hellevang, H., Dennehy, C., Dypvik, H., & Clark, S. (2018). A diagenetic study of intrabasaltic siliciclastics sandstones from the Rosebank Field. Marine and Petroleum Geology, 98, 335–355. https://doi.org/10.1016/j.marpetgeo.2018.08.026
    [Google Scholar]
  71. Schmidt, V., & McDonald, D. A. (1979). The role of secondary porosity generation in the course of sandstone diagenesis. In P. A.Scholle & P. R.Schluger (Eds.), Aspects of diagenesis (Vol. 26, pp. 175–207). SEPM Special Publication, Tulsa.
    [Google Scholar]
  72. Shchepetkina, A., Gingras, M. K., & Pemberton, S. G. (2018). Modern observations of floccule ripples: Petitcodiac River estuary, New Brunswick, Canada. Sedimentology, 65(2), 582–596. https://doi.org/10.1111/sed.12393
    [Google Scholar]
  73. Shen, Y. L., Guo, Y. H., Li, Z. F., Wei, X. S., Xue, L. X., & Liu, J. B. (2017). Distribution of radioactive elements (U, Th) in the Upper Paleozoic coal‐bearing strata of the eastern Ordos Basin. Journal of Petroleum Science and Engineering, 157, 1130–1142. https://doi.org/10.1016/j.petrol.2017.08.032
    [Google Scholar]
  74. Slaughter, M., & Earley, J. W. (Eds.). (1965). Mineralogy and geological significance of the Mowry bentonites, Wyoming. In Geological society of America special paper (pp. 1–96). Geological Society of America.
    [Google Scholar]
  75. Song, L. J., Chen, J. L., Zhang, Y. L., Liu, C. Y., Wu, C. L., & Zhang, X. H. (2010). U‐Pb chronological characteristics of Late Triassic sediment in Southwestern Ordos and its tectonic significance. Acta Geologica Sinica, 84(3), 370–386 (in Chinese with English abstract).
    [Google Scholar]
  76. Sparks, R. S., Bonnecaze, R. T., Huppert, H. E., Lister, J. R., Hallworth, M. A., Mader, H., & Phillips, J. (1993). Sediment‐laden gravity currents with reversing buoyancy. Earth and Planetary Science Letters, 114, 243–257. https://doi.org/10.1016/0012‐821x(93)90028‐8
    [Google Scholar]
  77. Spears, D. A. (2012). The origin of tonsteins, an overview, and links with seatearths, fireclays and fragmental clay rocks. International Journal of Coal Geology, 94, 22–31. https://doi.org/10.1016/j.coal.2011.09.008
    [Google Scholar]
  78. Steel, E., Simms, A. R., Warrick, J., & Yokoyama, Y. (2016). Highstand shelf fans: The role of buoyancy reversal in the deposition of a new type of shelf sand body. Geological Society of America Bulletin, 128(11), 1717–1724. https://doi.org/10.1130/b31438.1
    [Google Scholar]
  79. Stefansson, A., & Gislason, S. R. (2001). Chemical weathering of basalts, southwest Iceland: Effect of rock crystallinity and secondary minerals on chemical fluxes to the Ocean. American Journal of Science, 301(6), 513–556. https://doi.org/10.2475/ajs.301.6.513
    [Google Scholar]
  80. Summa, L. L., & Verosub, K. L. (1992). Trace element mobility during early diagenesis of volcanic ash: Applications to stratigraphic correlation. Quaternary International, 13, 149–157. https://doi.org/10.1016/1040‐6182(92)90022‐t
    [Google Scholar]
  81. Sumner, E. J., Amy, L. A., & Talling, P. J. (2008). Deposit structure and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research, 78, 529–547. https://doi.org/10.2110/jsr.2008.062
    [Google Scholar]
  82. Sun, D., Feng, Q., Liu, Z., & Xia, L. (2017). Detrital zircon U‐Pb dating of the Upper Triassic Yanchang Formation in southwestern Ordos Basin and its provenance significance. Acta Geologica Sinica, 91(11), 2521–2544 (in Chinese with English abstract).
    [Google Scholar]
  83. Sun, X. P., Xu, X. Y., Chen, J. L., Gao, T., Li, T., Li, X. B., & Li, X. Y. (2013). Geochemical characteristics and chronology of the Jiangligou granitic pluton in west Qinling and their geological significance. Acta Geologica Sinica, 87(3), 330–342 (in Chinese with English abstract).
    [Google Scholar]
  84. Tan, C., Ruan, Z., Yu, B.S., Liu, C., & Su, L. (2019). Tectonics‐provenance‐palaeogeomorphology system evolution of the western margin of Ordos Basin during the Middle‐Late Triassic: The evidences from U‐Pb detrital zircon geochronology, geochemistry and petrology. Acta Petrolei Sinica, 40(6), 660–676 (in Chinese with English abstract). doi:https://doi.org/10.7623/syxb201906003
    [Google Scholar]
  85. Ver Straeten, C. A. (2004). K‐bentonites, volcanic ash preservation, and implications for early to Middle Devonian volcanism in the Acadian orogen, eastern North America. Geological Society of America Bulletin, 116(3), 474. https://doi.org/10.1130/b25244.1
    [Google Scholar]
  86. Virolle, M., Brigaud, B., Bourillot, R., Féniès, H., Portier, E., Duteil, T., Nouet, J., Patrier, P., & Beaufort, D. (2018). Detrital clay grain coats in estuarine clastic deposits: Origin and spatial distribution within a modern sedimentary system, the Gironde estuary (south‐west France). Sedimentology, 66, 859–894. https://doi.org/10.1111/sed.12520
    [Google Scholar]
  87. White, J. D. L., & Houghton, B. F. (2006). Primary volcaniclastic rocks. Geology, 34, 677–680. https://doi.org/10.1130/g22346.1
    [Google Scholar]
  88. White, R. J., Spinelli, G. A., Mozley, P. S., & Dunbar, N. W. (2010). Importance of volcanic glass alteration to sediment stabilization: Offshore Japan. Sedimentology, 58(5), 1138–1154. https://doi.org/10.1111/j.1365‐3091.2010.01198.x
    [Google Scholar]
  89. Wilson, R. D., & Schieber, J. (2014). Hyperpycnites in the Lower Genesee Group of Central New York, USA: Implications for mud transport in epicontinental seas. Journal of Sedimentary Research, 84(10), 866–874. https://doi.org/10.2110/jsr.2014.70
    [Google Scholar]
  90. Wilson, R. D., & Schieber, J. (2017). Sediment transport processes and lateral facies gradients across a muddy shelf: Examples from the Geneseo Formation of Central New York, United States. AAPG Bulletin, 101(4), 423–431. https://doi.org/10.1306/021417dig17093
    [Google Scholar]
  91. Worden, R. H., & Morad, S. (2003). Clay minerals in sandstones: Controls on formation, distribution. In R. H.Worden & S.Morad (Eds.), Clay mineral cements in sandstones (pp. 3–41). Blackwell Publishing.
    [Google Scholar]
  92. Xian, B. Z., Wang, J. H., Gong, C. L., Yin, Y., Chao, C. Z., Liu, J. P., Zhang, G. D., & Yan, Q. (2018). Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, central China. Sedimentary Geology, 368, 68–82. https://doi.org/10.1016/j.sedgeo.2018.03.006
    [Google Scholar]
  93. Xie, X. (2016). Provenance and sediment dispersal of the Triassic Yanchang Formation, southwest Ordos Basin, China, and its implications. Sedimentary Geology, 335, 1–16. https://doi.org/10.1016/j.sedgeo.2015.12.016
    [Google Scholar]
  94. Yang, J. H., Wu, F. Y., Shao, J. A., Wilde, S. A., Xie, L. W., & Liu, X. M. (2006). Constraints on the timing of uplift of the Yanshan fold and thrust belt, North China. Earth and Planetary Science Letters, 246(3–4), 336–352. https://doi.org/10.1016/j.epsl.2006.04.029
    [Google Scholar]
  95. Yang, T., Zhang, Y. F., Yang, L., Yi, P. F., He, Y. F., & Wu, T. (2018). Detrital zircon U‐Pb age of Mesozoic Donghe Group in South Qinling Mountain and its geological significance. Acta Petrological et Mineralogica, 37, 211–229 (in Chinese with English abstract).
    [Google Scholar]
  96. Zavala, C., & Arcuri, M. (2016). Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics. Sedimentary Geology, 337, 36–54. https://doi.org/10.1016/j.sedgeo.2016.03.008
    [Google Scholar]
  97. Zavala, C., Arcuri, M., Meglio, M. D., Diaz, H. G., & Contreras, C. (2011). A genetic facies tract for the analysis of sustained hyperpycnal flow deposits. In C.Zavala & R.Slatt (Eds.), Sediment transfer from shelf to deep water‐revisiting the delivery system (Vol. 61, pp. 31–51). AAPG Studies in Geology, Tulsa.
    [Google Scholar]
  98. Zavala, C., Ponce, J. J., Arcuri, M., Drittanti, D., Freije, H., & Asensio, M. (2006). Ancient lacustrine hyperpycnites: A depositional model from a case study in the Rayoso Formation (Cretaceous) of west‐central Argentina. Journal of Sedimentary Research, 76(1–2), 41–59. https://doi.org/10.2110/jsr.2006.12
    [Google Scholar]
  99. Zhang, S. H., Zhao, Y., Song, B., Yang, Z. Y., Hu, J. M., & Wu, H. (2007). Carboniferous granitic plutons from the northern margin of the North China block: Implications for a late Paleozoic active continental margin. Journal of the Geological Society, 164, 451–463. https://doi.org/10.1144/0016‐76492005‐190
    [Google Scholar]
  100. Zhao, P., Jahn, B. M., Xu, B., Liao, W., & Wang, Y. Y. (2016). Geochemistry, geochronology and zircon Hf isotopic study of peralkaline‐alkaline intrusions along the northern margin of the North China Craton and its tectonic implication for the southeastern Central Asian Orogenic Belt. Lithos, 261, 92–108. https://doi.org/10.1016/j.lithos.2015.12.013
    [Google Scholar]
  101. Zhu, S. F., Cui, H., Chen, J. H., Luo, G. J., Wang, W. Y., Yang, Y., & Shi, Y. (2021). Sedimentary system and sandstone reservoir petrology of a shallow water delta: Case study of the Shan‐1 and He‐8 members in the western Ordos Basin. Acta Sedimentologica Sinica, 39(1), 126–139. https://doi.org/10.14027/j.issn.1000⁃0550.2020.115 (in Chinese with English abstract).
    [Google Scholar]
  102. Zhu, S. F., Jia, Y., Cui, H., Dowey, P. J., Taylor, K. G., Zhu, X. M., & Liang, T. (2019). Alteration and burial dolomitization of fine‐grained, intermediate volcaniclastic rocks under saline‐alkaline conditions: Bayindulan Sag in the Er'Lian Basin, China. Marine and Petroleum Geology, 110, 621–637. https://doi.org/10.1016/j.marpetgeo.2019.07.045
    [Google Scholar]
  103. Zhu, S. F., Wang, X. X., Qin, Y., Jia, Y., Zhu, X. M., Zhang, J. T., & Hu, Y. Q. (2017). Occurrence and origin of pore‐lining chlorite and its effectiveness on preserving porosity in sandstone of the Middle Yanchang Formation in the Southwest Ordos Basin. Applied Clay Science, 148(C), 25–38. https://doi.org/10.1016/j.clay.2017.08.005
    [Google Scholar]
  104. Zhu, S. F., Zhu, X. M., Jia, Y., Cui, H., & Wang, W. Y. (2020). Diagenetic alteration, pore‐throat network, and reservoir quality of tight gas sandstone reservoirs: A case study of the upper Paleozoic sequence in the northern Tianhuan Depression in the Ordos Basin, China. AAPG Bulletin, 104(11), 2297–2324. https://doi.org/10.1306/08151919058
    [Google Scholar]
  105. Ziegler, K. (2006). Clay minerals of the Permian Rotliegend Group in the North Sea and adjacent areas. Clay Minerals, 41(1), 355–393. https://doi.org/10.1180/0009855064110200
    [Google Scholar]
  106. Zielinski, R. A. (1985). Element mobility during alteration of silicic ash to kaolinite‐a study of tonstein. Sedimentology, 32(4), 567–579. https://doi.org/10.1111/j.1365‐3091.1985.tb00471.x
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12688
Loading
/content/journals/10.1111/bre.12688
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error