1887
Volume 34, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

Testing models that link climate and solid Earth tectonics in mountain belts requires independent erosional, structural and climatic histories. Two well‐preserved stratigraphic sections of the Himalayan foreland basin are exposed in NW India. The Jawalamukhi (13–5 Ma) and Joginder Nagar sections (21–13 Ma) are dated by magnetostratigraphy and span a period of significant climate change and tectonic evolution. We combine sediment geochemistry, detrital zircon U–Pb dating and apatite fission track analyses to reconstruct changes in the patterns of erosion and exhumation in this area from the Early Miocene to Pliocene. The provenance of the foreland sediments reflects a mixture of Tethyan and Greater Himalayan sources from 21 to 11 Ma, with influx from the Inner Lesser Himalaya starting after 11 Ma, and a strong increase in Crystalline Inner Lesser Himalayan erosion after 8 Ma. This distinct shift in provenance most likely reflects exhumation of the Kullu‐Rampur Window, as well as the northward motion of the Jawalamukhi section towards the Himalayas, drainage reorganization in the foreland, and/or tectonically driven drainage capture in the mountains. Prior to 10.5 Ma sediment came from a large river whose sources were Greater Himalaya and Haimanta dominated, likely a palaeo‐Sutlej, while after 8 Ma the source river was dominated by a more local drainage. Our work is consistent with Nd isotope and mica Ar‐Ar constraints from the same sections that demonstrate initial Inner Lesser Himalayan unroofing in this region from 11 Ma, earlier than the 2 Ma implied from the marine record and during a period of summer monsoon weakening when fission track data indicate very rapid cooling and erosion of the Lesser Himalaya sources from no later than 10 Ma. Tectonically driven rock uplift coupled with southerly migration of the maximum rainfall belt during a time of drying, may have focused erosion over the Lesser Himalayan Duplex and created the Kullu‐Rampur Window.

,

Evolving geography and geology of the NW Himalayas showing how the provenance of the sections at Jawalamukhi and Joginder Nagar have evolved because of their motion towards the mountains, the changing course of the river and progressive unroofing of the Lesser Himalaya in the Kullu‐Rampur Window.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12689
2022-11-18
2022-11-30
Loading full text...

Full text loading...

References

  1. Aitchison, J. C., Ali, J. R., & Davis, A. S. (2007). When and where did India and Asia collide?Journal of Geophysical Research, 112, B05423. https://doi.org/10.1029/2006JB004706
    [Google Scholar]
  2. Alizai, A., Carter, A., Clift, P. D., VanLaningham, S., Williams, J. C., & Kumar, R. (2011). Sediment provenance, reworking and transport processes in the Indus River by U–Pb dating of detrital zircon grains. Global and Planetary Change, 76, 33–55. https://doi.org/10.1016/j.gloplacha.2010.11.008
    [Google Scholar]
  3. Badgley, C., & Tauxe, L. (1990). Paleomagnetic stratigraphy and time in sediments: Studies in Alluvial Siwalik rocks of Pakistan. The Journal of Geology, 98, 457–477. https://doi.org/10.1086/629419
    [Google Scholar]
  4. Beaumont, C., Jamieson, R. A., Nguyen, M. H., & Lee, B. (2001). Himalayan tectonics explained by extrusion of a low‐viscosity crustal channel coupled to focused surface denudation. Nature, 414, 738–742. https://doi.org/10.1038/414738a
    [Google Scholar]
  5. Bera, M. K., Sarkar, A., Chakraborty, P. P., Loyal, R. S., & Sanyal, P. (2008). Marine to continental transition in Himalayan foreland. Geological Society of America Bulletin, 120, 1214–1232. https://doi.org/10.1130/B26265.1
    [Google Scholar]
  6. Bernet, M., van der Beek, P., Pik, R., Huyghe, P., Mugnier, J.‐L., Labrin, E., & Szulc, A. G. (2006). Miocene to recent exhumation of the central Himalaya determined from combined detrital zircon fission‐track and U/Pb analysis of Siwalik sediments, Western Nepal. Basin Research, 18, 393–412. https://doi.org/10.1111/j.1365‐2117.2006.00303
    [Google Scholar]
  7. Betzler, C., Eberli, G. P., Kroon, D., Wright, J. D., Swart, P. K., Nath, B. N., Alvarez‐Zarikian, C. A., Alonso‐García, M., Bialik, O. M., Blättler, C. L., Guo, J. A., Haffen, S., Horozai, S., Inoue, M., Jovane, L., Lanci, L., Laya, J. C., Mee, A. L. H., Lüdmann, T., … Young, J. R. (2016). The abrupt onset of the modern South Asian monsoon winds. Scientific Reports, 6, 29838. https://doi.org/10.1038/srep29838
    [Google Scholar]
  8. Bialik, O. M., Auer, G., Ogawa, N. O., Kroon, D., Waldmann, N. D., & Ohkouchi, N. (2020). Monsoons, upwelling, and the deoxygenation of the Northwestern Indian Ocean in response to middle to Late Miocene global climatic shifts. Paleoceanography and Paleoclimatology, 35, e2019PA003762. https://doi.org/10.1029/2019PA003762
    [Google Scholar]
  9. Bollinger, L., Avouac, J. P., Beyssac, O., Catlos, E. J., Harrison, T. M., Grove, M., Goffe, B., & Sapkota, S. (2004). Thermal structure and exhumation history of the Lesser Himalaya in central Nepal. Tectonics, 23, 19. https://doi.org/10.1029/2003TC001564
    [Google Scholar]
  10. Bookhagen, B., & Burbank, D. W. (2006). Topography, relief, and TRMM‐derived rainfall variations along the Himalaya. Geophysical Research Letters, 33, L08405. https://doi.org/10.1029/2006GL026037
    [Google Scholar]
  11. Boos, W. R., & Kuang, Z. (2010). Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218–222. https://doi.org/10.1038/nature08707
    [Google Scholar]
  12. Brookfield, M. E., & Andrews‐Speed, C. P. (1984). Sedimentology, petrography and tectonic significance of the shelf, flysch and molasse clastic deposits across the Indus suture zone, Ladakh, NW India. Sedimentary Geology, 40, 249–286. https://doi.org/10.1016/0037‐0738(84)90011‐3
    [Google Scholar]
  13. Brozovic, N., & Burbank, D. W. (2000). Dynamic fluvial systems and gravel progradation in the Himalayan foreland. GSA Bulletin, 112, 394–412. https://doi.org/10.1130/0016‐7606(2000)112<394:Dfsagp>2.0.Co;2
    [Google Scholar]
  14. Burbank, D. W., Beck, R. A., & Mulder, T. (1996). The Himalayan foreland basin. In A.Yin & T. M.Harrison (Eds.), The tectonics of Asia (pp. 149–188). Cambridge University Press.
    [Google Scholar]
  15. Caddick, M. J., Bickle, M. J., Harris, N. B. W., Holland, T. J. B., Horstwood, M. S. A., Parrish, R. R., & Ahmad, T. (2007). Burial and exhumation history of a Lesser Himalayan schist: Recording the formation of an inverted metamorphic sequence in NW India. Earth and Planetary Science Letters, 264, 375–390. https://doi.org/10.1016/j.epsl.2007.09.011
    [Google Scholar]
  16. Cawood, P. A., Johnson, M. R. W., & Nemchin, A. A. (2007). Early Palaeozoic orogenesis along the Indian Margin of Gondwana: Tectonic response to Gondwana assembly. Earth and Planetary Science Letters, 255, 70–84. https://doi.org/10.1016/j.epsl.2006.12.006
    [Google Scholar]
  17. Célérier, J., Harrison, T. M., Webb, A. A. G., & Yin, A. (2009). The Kumaun and Garwhal Lesser Himalaya, India: Part 1. Structure and stratigraphy. GSA Bulletin, 121, 1262–1280. https://doi.org/10.1130/b26344.1
    [Google Scholar]
  18. Chirouze, F., Huyghe, P., Chauvel, C., van der Beek, P., Bernet, M., & Mugnier, J.‐L. (2015). Stable drainage pattern and variable exhumation in the western Himalaya since the middle Miocene. Journal of Geology, 123, 1–20. https://doi.org/10.1086/679305
    [Google Scholar]
  19. Clark, M. K. (2012). Continental collision slowing due to viscous mantle lithosphere rather than topography. Nature, 483, 74–77. https://doi.org/10.1038/nature10848
    [Google Scholar]
  20. Clift, P. D. (2017). Cenozoic sedimentary records of climate‐tectonic coupling in the western Himalaya. Progress in Earth and Planetary Science, 4, 39. https://doi.org/10.1186/s40645‐017‐0151‐8
    [Google Scholar]
  21. Clift, P. D., & Blusztajn, J. S. (2005). Reorganization of the western Himalayan river system after five million years ago. Nature, 438, 1001–1003. https://doi.org/10.1038/nature04379
    [Google Scholar]
  22. Clift, P. D., Giosan, L., Carter, A., Garzanti, E., Galy, V., Tabrez, A. R., Pringle, M., Campbell, I. H., France‐Lanord, C., Blusztajn, J., Allen, C., Alizai, A., Lückge, A., Danish, M., & Rabbani, M. M. (2010). Monsoon control over erosion patterns in the western Himalaya: Possible feed‐backs into the tectonic evolution. In P. D.Clift, R.Tada, & H.Zheng (Eds.), Monsoon evolution and tectonic‐climate linkage in Asia (Vol. 342, pp. 181–213). Geological Society, Special Publication.
    [Google Scholar]
  23. Clift, P. D., Hodges, K., Heslop, D., Hannigan, R., Hoang, L. V., & Calves, G. (2008). Greater Himalayan exhumation triggered by early Miocene monsoon intensification. Nature Geoscience, 1, 875–880. https://doi.org/10.1038/ngeo351
    [Google Scholar]
  24. Clift, P. D., & Jonell, T. N. (2021a). Monsoon controls on sediment generation and transport: Mass budget and provenance constraints from the Indus River catchment, delta and submarine fan over tectonic and multi‐millennial timescales. Earth‐Science Reviews, 220, 103682. https://doi.org/10.1016/j.earscirev.2021.103682
    [Google Scholar]
  25. Clift, P. D., & Jonell, T. N. (2021b). Himalayan‐Tibetan erosion is not the cause of Neogene global cooling. Geophysical Research Letters, 48(8), e2020GL087742. https://doi.org/10.1029/2020GL087742
    [Google Scholar]
  26. Clift, P. D., Kulhanek, D. K., Zhou, P., Bowen, M. G., Vincent, S. M., Lyle, M., & Hahn, A. (2020). Chemical weathering and erosion responses to changing monsoon climate in the Late Miocene of Southwest Asia. Geological Magazine, 157, 939–955. https://doi.org/10.1017/S0016756819000608
    [Google Scholar]
  27. Clift, P. D., Lee, J. I., Hildebrand, P., Shimizu, N., Layne, G. D., Blusztajn, J., Blum, J. D., Garzanti, E., & Khan, A. A. (2002). Nd and Pb isotope variability in the Indus River system; implications for sediment provenance and crustal heterogeneity in the western Himalaya. Earth and Planetary Science Letters, 200, 91–106. https://doi.org/10.1016/S0012‐821X(02)00620‐9
    [Google Scholar]
  28. Clift, P. D., Shimizu, N., Layne, G., Gaedicke, C., Schlüter, H. U., Clark, M. K., & Amjad, S. (2001). Development of the Indus Fan and its significance for the erosional history of the western Himalaya and Karakoram. Geological Society of America Bulletin, 113, 1039–1051. https://doi.org/10.1130/0016‐7606(2001)113<1039:DOTIFA>2.0.CO;2
    [Google Scholar]
  29. Clift, P. D., Zhou, P., Stockli, D. F., & Blusztajn, J. (2019). Regional Pliocene exhumation of the Lesser Himalaya in the Indus drainage. Solid Earth, 10, 647–661. https://doi.org/10.5194/se‐10‐647‐2019
    [Google Scholar]
  30. Colleps, C. L., Stockli, D. F., McKenzie, N. R., Webb, A. A. G., & Horton, B. K. (2019). Neogene kinematic evolution and exhumation of the NW India Himalaya: Zircon geo‐ and thermochronometric insights from the fold‐thrust belt and foreland basin. Tectonics, 38, 2059–2086. https://doi.org/10.1029/2018tc005304
    [Google Scholar]
  31. Copley, A., Avouac, J.‐P., & Royer, J.‐Y. (2010). The India‐Asia collision and the Cenozoic slowdown of the Indian plate; implications for the forces driving plate motions. Journal of Geophysical Research, 115, B03410. https://doi.org/10.1029/2009JB006634
    [Google Scholar]
  32. Corrigan, J. D., & Crowley, J. L. (1990). Fission track analysis of detrital Apatites from sites 717 and 718, Leg 116, Central Indian Ocean. Proceedings of the Ocean Drilling Program, Scientific Results, 116, 75–92. https://doi.org/10.2973/odp.proc.sr.116.118.1990
    [Google Scholar]
  33. Curray, J. R., Emmel, F. J., & Moore, D. G. (2003). The Bengal Fan: Morphology, geometry, stratigraphy, history and processes. Marine and Petroleum Geology, 19, 1191–1223. https://doi.org/10.1016/S0264‐8172(03)00035‐7
    [Google Scholar]
  34. Davis, D., Suppe, J., & Dahlen, F. A. (1983). Mechanics of fold‐and‐thrust belts and accretionary wedges. Journal of Geophysical Research: Solid Earth, 88, 1153–1172. https://doi.org/10.1029/JB088iB02p01153
    [Google Scholar]
  35. DeCelles, P. G., Carrapa, B., Gehrels, G. E., Chakraborty, T., & Ghosh, P. (2016). Along‐strike continuity of structure, stratigraphy, and kinematic history in the Himalayan thrust belt: The View from Northeastern India. Tectonics, 35, 2995–3027. https://doi.org/10.1002/2016TC004298
    [Google Scholar]
  36. DeCelles, P. G., Gehrels, G. E., Najman, Y., Martin, A. J., Carter, A., & Garzanti, E. (2004). Detrital geochronology and geochemistry of cretaceous–early Miocene strata of Nepal: Implications for timing and diachroneity of Initial Himalayan orogenesis. Earth and Planetary Science Letters, 227, 313–330. https://doi.org/10.1016/j.epsl.2004.08.019
    [Google Scholar]
  37. DeCelles, P. G., Gehrels, G. E., Quade, J., Ojha, T. P., Kapp, P. A., & Upreti, B. N. (1998). Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold‐thrust belt, western Nepal. Geological Society of America Bulletin, 110, 2–21. https://doi.org/10.1130/0016‐7606(1998)110<0002:NFBDEU>2.3.CO;2
    [Google Scholar]
  38. DeCelles, P. G., Kapp, P., Gehrels, G. E., & Ding, L. (2014). Paleocene‐Eocene foreland basin evolution in the Himalaya of Southern Tibet and Nepal: Implications for the age of initial India‐Asia collision. Tectonics, 33, 824–849. https://doi.org/10.1002/2014TC003522
    [Google Scholar]
  39. Deeken, A., Thiede, R. C., Sobel, E. R., Hourigan, J. K., & Strecker, M. R. (2011). Exhumational variability within the Himalaya of Northwest India. Earth and Planetary Science Letters, 305, 103–114. https://doi.org/10.1016/j.epsl.2011.02.045
    [Google Scholar]
  40. Dettman, D. L., Kohn, M. J., Quade, J., Ryerson, F. J., Ojha, T. P., & Hamidullah, S. (2001). Seasonal stable isotope evidence for a strong Asian monsoon throughout the Past 10.7 M.Y. Geology, 29, 31–34. https://doi.org/10.1130/0091‐7613(2001)029<0031:SSIEFA>2.0.CO;2
    [Google Scholar]
  41. DiPietro, J. A., & Pogue, K. R. (2004). Tectonostratigraphic subdivisions of the Himalaya: A view from the West. Tectonics, 23, TC5001. https://doi.org/10.1029/2003TC001554
    [Google Scholar]
  42. Eugster, P., Thiede, R. C., Scherler, D., Stübner, K., Sobel, E. R., & Strecker, M. R. (2018). Segmentation of the main Himalayan thrust revealed by low‐temperature thermochronometry in the western Indian Himalaya. Tectonics, 37, 2710–2726. https://doi.org/10.1029/2017TC004752
    [Google Scholar]
  43. Farnsworth, A., Lunt, D. J., Robinson, S. A., Valdes, P. J., Roberts, W. H. G., Clift, P. D., Markwick, P., Su, T., Wrobel, N., Bragg, F., Kelland, S.‐J., & Pancost, R. D. (2019). Past east Asian monsoon evolution controlled by paleogeography, not CO2. Science Advances, 5, eaax1697. https://doi.org/10.1126/sciadv.aax1697
    [Google Scholar]
  44. Feakins, S. J., Liddy, H. M., Tauxe, L., Galy, V., Feng, X., Tierney, J. E., Miao, Y., & Warny, S. (2020). Miocene C4 grassland expansion as recorded by the Indus Fan. Paleoceanography and Paleoclimatology, 35, e2020PA003856. https://doi.org/10.1029/2020PA003856
    [Google Scholar]
  45. Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924. https://doi.org/10.1130/0091‐7613(1995)023<0921:UTEOPM>2.3.CO;2
    [Google Scholar]
  46. Filippelli, G. M. (1997). Intensification of the Asian monsoon and a chemical weathering event in the Late Miocene‐Early Pliocene: Implications for late Neogene climate change. Geology, 25, 27–30. https://doi.org/10.1130/0091‐7613(1997)025<0027:IOTAMA>2.3.CO;2
    [Google Scholar]
  47. France‐Lanord, C., Derry, L., & Michard, A. (1993). Evolution of the Himalaya since Miocene TIME: Isotopic and sedimentologic evidence from the Bengal Fan. In P. J.Treloar & M. P.Searle (Eds.), Himalayan Tectonics (Vol. 74, pp. 603–621). Geological Society, Special Publications.
    [Google Scholar]
  48. Frank, W., Grasemann, B., Guntli, P., & Miller, C. (1995). Geological map of the Kishtwar‐Chamba‐Kulu Region (NW Himalayas, India). Jahrbuch der Geologischen Bundesanstalt, 138, 299–308.
    [Google Scholar]
  49. Galbraith, R. F. (1990). The radial plot: Graphical assessment of spread in ages. Nuclear Tracks and Radiation Measurement, 17, 207–214. https://doi.org/10.1016/1359‐0189(90)90036‐W
    [Google Scholar]
  50. Garzanti, E., Baud, A., & Mascle, G. (1987). Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodinamica Acta, 1, 297–312. https://doi.org/10.1080/09853111.1987.11105147
    [Google Scholar]
  51. Garzanti, E., Liang, W., Andò, S., Clift, P. D., Resentini, A., Vermeesch, P., & Vezzoli, G. (2020). Provenance of Thal Desert sand: Focused erosion in the western Himalayan syntaxis and foreland‐basin deposition driven by latest quaternary climate change. Earth‐Science Reviews, 207, 103220. https://doi.org/10.1016/j.earscirev.2020.103220
    [Google Scholar]
  52. Garzanti, E., Vezzoli, G., Ando, S., Paparella, P., & Clift, P. D. (2005). Petrology of Indus River sands; a key to interpret erosion history of the Western Himalayan syntaxis. Earth and Planetary Science Letters, 229, 287–302. https://doi.org/10.1016/j.epsl.2004.11.008
    [Google Scholar]
  53. Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A., McQuarrie, N., & Yin, A. (2011). Detrital zircon geochronology of pre‐tertiary strata in the Tibetan‐Himalayan Orogen. Tectonics, 30, TC5016. https://doi.org/10.1029/2011tc002868
    [Google Scholar]
  54. Godard, V., Bourlès, D. L., Spinabella, F., Burbank, D. W., Bookhagen, B., Fisher, G. B., Moulin, A., & Léanni, L. (2014). Dominance of tectonics over climate in Himalayan denudation. Geology, 42, 243–246. https://doi.org/10.1130/g35342.1
    [Google Scholar]
  55. Green, O. R., Searle, M. P., Corfield, R. I., & Corfield, R. M. (2008). Cretaceous‐tertiary carbonate platform evolution and the age of the India‐Asia collision along the Ladakh Himalaya (Northwest India). Journal of Geology, 116, 331–353. https://doi.org/10.1086/588831
    [Google Scholar]
  56. Gupta, A. K., Yuvaraja, A., Prakasam, M., Clemens, S. C., & Velu, A. (2015). Evolution of the South Asian monsoon wind system since the Late Middle Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 438, 160–167. https://doi.org/10.1016/j.palaeo.2015.08.006
    [Google Scholar]
  57. Henderson, A. L., Najman, Y., Parrish, R., BouDagher‐Fadel, M., Barford, D., Garzanti, E., & Andò, S. (2010). Geology of the Cenozoic Indus Basin sedimentary rocks: Paleoenvironmental interpretation of sedimentation from the Western Himalaya During the early phases of India‐Eurasia collision. Tectonics, 29, TC6015. https://doi.org/10.1029/2009TC002651
    [Google Scholar]
  58. Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820–829. doi;10.1306/212F8E77‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  59. Horton, F., & Leech, M. L. (2013). Age and origin of granites in the Karakoram shear zone and greater Himalaya sequence, NW India. Lithosphere, 5, 300–320. https://doi.org/10.1130/l213.1
    [Google Scholar]
  60. Huang, Y., Clemens, S. C., Liu, W., Wang, Y., & Prell, W. L. (2007). Large‐scale hydrological change drove the late miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula. Geology, 35, 531–534. https://doi.org/10.1130/G23666A.1
    [Google Scholar]
  61. Hughes, N. C. (2016). The Cambrian palaeontological record of the Indian subcontinent. Earth‐Science Reviews, 159, 428–461. https://doi.org/10.1016/j.earscirev.2016.06.004
    [Google Scholar]
  62. Hurford, A. (1990). Standardization of fission track dating calibration: Recommendation by the fission track working group of the IUGS subcommission on geochronology. Chemical Geology, 80, 177–178. https://doi.org/10.1016/0168‐9622(90)90025‐8
    [Google Scholar]
  63. Huyghe, P., Bernet, M., Galy, A., Naylor, M., Cruz, J., Gyawali, B. R., Gemignani, L., & Mugnier, J. L. (2020). Rapid Exhumation since at least 13 Ma in the himalaya recorded by detrital apatite fission‐track dating of Bengal Fan (IODP Expedition 354) and modern Himalayan river sediments. Earth and Planetary Science Letters, 534, 116078. https://doi.org/10.1016/j.epsl.2020.116078
    [Google Scholar]
  64. Huyghe, P., Guilbaud, R., Bernet, M., Galy, A., & Gajurel, A. P. (2010). Significance of the clay mineral distribution in fluvial sediments of the neogene to recent Himalayan foreland basin (West‐Central Nepal). Basin Research, 22, 332–345. https://doi.org/10.1111/j.1365‐2117.2010.00485.x
    [Google Scholar]
  65. Johnson, D., Hooper, P., & Conrey, R. (1999). XRF method XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li‐tetraborate fused bead. Advances in X‐Ray Analysis, 41, 843–867.
    [Google Scholar]
  66. Johnson, N. M., Stix, J., Tauxe, L., Cerveny, P. F., & Tahirkheli, R. A. K. (1985). Palaeomagnetic chronology, fluvial processes and tectonic implications of the Siwalik deposits near Chinji Village, Pakistan. Journal of Geology, 93, 27–40. https://doi.org/10.1086/628917
    [Google Scholar]
  67. Jonell, T. N., Carter, A., Böning, P., Pahnke, K., & Clift, P. D. (2017). Climatic and glacial impact on erosion patterns and sediment provenance in the Himalayan rain shadow, Zanskar River, Nw India. Geological Society of America Bulletin, 129, 820–836. https://doi.org/10.1130/b31573.1
    [Google Scholar]
  68. Karim, A., & Veizer, J. (2002). Water balance of the Indus River basin and moisture source in the Karakoram and Western Himalayas: Implications from hydrogen and oxygen isotopes river water. Journal of Geophysical Research, 107, 4362. https://doi.org/10.1029/2000JD000253
    [Google Scholar]
  69. Kohn, M. J., Paul, S. K., & Corrie, S. L. (2009). The lower Lesser Himalayan sequence: A Paleoproterozoic arc on the northern margin of the Indian Plate. Geological Society of America Bulletin, 122, 323–335. https://doi.org/10.1130/b26587.1
    [Google Scholar]
  70. Kroon, D., Steens, T., & Troelstra, S. R. (1991). Onset of monsoonal related upwelling in the Western Arabian Sea as revealed by planktonic foraminifers. In W.Prell & N.Niitsuma (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 117, pp. 257–263). Ocean Drilling Program.
    [Google Scholar]
  71. Lavé, J., & Avouac, J. P. (2000). Active folding of Fluvial terraces across the Siwaliks hills (Himalayas of Central Nepal). Journal of Geophysical Research, 105, 5735–5770. https://doi.org/10.1029/1999JB900292
    [Google Scholar]
  72. Li, Y., Clift, P. D., Böning, P., Blusztajn, J., Murray, R. W., Ireland, T., Pahnke, K., Helm, N. C., & Giosan, L. (2018). Continuous holocene input of river sediment to the Indus Submarine Canyon. Marine Geology, 406, 159–176. https://doi.org/10.1016/j.margeo.2018.09.011
    [Google Scholar]
  73. Mandal, S. K., Scherler, D., Romer, R. L., Burg, J.‐P., Guillong, M., & Schleicher, A. M. (2019). Multiproxy isotopic and geochemical analysis of the Siwalik sediments in NW India: Implication for the late Cenozoic tectonic evolution of the Himalaya. Tectonics, 38, 120–143. https://doi.org/10.1029/2018TC005200
    [Google Scholar]
  74. Martin, A. J., DeCelles, P. G., Gehrels, G. E., Patchett, P. J., & Isachsen, C. (2005). Isotopic and structural constraints on the location of the main central thrust in the Annapurna Range, Central Nepal Himalaya. Geological Society of America Bulletin, 117, 926. https://doi.org/10.1130/b25646.1
    [Google Scholar]
  75. Martin, A. J., Ganguly, J., & DeCelles, P. G. (2009). Metamorphism of Greater and Lesser Himalayan rocks exposed in the Modi Khola Valley, Central Nepal. Contributions to Mineralogy and Petrology, 159, 203–223. https://doi.org/10.1007/s00410‐009‐0424‐3
    [Google Scholar]
  76. McKenzie, N. R., Hughes, N. C., Myrow, P. M., Xiao, S., & Sharma, M. (2011). Correlation of Precambrian–Cambrian sedimentary successions across Northern India and the utility of isotopic signatures of Himalayan Lithotectonic zones. Earth and Planetary Science Letters, 312, 471–483. https://doi.org/10.1016/j.epsl.2011.10.027
    [Google Scholar]
  77. McLennan, S., Hemming, S., McDaniel, D., & Hanson, G. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. In M. J.Johnson & A.Basu (Eds.), (Vol. 284, p. 21). Geological Society of America, Special Papers. https://doi.org/10.1130/SPE284‐p21
  78. McNeill, L. C., Dugan, B., Backman, J., Pickering, K. T., Pouderoux, H. F. A., Henstock, T. J., Petronotis, K. E., Carter, A., Chemale, F., Milliken, K. L., Kutterolf, S., Mukoyoshi, H., Chen, W., Kachovich, S., Mitchison, F. L., Bourlange, S., Colson, T. A., Frederik, M. C. G., Guèrin, G., … Thomas, E. (2017). Understanding Himalayan erosion and the significance of the Nicobar Fan. Earth and Planetary Science Letters, 475, 134–142. https://doi.org/10.1016/j.epsl.2017.07.019
    [Google Scholar]
  79. McQuarrie, N., Robinson, D., Long, S., Tobgay, T., Grujic, D., Gehrels, G., & Ducea, M. (2008). Preliminary stratigraphic and structural architecture of Bhutan: Implications for the along strike architecture of the Himalayan system. Earth and Planetary Science Letters, 272, 105–117. https://doi.org/10.1016/j.epsl.2008.04.030
    [Google Scholar]
  80. Meigs, A. J., Burbank, D. W., & Beck, R. A. (1995). Middle‐Late Miocene (>10 Ma) formation of the main boundary thrust in the western Himalaya. Geology, 23, 423–426. https://doi.org/10.1130/0091‐7613(1995)023<0423:MLMMFO>2.3.CO;2
    [Google Scholar]
  81. Miller, C., Klötzli, U., Frank, W., Thöni, M., & Grasemann, B. (2000). Proterozoic crustal evolution in the NW Himalaya (India) as recorded by Circa 1.80 Ga Mafic and 1.84 Ga granitic magmatism. Precambrian Research, 103, 191–206. https://doi.org/10.1016/S0301‐9268(00)00091‐7
    [Google Scholar]
  82. Miller, C., Thöni, M., Frank, W., Grasemann, B., Klötzli, U., Guntli, P., & Draganits, E. (2001). The early Palaeozoic magmatic event in the Northwest Himalaya, India: Source, tectonic setting and age of emplacement. Geological Magazine, 138, 237–251. https://doi.org/10.1017/s0016756801005283
    [Google Scholar]
  83. Molnar, P., England, P., & Martinod, J. (1993). Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 31, 357–396. https://doi.org/10.1029/93RG02030
    [Google Scholar]
  84. Molnar, P., & Stock, J. M. (2009). Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 28, TC3001. https://doi.org/10.1029/2008TC002271
    [Google Scholar]
  85. Murphy, M. A., & Yin, A. (2003). Structural evolution and sequence of thrusting in the Tethyan fold‐thrust belt and Indus‐Yalu Suture Zone, Southwest Tibet. GSA Bulletin, 115, 21–34. https://doi.org/10.1130/0016‐7606(2003)115<0021:Seasot>2.0.Co;2
    [Google Scholar]
  86. Myrow, P. M., Hughes, N. C., Derry, L. A., McKenzie, R. N., Jiang, G., Webb, A. A. G., Banerjee, D. M., Paulsen, T. S., & Singh, B. P. (2015). Neogene marine isotopic evolution and the erosion of Lesser Himalayan Strata: Implications for Cenozoic tectonic history. Earth and Planetary Science Letters, 417, 142–150. https://doi.org/10.1016/j.epsl.2015.02.016
    [Google Scholar]
  87. Myrow, P. M., Hughes, N. C., Goodge, J. W., Fanning, C. M., Williams, I. S., Peng, S., Bhargava, O. N., Parcha, S. K., & Pogue, K. R. (2010). Extraordinary transport and mixing of sediment across Himalayan Central Gondwana during the Cambrian‐Ordovician. Geological Society of America Bulletin, 122, 1660–1670. https://doi.org/10.1130/b30123.1
    [Google Scholar]
  88. Najman, Y. (2006). The detrital record of Orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth‐Science Reviews, 74, 1–72. https://doi.org/10.1016/j.earscirev.2005.04.004
    [Google Scholar]
  89. Najman, Y., Bickle, M., Garzanti, E., Pringle, M., Barfod, D., Brozovic, N., Burbank, D., & Ando, S. (2009). Reconstructing the exhumation history of the Lesser Himalaya, NW India, from a multitechnique provenance study of the foreland basin Siwalik group. Tectonics, 28, TC5018. https://doi.org/10.1029/2009tc002506
    [Google Scholar]
  90. Najman, Y., Bickle, M., Garzanti, E., Pringle, M., Barfod, D., Brozovic, N., Burbank, D., & Ando, S. (2010). Correction to “Reconstructing the exhumation history of the Lesser Himalaya, NW India, from a multitechnique provenance study of the foreland basin Siwalik group”. Tectonics, 29, TC6006. https://doi.org/10.1029/2010TC002778
    [Google Scholar]
  91. Najman, Y., Jenks, D., Godin, L., Boudagher‐Fadel, M., Millar, I., Garzanti, E., Horstwood, M., & Bracciali, L. (2017). The Tethyan Himalayan Detrital record shows that India–Asia terminal collision occurred by 54 Ma in the Western Himalaya. Earth and Planetary Science Letters, 459, 301–310. https://doi.org/10.1016/j.epsl.2016.11.036
    [Google Scholar]
  92. Najman, Y., Johnson, K., White, N., & Oliver, G. (2004). Evolution of the Himalayan foreland basin, NW India. Basin Research, 16, 1–24. https://doi.org/10.1111/j.1365‐2117.2004.00223.x
    [Google Scholar]
  93. Nesbitt, H. W., Markovics, G., & Price, R. C. (1980). Chemical processes affecting Alkalis and Alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44, 1659–1666. https://doi.org/10.1016/0016‐7037(80)90218‐5
    [Google Scholar]
  94. Parkash, B., Sharma, R. P., & Roy, A. K. (1980). The Siwalik group (Molasses)–sediments shed by collision of continental plates. Sedimentary Geology, 25, 127–159. https://doi.org/10.1016/0037‐0738(80)90058‐5
    [Google Scholar]
  95. Parrish, R. R., & Hodges, V. (1996). Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya. Geological Society of America Bulletin, 108, 904–911. https://doi.org/10.1130/0016‐7606(1996)108<0904:Icotaa>2.3.Co;2
    [Google Scholar]
  96. Prell, W. L., & Kutzbach, J. E. (1992). Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 360, 647–652. https://doi.org/10.1038/360647a0
    [Google Scholar]
  97. Prell, W. L., Murray, D. W., Clemens, S. C., & Anderson, D. M. (1992). Evolution and variability of the Indian Ocean summer monsoon: Evidence from the western Arabian Sea Drilling Program. In R. A.Duncan, D. K.Rea, R. B.Kidd, U.von Rad, & J. K.Weissel (Eds.), Geophysical Monograph, 70 Synthesis of Results from Scientific Drilling in the Indian Ocean (pp. 447–469). American Geophysical Union.
    [Google Scholar]
  98. Quade, J., Cerling, T. E., & Bowman, J. R. (1989). Development of Asian monsoon revealed by marked ecological shift during the Latest Miocene in Northern Pakistan. Nature, 342, 163–166. https://doi.org/10.1038/342163a0
    [Google Scholar]
  99. Ravikant, V., Wu, F.‐Y., & Ji, W.‐Q. (2011). U–Pb age and Hf isotopic constraints of detrital zircons from the Himalayan foreland Subathu sub‐basin on the tertiary Palaeogeography of the Himalaya. Earth and Planetary Science Letters, 304, 356–368. https://doi.org/10.1016/j.epsl.2011.02.009
    [Google Scholar]
  100. Richards, A., Argels, T., Harris, N., Parrish, R., Ahmad, T., Darbyshire, F., & Dragantis, E. (2005). Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth and Planetary Science Letters, 236, 773–796. https://doi.org/10.1016/j.epsl.2005.05.034
    [Google Scholar]
  101. Robert, X., van der Beek, P., Braun, J., Perry, C., & Mugnier, J.‐L. (2011). Control of detachment geometry on lateral variations in exhumation rates in the Himalaya: Insights from low‐temperature thermochronology and numerical modeling. Journal of Geophysical Research: Solid Earth, 116, B05202. https://doi.org/10.1029/2010JB007893
    [Google Scholar]
  102. Robinson, D. M., DeCelles, P. G., & Copeland, P. (2006). Tectonic evolution of the Himalayan thrust belt in Western Nepal; implications for channel flow models. Geological Society of America Bulletin, 118, 865–885. doI;10.1130/B25911.1
    [Google Scholar]
  103. Robinson, D. M., DeCelles, P. G., Patchett, P. J., & Garzione, C. N. (2001). The kinematic evolution of the Nepalese Himalaya interpreted from Nd isotopes. Earth and Planetary Science Letters, 192, 507–521. https://doi.org/10.1016/S0012‐821X(01)00451‐4
    [Google Scholar]
  104. Sahni, A., & Srivastava, V. C. (1976). Eocene rodents and associated reptiles from the Subathu formation of Northwestern India. Journal of Paleontology, 50, 922–928.
    [Google Scholar]
  105. Schlup, M., Steck, A., Carter, A., Cosca, M., Epard, J.‐L., & Hunziker, J. (2011). Exhumation history of the NW Indian himalaya revealed by fission track and 40ar/39ar ages. Journal of Asian Earth Sciences, 40, 334–350. https://doi.org/10.1016/j.jseaes.2010.06.008
    [Google Scholar]
  106. Schwertmann, U. (1971). Transformation of hematite to goethite in soils. Nature, 232, 624–625.
    [Google Scholar]
  107. Singh, P. (2009). Major, trace and REE geochemistry of the Ganga River sediments: Influence of provenance and sedimentary processes. Chemical Geology, 266, 242–255. https://doi.org/10.1016/j.chemgeo.2009.06.013
    [Google Scholar]
  108. Singh, S., Parkash, B., Awasthi, A. K., & Kumar, S. (2011). Late Miocene record of Palaeovegetation from Siwalik palaeosols of the Ramnagar sub‐basin, India. Current Science, 100, 213–222.
    [Google Scholar]
  109. Singh, T., Awasthi, A. K., & Caputo, R. (2012). The sub‐Himalayan fold‐thrust belt in the 1905 Kangra Earthquake zone: A critical taper model perspective for seismic hazard analysis. Tectonics, 31, TC6002. https://doi.org/10.1029/2012TC003120
    [Google Scholar]
  110. Sorkhabi, R. B., & Arita, K. (1997). Toward a solution for the Himalayan puzzle: Mechanism of inverted metamorphism constrained by the Siwalik sedimentary record. Current Science, 72, 862–873.
    [Google Scholar]
  111. Steck, A. (2003). Geology of the NW Indian Himalaya. Eclogae Geologicae Helvetiae, 96, 147–196.
    [Google Scholar]
  112. Stevens, V. L., & Avouac, J. P. (2015). Interseismic coupling on the main Himalayan thrust. Geophysical Research Letters, 42, 5828–5837. https://doi.org/10.1002/2015GL064845
    [Google Scholar]
  113. Stübner, K., Grujic, D., Dunkl, I., Thiede, R., & Eugster, P. (2018). Pliocene episodic exhumation and the significance of the Munsiari thrust in the Northwestern Himalaya. Earth and Planetary Science Letters, 481, 273–283. https://doi.org/10.1016/j.epsl.2017.10.036
    [Google Scholar]
  114. Sundell, K., & Saylor, J. E. (2017). Unmixing detrital geochronology age distributions. Geochemistry Geophysics Geosystems, 18, 2872–2886. https://doi.org/10.1002/2016GC006774
    [Google Scholar]
  115. Tewari, V. (2003). Sedimentology, Palaeobiology and stable isotope chemostratigraphy of the terminal Neoproterozoic Buxa Dolomite, Arunachal Pradesh, Ne Lesser Himalaya. Journal of Himalayan Geology, 18, 1–18.
    [Google Scholar]
  116. Thakur, S. S., & Tripathi, K. (2008). Regional metamorphism in the Haimanta group of rocks, Sutlej River Valley, NW Himalaya, India. Current Science, 95, 104–109.
    [Google Scholar]
  117. Thakur, V. C., Jayangondaperumal, R., & Malik, M. A. (2010). Redefining Medlicott–Wadia's main boundary fault from Jhelum to Yamuna: An active fault strand of the main boundary thrust in Northwest Himalaya. Tectonophysics, 489, 29–42. https://doi.org/10.1016/j.tecto.2010.03.014
    [Google Scholar]
  118. Thiede, R., Robert, X., Stübner, K., Dey, S., & Faruhn, J. (2017). Sustained out‐of‐sequence shortening along a tectonically active segment of the main boundary thrust: The Dhauladhar range in the Northwestern Himalaya. Lithosphere, 9, 715–725. https://doi.org/10.1130/l630.1
    [Google Scholar]
  119. Thiede, R. C., Bookhagen, B., Arrowsmith, J. R., Sobel, E. R., & Strecker, M. R. (2004). Climatic control on rapid exhumation along the southern Himalayan Front. Earth and Planetary Science Letters, 222, 791–806. https://doi.org/10.1016/j.epsl.2004.03.015
    [Google Scholar]
  120. Thiede, R. C., & Ehlers, T. A. (2013). Large spatial and temporal variations in Himalayan denudation. Earth and Planetary Science Letters, 374, 256–257. https://doi.org/10.1016/j.epsl.2013.03.004
    [Google Scholar]
  121. Thiede, R. C., Ehlers, T. A., Bookhagen, B., & Strecker, M. R. (2009). Erosional variability along the Northwest Himalaya. Journal of Geophysical Research, 114, F01015. https://doi.org/10.1029/2008JF001010
    [Google Scholar]
  122. Valdiya, K. (1980). Geology of Kumaun Lesser Himalaya (pp. 1–291). Wadia Institute of Himalayan Geology.
    [Google Scholar]
  123. van der Beek, P., Robert, X., Mugnier, J.‐L., Bernet, M., Huyghe, P., & Labrin, E. (2006). Late Miocene‐recent exhumation of the Central Himalaya and recycling in the foreland basin assessed by apatite fission‐track thermochronology of Siwalik sediments, Nepal. Basin Research, 18, 413–434. https://doi.org/10.1111/j.1365‐2117.2006.00305.x
    [Google Scholar]
  124. van Hinsbergen, D. J. J., Lippert, P. C., Dupont‐Nivet, G., McQuarrie, N., Doubrovine, P. V., Spakman, W., & Torsvik, T. H. (2012). Greater India basin hypothesis and a two‐stage Cenozoic collision between India and Asia. Proceedings of the National Academy of Sciences, 109, 7659–7664. https://doi.org/10.1073/pnas.1117262109
    [Google Scholar]
  125. Vannay, J., & Grasemann, B. (1998). Inverted metamorphism in the high Himalaya of Himachal Pradesh (NW India): Phase equilibria versus thermobarometry. Schweizerische Mineralogische und Petrographische Mitteilungen, 78, 107–132.
    [Google Scholar]
  126. Vannay, J.‐C., Grasemann, B., Rahn, M., Frank, W., Carter, A., Baudraz, V., & Cosca, M. (2004). Miocene to holocene exhumation of metamorphic crustal wedges in the NW Himalaya: Evidence for tectonic extrusion coupled to fluvial erosion. Tectonics, 23, TC1014. https://doi.org/10.1029/2002TC001429
    [Google Scholar]
  127. Vermeesch, P. (2013). Multi‐sample comparison of detrital age distributions. Chemical Geology, 341, 140–146. https://doi.org/10.1016/j.chemgeo.2013.01.010
    [Google Scholar]
  128. Vögeli, N., Najman, Y., van der Beek, P., Huyghe, P., Wynn, P. M., Govin, G., Veen, I. V. D., & Sachse, D. (2017). Lateral variations in vegetation in the Himalaya since the Miocene and implications for climate evolution. Earth and Planetary Science Letters, 471, 1–9. https://doi.org/10.1016/j.epsl.2017.04.037
    [Google Scholar]
  129. Vögeli, N., van der Beek, P., Huyghe, P., & Najman, Y. (2017). Weathering in the Himalaya, an East‐West comparison: Indications from major elements and clay mineralogy. The Journal of Geology, 125, 515–529. https://doi.org/10.1086/692652
    [Google Scholar]
  130. Webb, A. A. G. (2013). Preliminary Palinspastic reconstruction of Cenozoic deformation across the Himachal Himalaya (Northwestern India). Geosphere, 9, 572–587. https://doi.org/10.1130/GES00787.1
    [Google Scholar]
  131. West, A. J., Galy, A., & Bickle, M. J. (2005). Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235, 211–228. https://doi.org/10.1016/j.epsl.2005.03.020
    [Google Scholar]
  132. White, N. M., Parrish, R. R., Bickle, M. J., Najman, Y. M. R., Burbank, D. W., & Maithani, A. (2001). Metamorphism and exhumation of the NW Himalaya constrained by U‐Th‐Pb analysis of detrital monazite grains from early foreland basin. Journal of the Geological Society, 158, 625–635. https://doi.org/10.1144/jgs.158.4.625
    [Google Scholar]
  133. White, N. M., Pringle, M., Garzanti, E., Bickle, M., Najman, Y., Chapman, H., & Friend, P. (2002). Constraints on the exhumation and erosion of the high Himalayan Slab, NW India, from foreland basin deposits. Earth and Planetary Science Letters, 195, 29–44. https://doi.org/10.1016/s0012‐821x(01)00565‐9
    [Google Scholar]
  134. Willett, S. D., Fisher, D., Fuller, C., Yeh, E.‐C., & Lu, C.‐Y. (2003). Erosion rates and orogenic‐wedge kinematics in Taiwan inferred from fission‐track thermochronometry. Geology, 31, 945–948. https://doi.org/10.1130/g19702.1
    [Google Scholar]
  135. Wobus, C. W., Hodges, K. V., & Whipple, K. X. (2003). Has focused denudation sustained active thrusting at the Himalayan topographic front?Geology, 31, 861–864.
    [Google Scholar]
  136. Wu, F. Y., Ji, W. Q., Wang, J. G., Liu, C. Z., Chung, S. L., & Clift, P. D. (2014). Zircon U‐Pb and Hf isotopic constraints on the onset time of India‐Asia collision. American Journal of Science, 314, 548–579. https://doi.org/10.2475/02.2014.04
    [Google Scholar]
  137. Yin, A. (2006). Cenozoic tectonic evolution of the Himalayan orogen as constrained by along‐strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth‐Science Reviews, 76, 1–131. https://doi.org/10.1016/j.earscirev.2005.05.004
    [Google Scholar]
  138. Zhou, P., Carter, A., Li, Y., & Clift, P. D. (2020). Slowing rates of regional exhumation in the western Himalaya: Fission track evidence from the Indus Fan. Geological Magazine, 157, 848–863. https://doi.org/10.1017/S0016756819000608
    [Google Scholar]
  139. Zhou, P., Ireland, T., Murray, R. W., & Clift, P. D. (2021). Marine sedimentary records of chemical weathering evolution in the western Himalaya since 17 Ma. Geosphere, 17, 824–853. https://doi.org/10.1130/GES02211.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12689
Loading
/content/journals/10.1111/bre.12689
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): exhumation; Himalayas; monsoon; provenance; zircon
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error