1887
Volume 34, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

The thick sequence of mid‐late Cenozoic sediments preserved within the Enderby Basin of the East Antarctica margin contains key information regarding glacial history and palaeo‐oceanographic conditions during the last 34 My. The interplay between glacial processes and ocean circulation can be reconstructed from seismic stratigraphic studies. Here, interpretation of seismic sequences and geomorphology from an extensive 2D seismic dataset (∼75,000 km) are correlated with lithological data of the ODP site 1165 drilled on the continental rise, and used to assess the age and origin of the sediment, and the possible influence of oceanic currents on its distribution. Mapping of seismic units and facies reveals that, in addition to glacial sediments derived from the Antarctic mainland, the upper Cenozoic succession includes drift units with prograding sequences building out from the Mac. Robertson Land margin, west of the Prydz Bay. Three contourite drifts grew on the western side of submarine channels and large sediment wave fields suggest a mixed system of turbidity currents influenced by west‐flowing bottom currents. The drifts are composed of four seismic units representing stages of onset (Lower Oligocene), main growth (Early‐Middle Miocene), maintenance (Middle‐Late Miocene) and burial (Pliocene). The internal geometry and reflection patterns of the drifts imply an intensified current activity from the Early to Middle Miocene. The results plausibly reflect that the formation of proto Antarctic Bottom Water (AABW) started around the Eocene–Oligocene boundary and intensified episodically from the early to middle Miocene.

,

A grid of 2D seismic data (∼75,000 km) and combined with lithological information from ODP Site 1165 is applied to investigate the Cenozoic paleoceanographic changes of the Enderby Basin, East Antarctica. The study provides comprehensive new insights into the evolution of the Antarctic Bottom Water (AABW) via the morphology, geometry and distribution of bedforms in a newly recognized mixed turbidite‐contourite system.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12690
2022-11-18
2022-11-30
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/6/bre12690.html?itemId=/content/journals/10.1111/bre.12690&mimeType=html&fmt=ahah

References

  1. Amblas, D., & Canals, M. (2016). Contourite drifts and canyon‐channel systems on the Northern Antarctic Peninsula Pacific margin. Geological Society London Memoirs, 46(1), 393–394. https://doi.org/10.1144/M46.17
    [Google Scholar]
  2. Amblas, D., Urgeles, R., Canals, M., Calafat, A. M., Rebesco, M., Camerlenghi, A., Estrada, F., De Batist, M., & Hughes‐Clarke, J. E. (2006). Relationship between continental rise development and palaeo‐ice sheet dynamics, Northern Antarctic Peninsula Pacific margin. Quaternary Science Reviews, 25(9), 933–944. https://doi.org/10.1016/j.quascirev.2005.07.012
    [Google Scholar]
  3. Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G., Goleby, B., & Greku, R. (2013). The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0—A new bathymetric compilation covering circum‐Antarctic waters. Geophysical Research Letters, 40(12), 3111–3117.
    [Google Scholar]
  4. Baines, P., & Condie, S. (1998). Observations and modelling of Antarctic downslope flows: A review. In S.Jacobs & R.Weiss (Eds.), Ocean, ice and atmosphere: Interactions at the Antarctic Continental Margin. Antarctic Research Series (Vol. 75, pp. 29–49). AGU.
    [Google Scholar]
  5. Banerjee, B., Ahmad, S. M., Raza, W., & Raza, T. (2017). Paleoceanographic changes in the Northeast Indian Ocean during middle Miocene inferred from carbon and oxygen isotopes of foraminiferal fossil shells. Palaeogeography, Palaeoclimatology, Palaeoecology, 466, 166–173.
    [Google Scholar]
  6. Barrett, P. J., Hambrey, M. J., Harwood, D. M., Pyne, A. R., & Webb, P. N. (1989). Synthesis. In P. J.Barrett (Ed.), Antarctic Cenozoic history from the CIROS‐I drillhole, McMurdo Sound (Vol. 245, pp. 241–251). DSIR Bulletin.
    [Google Scholar]
  7. Barron, J. A., Baldauf, J. G., Barrera, E., Caulet, J. P., Huber, B. T., Keating, B. H., Lazarus, D., Sakai, H., Thierstein, H. R., & Wei, W. (1991). Biochronologic and magnetochronologic synthesis of Leg 119 sediments from the Kerguelen Plateau and Pryz Bay, Antarctica. Proceedings of the Ocean Drilling Program, Scientific Results, 119, 813–847.
    [Google Scholar]
  8. Bijl, P. K., Bendle, J. A., Bohaty, S. M., Pross, J., Schouten, S., Tauxe, L., Stickley, C. E., McKay, R. M., Röhl, U., Olney, M., Sluijs, A., Escutia, C., Brinkhuis, H., & Yamane, M. (2013). Eocene cooling linked to early flow across the Tasmanian Gateway. Proceedings of the National Academy of Sciences, 110(24), 9645–9650. https://doi.org/10.1073/pnas.1220872110
    [Google Scholar]
  9. Bo, S., Siegert, M. J., Mudd, S. M., Sugden, D., Fujita, S., Xiangbin, C., Yunyun, J., Xueyuan, T., & Yuansheng, L. (2009). The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet. Nature, 459(7247), 690–693. https://doi.org/10.1038/nature08024
    [Google Scholar]
  10. Cooper, A., Stagg, H., & Geist, E. (1991). Seismic stratigraphy and structure of Prydz Bay, Antarctica: Implications from Leg 119 drilling. In J.Barron & B.Larsen (Eds.), Proceedings of the Ocean Drilling Program: Scientific Results (Vol. 119, pp. 5–26). Ocean Drilling Program.
    [Google Scholar]
  11. Cooper, A. K., Barrett, P. J., Hinz, K., Traube, V., Letichenkov, G., & Stagg, H. M. (1991). Cenozoic prograding sequences of the Antarctic continental margin: A record of glacio‐eustatic and tectonic events. Marine Geology, 102(1–4), 175–213.
    [Google Scholar]
  12. Cooper, A. K., & O'Brien, P. E. (2004). Leg 188 synthesis: Transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling. Proceedings of the Ocean Drilling Program: Scientific Results, 188, 1–42.
    [Google Scholar]
  13. Cooper, A. K., O'Brien, P. E., Barr, S. R., Bohaty, S. M., & Grützner, J. (2001). Covering Leg 188 of the cruises of the Drilling Vessel JOIDES Resolution Fremantle, Australia, to Hobart, Tasmania Sites 1165–1167 10 January–11 March 2000.
  14. Deconto, R. M., & Pollard, D. (2003). A coupled climate‐ice sheet modeling approach to the early Cenozoic history of the Antarctic ice sheet. Palaeogeography Palaeoclimatology Palaeoecology, 198(1–2), 39–52. https://doi.org/10.1016/S0031‐0182(03)00393‐6
    [Google Scholar]
  15. Eagles, G., & Jokat, W. (2014). Tectonic reconstructions for paleobathymetry in drake passage. Tectonophysics, 611, 28–50. https://doi.org/10.1016/j.tecto.2013.11.021
    [Google Scholar]
  16. Ehrmann, W. U., & Mackensen, A. (1992). Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time. Palaeogeography, Palaeoclimatology, Palaeoecology, 93(1–2), 85–112.
    [Google Scholar]
  17. Escutia, C., DeConto, R. M., Dunbar, R., Santis, L. D., Shevenell, A., & Naish, T. (2019). Keeping an eye on Antarctic Ice Sheet stability. Oceanography, 32(1), 32–46.
    [Google Scholar]
  18. Escutia, C., Nelson, C. H., Acton, G. D., Eittreim, S. L., Cooper, A. K., Warnke, D. A., & Jaramillo, J. M. (2002). Current controlled deposition on the Wilkes Land continental rise, Antarctica. Geological Society, London, Memoirs, 22(1), 373–384. https://doi.org/10.1144/GSL.MEM.2002.022.01.26
    [Google Scholar]
  19. Faugères, J.‐C., Stow, D. A. V., Imbert, P., & Viana, A. (1999). Seismic features diagnostic of contourite drifts. Marine Geology, 162(1), 1–38. https://doi.org/10.1016/S0025‐3227(99)00068‐7
    [Google Scholar]
  20. Ferraccioli, F., Finn, C. A., Jordan, T. A., Bell, R. E., Anderson, L. M., & Damaske, D. (2011). East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature, 479(7373), 388–392.
    [Google Scholar]
  21. Florindo, F., Bohaty, S. M., Erwin, P. S., Richter, C., Roberts, A. P., Whalen, P. A., & Whitehead, J. M. (2003). Magnetobiostratigraphic chronology and palaeoenvironmental history of Cenozoic sequences from ODP sites 1165 and 1166, Prydz Bay, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 198(1–2), 69–100.
    [Google Scholar]
  22. Frank, M., Whiteley, N., Kasten, S., Hein, J. R., & O'Nions, K. (2002). North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: Evidence from Nd and Pb isotopes in ferromanganese crusts. Paleoceanography, 17(2), 12‐1–12‐9.
    [Google Scholar]
  23. Fütterer, D. K., & Melles, M. (1990). Sediment patterns in the southern Weddell Sea: Filchner shelf and Filchner depression. In Geological history of the polar oceans: Arctic versus Antarctic (Vol. 308, pp. 381–401). Springer.
    [Google Scholar]
  24. Gohl, K., Uenzelmann‐Neben, G., Larter, R. D., Hillenbrand, C. D., Hochmuth, K., Kalberg, T., Weigelt, E., Davy, B., Davy, G., & Nitsche, F. O. (2013). Seismic stratigraphic record of the Amundsen Sea Embayment shelf from pre‐glacial to recent times: Evidence for a dynamic West Antarctic ice sheet. Marine Geology, 344, 115–131.
    [Google Scholar]
  25. Gong, C., Wang, Y., Wang, Y., Rebesco, M., Salon, S., & Steel, R. J. (2018). How do turbidity flows interact with contour currents in unidirectionally migrating deep‐water channels?Geology, 46(6), 551–554. https://doi.org/10.1130/G40204.1
    [Google Scholar]
  26. Gordon, A. L. (2009). Bottom water formation. In J. H.Steele, S. A.Thorpe, & K. K.Turekian (Eds.), Ocean currents (pp. 263–269). Associated Press.
    [Google Scholar]
  27. Gordon, A. L., Zambianchi, E., Orsi, A., Visbeck, M., Giulivi, C. F., Whitworth, T., & Spezie, G. (2004). Energetic plumes over the western Ross Sea continental slope. Geophysical Research Letters, 31, L21302. https://doi.org/10.1029/2004gl020785
    [Google Scholar]
  28. Gulick, S., Shevenell, A., Montelli, A., Fernandez, R., Smith, C., Warny, S., Bohaty, S. M., Sjunneskog, C., Leventer, A., Frederick, B., & Blankenship, D. D. (2017). Initiation and long‐term instability of the East Antarctic Ice Sheet. Nature, 552, 225–229. https://doi.org/10.1038/nature25026
    [Google Scholar]
  29. Hambrey, M., Ehrmann, W., & Larsen, B. (1991). Cenozoic Glacial Record of the Prydz Bay Continental Shelf, East Antarctica. Proc., scientific results, ODP, Leg 119, Kerguelen Plateau‐Prydz Bay, 119, 77–132.
  30. Hernandez‐Molina, F. J., Larter, R. D., & Maldonad, A. (2017). Neogene to Quaternary stratigraphic evolution of the Antarctic Peninsula, Pacific Margin offshore of Adelaide Island: Transitions from a non‐glacial, through glacially‐influenced to a fully glacial state. Global and Planetary Change, 156(Sep), 80–111. https://doi.org/10.1016/j.gloplacha.2017.07.002
    [Google Scholar]
  31. Hillenbrand, C. D., Camerlenghi, A., Cowan, E. A., Hernández‐Molina, F. J., Lucchi, R. G., Rebesco, M., & Uenzelmann‐Neben, G. (2008). The present and past bottom‐current flow regime around the sediment drifts on the continental rise west of the Antarctic Peninsula. Marine Geology, 255(1–2), 55–63. https://doi.org/10.1016/j.margeo.2008.07.004
    [Google Scholar]
  32. Holbourn, A., Kuhnt, W., Clemens, S., Prell, W., & Andersen, N. (2013). Middle to late Miocene stepwise climate cooling: Evidence from a high‐resolution deep water isotope curve spanning 8 million years. Paleoceanography, 28(4), 688–699. https://doi.org/10.1002/2013PA002538
    [Google Scholar]
  33. Holbourn, A. E., Kuhnt, W., Clemens, S. C., Kochhann, K. G. D., Jöhnck, J., Lübbers, J., & Andersen, N. (2018). Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nature Communications, 9, 1584.
    [Google Scholar]
  34. Huang, X., Betzler, C., Wu, S., Bernhardt, A., Eagles, G., Han, X., & Hovland, M. (2020). First documentation of seismic stratigraphy and depositional signatures of Zhongsha atoll (Macclesfield Bank), South China Sea. Marine and Petroleum Geology, 117, 104349. https://doi.org/10.1016/j.marpetgeo.2020.104349
    [Google Scholar]
  35. Huang, X., & Jokat, W. (2016). Middle Miocene to present sediment transport and deposits in the Southeastern Weddell Sea, Antarctica. Global and Planetary Change, 139, 211–225. https://doi.org/10.1016/j.gloplacha.2016.03.002
    [Google Scholar]
  36. Huang, X., Stärz, M., Gohl, K., Knorr, G., & Lohmann, G. (2017). Impact of Weddell Sea shelf progradation on Antarctic bottom water formation during the Miocene. Paleoceanography, 32(3), 304–317. https://doi.org/10.1002/2016PA002987
    [Google Scholar]
  37. Huck, C. E., van de Flierdt, T., Bohaty, S. M., & Hammond, S. J. (2017). Antarctic climate, Southern Oceancirculation patterns, deep waterformation during the Eocene. Paleoceanography, 32, 674–691. https://doi.org/10.1002/2017PA003135
    [Google Scholar]
  38. Jakobsson, M., Backman, J., Rudels, B., Nycander, J., Frank, M., Mayer, L., Jokat, W., Sangiorgi, F., O'Regan, M., Brinkhuis, H., King, J., & Moran, K. (2007). The early miocene onset of a ventilated circulation regime in the arctic ocean. Nature, 447(7147), 986–990. https://doi.org/10.1038/nature05924
    [Google Scholar]
  39. Jamieson, S. S. R., Hulton, N. R. J., Sugden, D. E., Payne, A. J., & Taylor, J. (2005). Cenozoic landscape evolution of the Lambert basin, East Antarctica: The relative role of rivers and ice sheets. Global and Planetary Change, 45(1–3), 35–49.
    [Google Scholar]
  40. Kim, S., De Santis, L., Hong, J. K., Cottlerle, D., Petronio, L., Colizza, E., Kim, Y.‐G., Kang, S.‐G., Kim, H. J., Kim, S., Wardell, N., Geletti, R., Bergamasco, A., McKayg, R., Jin, Y. K., & Kang, S. H. (2018). Seismic stratigraphy of the Central Basin in northwestern Ross Sea slope and rise, Antarctica: Clues to the late Cenozoic ice‐sheet dynamics and bottom‐current activity. Marine Geology, 395, 363–379. https://doi.org/10.1016/j.margeo.2017.10.013
    [Google Scholar]
  41. Kuvaas, B., & Leitchenkov, G. (1992). Glaciomarine turbidite and current controlled deposits in Prydz Bay, Antarctica. Marine Geology, 108(3–4), 365–381.
    [Google Scholar]
  42. Lear, C. H., Mawbey, E. M., & Rosenthal, Y. (2010). Cenozoic benthic foraminiferal Mg/Ca and Li/Ca records: Toward unlocking temperatures and saturation states. Paleoceanography, 25, PA4215. https://doi.org/10.1029/2009PA001880
    [Google Scholar]
  43. Leitchenkov, G., Stagg, H. M. J., Gandjukhin, V., Cooper, A. K., Tanahashi, M., & O'Brien, P. (1994). Cenozoic seismic stratigraphy of Prydz Bay (Antarctica). In A. K.Cooper, P. F.Barker, P.‐N.Webb, & G.Brancolini (Eds.), The Antarctic continental margin: Geophysical and geological stratigraphic records of cenozoic glaciation, paleoenvironments and sea‐level change, Terra Antartica, 1(2), 395–398.
    [Google Scholar]
  44. Levy, R. H., Meyers, S. R., Naish, T. R., Golledge, N. R., McKay, R. M., Crampton, J. S., DeConto, R. M., De Santis, L., Florindo, F., Gasson, E. G. W., Harwood, D. M., Luyendyk, B. P., Powell, R. D., Clowes, C., & Kulhanek, D. K. (2019). Antarctic ice‐sheet sensitivity to obliquity forcing enhanced through ocean connections. Nature Geoscience, 12(2), 132–137.
    [Google Scholar]
  45. Liebrand, D., Lourens, L. J., Hodell, D. A., de Boer, B., van de Wal, R. S. W., & Pälike, H. (2011). Antarctic ice sheet and oceanographic response to eccentricity forcing during the early Miocene. Climate of the Past, 7(3), 869–880. https://doi.org/10.5194/cp‐7‐869‐2011
    [Google Scholar]
  46. Lucchi, R. G., & Rebesco, M. (2007). Glacial contourites on the Antarctic Peninsula margin: Insight for palaeoenvironmental and palaeoclimatic conditions. Geological Society, London, Special Publications, 276(1), 111–127. https://doi.org/10.1144/GSL.SP.2007.276.01.06
    [Google Scholar]
  47. Lucchi, R. G., Rebesco, M., Camerlenghi, A., Busetti, M., Tomadin, L., Villa, G., Persico, D., Morigi, C., Bonci, M. C., & Giorgetti, G. (2002). Mid‐late pleistocene glacimarine sedimentary processes of a high‐latitude, deep‐sea sediment drift (Antarctic peninsula pacific margin). Marine Geology, 189(3–4), 343–370.
    [Google Scholar]
  48. McCave, I. N., & Hall, I. R. (2006). Size sorting in marine muds: Processes, pitfalls, and prospects for paleo flow speed proxies. Geochemistry, Geophysics, Geosystems, 7, Q10N05. https://doi.org/10.1029/2006GC001284
    [Google Scholar]
  49. McCave, I. N. (2017). Formation of sediment waves by turbidity currents and geostrophic flows: A discussion. Marine Geology, 390, 89–93.
    [Google Scholar]
  50. McElhinny, M. (1970). Formation of the Indian Ocean. Nature, 228, 977–979.
    [Google Scholar]
  51. McKenzie, D., & Sclater, J. G. (1971). The evolution of the Indian Ocean since the Late Cretaceous. Geophysical Journal International, 24, 437–528.
    [Google Scholar]
  52. Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., & Wright, J. D. (2020). Cenozoic sea‐level and cryospheric evolution from deep‐sea geochemical and continental margin records. Science Advances, 6(20), eaaz1346. https://doi.org/10.1126/sciadv.aaz1346
    [Google Scholar]
  53. Miller, K. G., Kominz, M., Browning, J., Wright, J., Mountain, G., Katz, M., Sugarman, P. J., Cramer, B. S., Christie‐Blick, N., & Pekar, S. F. (2005). The phanerozoic record of global sea‐level change. Science, 310(5752), 1293–1298. https://doi.org/10.1126/science.1116412
    [Google Scholar]
  54. Miller, K. G., Wright, J. D., Katz, M. E., Browning, J. V., Cramer, B. S., Wade, B. S., & Mizintseva, S. F. (2008). A view of Antarctic ice‐sheet evolution from sea‐level and deep‐sea isotope changes during the Late Cretaceous‐Cenozoic. In A. K.Cooper, C.Raymond, & ISAES Editorial Team (Eds.), Antarctica: A keystone in a changing world, Proceedings of the 10th International Symposium on Antarctic Earth Sciences (pp. 55–70).
    [Google Scholar]
  55. Miramontes, E., Eggenhuisen, J. T., Jacinto, R. S., Poneti, G., Pohl, F., Normandeau, A., Campbell, D. C., & Hernández‐Molina, F. J. (2020). Channel‐levee evolution in combined contour current–turbidity current flows from flume‐tank experiments. Geology, 48(4), 353–357. https://doi.org/10.1130/G47111.1
    [Google Scholar]
  56. Mizukoshi, I., Sunouchi, H., Saki, T., Sato, S., & Tanahashi, M. (1986). Preliminary report of geological and geophysical surveys off amery ice shelf, east Antarctica. Memoirs of National Institute of Polar Research. Special issue, 43, 48–61.
    [Google Scholar]
  57. Modestou, S. E., Leutert, T. J., Fernandez, A., Lear, C. H., & Meckler, A. N. (2020). Warm middle Miocene Indian Ocean bottom water temperatures: Comparison of clumped isotope and Mg/Ca‐based estimates. Paleoceanography and Paleoclimatology, 35, e2020PA003927. https://doi.org/10.1029/2020PA003927
    [Google Scholar]
  58. Naish, T. R., Woolfe, K. J., Barrett, P. J., Wilson, G. S., & Wonik, T. (2001). Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature, 413(6857), 719–723. https://doi.org/10.1038/35099534
    [Google Scholar]
  59. Nicholls, K. W., Østerhus, S., Makinson, K., Gammelsrd, T., & Fahrbach, E. (2009). Ice‐ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review. Reviews of Geophysics, 47(3), 2007RG000250RG3003. https://doi.org/10.1029/2007RG000250
    [Google Scholar]
  60. Normandeau, A., Dietrich, P., Clarke, J. H., Wychen, W. V., & Ghienne, J. F. (2019). Retreat pattern of glaciers controls the occurrence of turbidity currents on high‐latitude fjord deltas (eastern Baffin Island). Journal of Geophysical Research: Earth Surface, 124(6), 1559–1571. https://doi.org/10.1029/2018JF004970
    [Google Scholar]
  61. Normark, W. R., Piper, D. J., Posamentier, H., Pirmez, C., & Migeon, S. (2002). Variability in form and growth of sediment waves on turbidite channel levees. Marine Geology, 192(1–3), 23–58. https://doi.org/10.1016/S0025‐3227(02)00548‐0
    [Google Scholar]
  62. Nowlin, W. D., & Klinck, J. M. (1986). The physics of the Antarctic circumpolar current. Reviews of Geophysics, 24(3), 469–491. https://doi.org/10.1029/RG024i003p00469
    [Google Scholar]
  63. O'Brien, P. E., Goodwin, I., Forsberg, C. F., Cooper, A. K., & Whitehead, J. (2007). Late Neogene ice drainage changes in Prydz Bay, East Antarctica and the interaction of Antarctic ice sheet evolution and climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 245(3–4), 390–410.
    [Google Scholar]
  64. O'Brien, P. E., & Harris, P. T. (1996). Patterns of glacial erosion and deposition in Prydz Bay and the past behaviour of the Lambert Glacier. Papers and Proceedings of the Royal Society of Tasmania, 130(2), 79–85. https://doi.org/10.26749/rstpp.130.2.79
    [Google Scholar]
  65. Ohshima, K. I., Fukamachi, Y., Williams, G. D., Nihashi, S., Roquet, F., Kitade, Y., Tamura, T., Hirano, D., Herraiz‐Borreguero, L., Field, I., Hindell, M., Aoki, S., & Wakatsuchi, M. (2013). Antarctic bottom water production by intense sea‐ice formation in the cape Darnley polynya. Nature Geoscience, 6(3), 235–240. https://doi.org/10.1038/NGEO1738
    [Google Scholar]
  66. Orsi, A. H., Whitworth, T., & Nowlin, W. D. (1995). On the meridional extent and fronts of the Antarctic circumpolar current. Deep Sea Research Part I: Oceanographic Research Papers, 42(5), 641–673. https://doi.org/10.1016/0967‐0637(95)00021‐W
    [Google Scholar]
  67. Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear, C. H., Shackleton, N. J., Tripati, A. K., & Wade, B. S. (2006). The heartbeat of the Oligocene climate system. Science, 314(5807), 1894–1898. https://doi.org/10.1126/science.1133822
    [Google Scholar]
  68. Passchier, S., O'Brien, P. E., Damuth, J. E., Januszczak, N., Handwerger, D. A., & Whitehead, J. M. (2003). Pliocene‐Pleistocene glaciomarine sedimentation in eastern Prydz Bay and development of the Prydz trough‐mouth fan, ODP Sites 1166 and 1167, East Antarctica. Marine Geology, 199(3–4), 279–305.
    [Google Scholar]
  69. Peakall, J., Kane, I. A., Masson, D. G., Keevil, G., Mccaffrey, W., & Corney, R. (2012). Global (latitudinal) variation in submarine channel sinuosity. Geology, 40, 11–14.
    [Google Scholar]
  70. Pérez, L. F., Martos, Y. M., García, M., Weber, M. E., Raymo, M. E., Williams, T., Bohoyo, F., Armbrecht, L., Bailey, I., Brachfeld, S., Glüder, A., Guitard, M., Gutjahr, M., Hemming, S., Hernández‐Almeida, I., Hoem, F. S., Kato, Y., O'Connell, S., Peck, V. L., … Zheng, X. (2021). Miocene to present oceanographic variability in the Scotia Sea and Antarctic ice sheets dynamics: Insight from revised seismic‐stratigraphy following IODP Expedition 382. Earth and Planetary Science Letters, 553, 116657.
    [Google Scholar]
  71. Ramsay, A. T. S., Sykes, T. J. S., & Kidd, R. B. (1994). Waxing (and Waning) lyrical on hiatuses: Eocene‐Quaternary Indian Ocean hiatuses as proxy indicators of water mass production. Paleoceanography, 9(6), 857–877. https://doi.org/10.1029/94PA01397
    [Google Scholar]
  72. Rebesco, M., Hernández‐Molina, F. J., Rooij, D. V., & WåHlin, A. (2014). Contourites and associated sediments controlled by deep‐water circulation processes: State‐of‐the‐art and future considerations. Marine Geology, 352(3), 111–154. https://doi.org/10.1016/j.margeo.2014.03.011
    [Google Scholar]
  73. Rebesco, M., Larter, R. D., Camerlenghi, A., & Barker, P. F. (1996). Giant sediment drifts on the continental rise west of the Antarctic Peninsula. Geo‐Marine Letters, 16, 65–75. https://doi.org/10.1007/BF02202600
    [Google Scholar]
  74. Rebesco, M., Pudsey, C. J., Canals, M., Camerlenghi, A., Barker, P. F., Estrada, F., & Giorgetti, A. (2002). Sediment drifts and deep‐sea channel systems, Antarctic peninsula pacific margin. Geological Society London Memoirs, 22(1), 353–371. https://doi.org/10.1144/GSL.MEM.2002.022.01.25
    [Google Scholar]
  75. Rintoul, S. R. (1998). On the origin and influence of Adelie Land Bottom Water. In S. S.Jacobs & R. F.Weiss (Eds.), Interactions at the Antarctic Continental Margins. Antarctic Research Series (Vol. 75, pp 151–171). American Geophysical Union.
    [Google Scholar]
  76. Rodrigues, S., Hernández‐Molina, F. J., Fonnesu, M., Miramontes, E., Rebesco, M., & Campbell, D. C. (2022). A new classification system for mixed (turbidite‐contourite) depositional systems: Examples, conceptual models and diagnostic criteria for modern and ancient records. Earth‐Science Reviews, 104030. https://doi.org/10.1016/j.earscirev.2022.104030
    [Google Scholar]
  77. Sauermilch, I., Whittaker, J. M., Klocker, A., Munday, D. R., Hochmuth, K., Bijl, P. K., & LaCasce, J. H. (2021). Gateway‐driven weakening of ocean gyres leads to Southern Ocean cooling. Nature Communications, 12, 6465. https://doi.org/10.1038/s41467‐021‐26658‐1
    [Google Scholar]
  78. Scher, H. D., & Martin, E. E. (2008). Oligocene deep water export from the North Atlantic and the development of the Antarctic Circumpolar Current examined with neodymium isotopes. Paleoceanography, 23, PA1205. https://doi.org/10.1029/2006PA001400
    [Google Scholar]
  79. Shipboard Scientific Party . (2001). Leg 188 summary: Prydz Bay‐Cooperation Sea, Antarctica. In P. E.O'Brien, A. K.Cooper, & C.Richter (Eds.), Proceedings of the Ocean Drilling Project: Initial Reports v. 188: College Station, Texas (Ocean Drilling Program), pp. 1–65.
    [Google Scholar]
  80. Siegert, M. J. (2008). Antarctic subglacial topography and ice‐sheet evolution. Earth Surface Processes and Landforms. The Journal of the British Geomorphological Research Group, 33(4), 646–660.
    [Google Scholar]
  81. Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl, U., Fuller, M., Grauert, M., Huber, M., Warnaar, J., & Williams, G. L. (2004). Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography, 19, PA4027. https://doi.org/10.1029/2004PA001022
    [Google Scholar]
  82. Stow, D. A. V., Faugeres, J. C., Howe, J. A., Pudsey, C. J., & Viana, A. R. (2002). Bottom currents, contourites and deep‐sea sediment drifts: Current state‐of‐the‐art. Geological Society, London, Memoirs, 22(1), 7–20. https://doi.org/10.1144/GSL.MEM.2002.022.01.02
    [Google Scholar]
  83. Tek, D. E., McArthur, A. D., Poyatos‐Moré, M., Colombera, L., Allen, C., Patacci, M., & McCaffrey, W. D. (2022). Controls on the architectural evolution of deep‐water channel overbank sediment wave fields: Insights from the Hikurangi Channel, offshore New Zealand. New Zealand Journal of Geology and Geophysics, 65(1), 141–178.
    [Google Scholar]
  84. Uenzelmann‐Neben, G. (2006). Depositional patterns at Drift 7, Antarctic Peninsula: Along‐slope versus down‐slope sediment transport as indicators for oceanic currents and climatic conditions. Marine Geology, 233(1–4), 49–62. https://doi.org/10.1016/j.margeo.2006.08.008
    [Google Scholar]
  85. Van Rooij, D., De Mol, B., Huvenne, V., Ivanov, M., & Henriet, J. P. (2003). Seismic evidence of current‐controlled sedimentation in the Belgica mound province, upper Porcupine slope, southwest of Ireland. Marine Geology, 195(1–4), 31–53. https://doi.org/10.1016/S0025‐3227(02)00681‐3
    [Google Scholar]
  86. Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., & PäLike, H. (2017). Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y. Geology, 45(4), 375–378. https://doi.org/10.1130/G38663.1
    [Google Scholar]
  87. Whitehead, J., Quilty, P., Mckelvey, B., & O'Brien, P. (2006). A review of the Cenozoic stratigraphy and glacial history of the Lambert Graben—Prydz Bay region, East Antarctica. Antarctic Science, 18(1), 83–99. https://doi.org/10.1017/S0954102006000083
    [Google Scholar]
  88. Williams, G. D., Herraiz‐Borreguero, L., Roquet, F., Tamura, T., Ohshima, K. I., Fukamachi, Y., Fraser, A. D., Gao, L., Chen, H., McMahon, C. R., Harcourt, R., & Hindell, M. (2016). The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay. Nature Communications, 7, 12577. https://doi.org/10.1038/ncomms12577
    [Google Scholar]
  89. Williams, T., & Handwerger, D. (2005). A high‐resolution record of early Miocene Antarctic glacial history from ODP Site 1165, Prydz Bay. Paleoceanography, 20(2), PA2017.
    [Google Scholar]
  90. Williams, T., van de Flierdt, T., Hemming, S. R., Chung, E., Roy, M., & Goldstein, S. L. (2010). Evidence for iceberg armadas from East Antarctica in the Southern Ocean during the late Miocene and early Pliocene. Earth and Planetary Science Letters, 290(3–4), 351–361.
    [Google Scholar]
  91. Wold, C. N. (1994). Cenozoic sediment accumulation on drifts in the northern North Atlantic. Paleoceanography, 9(6), 917–941. https://doi.org/10.1029/94PA01438
    [Google Scholar]
  92. Wynn, R. B., & Stow, D. A. V. (2002). Classification and characterization of deep‐water sediment waves. Marine Geology, 192(1–3), 7–22.
    [Google Scholar]
  93. Yamazaki, K., Aoki, S., Katsumata, K., Hirano, D., & Nakayama, Y. (2021). Multidecadal poleward shift of the southern boundary of the Antarctic Circumpolar Current off East Antarctica. Science Advances, 7(24), eabf8755.
    [Google Scholar]
  94. You, Y., Suginohara, N., Fukasawa, M., Yasuda, I., Kaneko, I., Yoritaka, H., & Kawamiya, M. (2000). Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific intermediate water. Journal of Geophysical Research: Oceans, 105(C2), 3253–3280. https://doi.org/10.1029/1999JC900304
    [Google Scholar]
  95. Zachos, J., Dickens, G., & Zeebe, R. (2008). An early Cenozoic perspective on greenhouse warming and carbon‐cycle dynamics. Nature, 451, 279–283. https://doi.org/10.1038/nature06588
    [Google Scholar]
  96. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693. https://doi.org/10.1126/science.1059412
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12690
Loading
/content/journals/10.1111/bre.12690
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error