1887
Volume 34, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

The McArthur Basin of the North Australian Craton is one of the very few places on Earth where extensive hydrocarbons are preserved that were generated from Mesoproterozoic source rocks, prior to the development of extensive multicellular life. It is, however, unclear precisely when hydrocarbons from these source rocks matured, and if this occurred as a singular event or multiple phases. In this study, we present new apatite fission track data from a combination of outcrop and sub‐surface samples from the McArthur Basin to investigate the post‐depositional thermal history of the basin, and to explore the timing of hydrocarbon maturation. Apatite fission track data and thermal modelling suggest that the McArthur Basin experienced a basin‐wide reheating event contemporaneous with the eruption of the Cambrian Kalkarindji Large Igneous Province in the North and West Australian cratons, during which thick (>500 m) basaltic flows blanketed the basin surface. Reheating at ca. 510 Ma coinciding with Kalkarindji volcanism is consistent with a proposed timing of elevated hydrocarbon maturation, particularly in the Beetaloo Sub‐basin, and provides a mechanism for petroleum generation throughout the basin. Subsequent regional cooling was slow and gradual, most likely facilitated by gentle erosion (ca. 0.01–0.006 km/Ma) of overlying Georgina Basin sediments in the Devonian–Carboniferous with little structural reactivation. This model provides a framework in which hydrocarbons, sourced from Mesoproterozoic carbon‐rich rocks, may have experienced thermal maturation much later in the Cambrian. Preservation of these hydrocarbons was aided by a lack of widespread structural exhumation following this event.

,

The Kalkarindji Large Igneous Province was erupted across much of northern and western Australia at ca. 510 Ma, blanketing the region below extensive basaltic lava flows. Within the McArthur Basin in the North Australian Craton, new apatite fission track data provide evidence for heating of the shallow basin during this event. Sub‐surface heating was expressed as short‐lived, high magnitude heating by heat transfer from hot lavas, which subsequently transitioned to longer‐lived heating of the basin by insulation below these basalts.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12691
2022-11-18
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/6/bre12691.html?itemId=/content/journals/10.1111/bre.12691&mimeType=html&fmt=ahah

References

  1. Abbott, S. T., Sweet, I. P., Plumb, K. A., Young, D. N., Cutovinos, A., Ferenczi, P. A., Brakel, A. T., & Pietsch, B. A. (2001). Roper Region: Urapunga—Roper River, Northern Territory: Combined explanatory notes, 1–107. (SD 53‐10, 11). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81859
    [Google Scholar]
  2. Adderly, D. (2015). Tanumbirini 1 interpreted well completion report. (PR2015‐0034). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/83784
    [Google Scholar]
  3. Ahmad, M., & Munson, T. J. (2013). Geology and mineral resources of the Northern Territory. Northern Territory Geological Survey, Special Publication 5.
    [Google Scholar]
  4. Allison, K. R., & Sheehan, G. M. (1982). EL 2888, Wearyan, annural report for 1982. (CR1982‐0352). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/83784
    [Google Scholar]
  5. Anderson, J. R., Lewis, C. J., Jarrett, A. J. M., Carr, L. K., Henson, P., Carson, C. J., Southby, C., & Munson, T. J. (2019). New SHRIMP U–Pb zircon ages from the South Nicholson Basin, Mount Isa Province and Georgina Basin, Northern Territory and Queensland, 1–101. (Record 2019/10). Geoscience Australia.
    [Google Scholar]
  6. Barker, C. E. (1989). Temperature and time in the thermal maturation of sedimentary organic matter. In: N. D.Naeser & T. H.McCulloh (Eds.), Thermal history of sedimentary basins (pp. 73–98). Springer.
    [Google Scholar]
  7. Bodorkos, S., Crowley, J. L., Claoué‐Long, J. C., Anderson, J. R., & Magee, C. W. (2021). Precise U–Pb baddeleyite dating of the Derim Derim Dolerite, McArthur Basin, Northern Territory: Old and new SHRIMP and ID‐TIMS constraints. Australian Journal of Earth Sciences, 68, 36–50. https://doi.org/10.1080/08120099.2020.1749929
    [Google Scholar]
  8. Boone, S. C., Seiler, C., Reid, A. J., Kohn, B., & Gleadow, A. (2016). An Upper Cretaceous paleo‐aquifer system in the Eromanga Basin of the central Gawler Craton, South Australia: Evidence from apatite fission track thermochronology. Australian Journal of Earth Sciences, 63, 315–331. https://doi.org/10.1080/08120099.2016.1199050
    [Google Scholar]
  9. Bradshaw, J. D., & Evans, P. R. (1988). Palaeozoic tectonics, Amadeus Basin, central Australia. The APPEA Journal, 28, 267–282. https://doi.org/10.1071/AJ87021
    [Google Scholar]
  10. Buick, I. S., Storkey, A., & Williams, I. S. (2008). Timing relationships between pegmatite emplacement, metamorphism and deformation during the intra‐plate Alice Springs Orogeny, central Australia. Journal of Metamorphic Geology, 26, 915–936. https://doi.org/10.1111/j.1525‐1314.2008.00794.x
    [Google Scholar]
  11. Carson, C., Haines, P. W., Brakel, A. T., Pietsch, B. A., & Ferenczi, P. A. (1999). Milingimbi, Northern Territory: Explanatory notes, 1–46. (SD 53‐2). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81863
    [Google Scholar]
  12. Chapman, D. S. (1986). Thermal gradients in the continental crust. Geological Society, London, Special Publications, 24, 63–70. https://doi.org/10.1144/gsl.Sp.1986.024.01.07
    [Google Scholar]
  13. Chew, D. M., Babechuk, M. G., Cogné, N., Mark, C., O'Sullivan, G. J., Henrichs, I. A., Doepke, D., & McKenna, C. A. (2016). (LA,Q)‐ICPMS trace‐element analyses of Durango and McClure Mountain apatite and implications for making natural LA‐ICPMS mineral standards. Chemical Geology, 435, 35–48. https://doi.org/10.1016/j.chemgeo.2016.03.028
    [Google Scholar]
  14. Close, D. F. (2014). The McArthur Basin: NTGS' aproach to a frontier petroleum basin with known base metal prospectivity, Annual Geoscience Exploration Seminar (AGES) (pp. 85–89). Northern Territory Geological Survey.
    [Google Scholar]
  15. Cox, G. M., Collins, A. S., Jarrett, A. J. M., Blades, M. L., Shannon, A. V., Yang, B., Farkas, J., Hall, P. A., O'Hara, B., Close, D., & Baruch, E. T. (2022). A very unconventional hydrocarbon play: The Mesoproterozoic Velkerri Formation of Northern Australia. AAPG Bulletin, 106, 1213–1237. https://doi.org/10.1306/12162120148
    [Google Scholar]
  16. Cox, G. M., Jarrett, A., Edwards, D., Crockford, P. W., Halverson, G. P., Collins, A. S., Poirier, A., & Li, Z. X. (2016). Basin redox and primary productivity within the Mesoproterozoic Roper Seaway. Chemical Geology, 440, 101–114. https://doi.org/10.1016/j.chemgeo.2016.06.025
    [Google Scholar]
  17. Crick, I. H., Boreham, C. J., Cook, A. C., & Powell, T. G. (1988). Petroleum geology and geochemistry of Middle Proterozoic McArthur Basin, Northern Australia II: Assessment of source rock potential. AAPG Bulletin, 72, 1495–1514. https://doi.org/10.1306/703c99d8‐1707‐11d7‐8645000102c1865d
    [Google Scholar]
  18. Danielson, J. J., & Gesch, D. B. (2011). Global multi‐resolution terrain elevation data 2010 (GMTED2010). (2011‐1073). U. S. Geological Surveyhttp://pubs.er.usgs.gov/publication/ofr20111073
    [Google Scholar]
  19. Donelick, R. A., & Miller, D. S. (1991). Enhanced TINT fission‐track densities in low spontaneous track density apatites using 252Cf‐derived fission fragment tracks: A model and experimenal observations. Nuclear Tracks and Radiation Measurements, 18, 301–307.
    [Google Scholar]
  20. Duddy, I. R., Green, P. F., Gibson, H. J., Hegarty, K. A., & Ellis, G. K. (2004). Regional palaeo‐thermal episodes in northern Australia, Timor Sea Petroleum Geoscience. Proceedings of the Timor Sea Symposium, Darwin, Northern Territory, 19–20 June 2003, pp. 567–591.
  21. Dunn, P. R. (1963). Hodgson Downs, Northern Territory: Explanatory notes. (SD 53‐14). Bureau of Mineral Resources, G.a.G. https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81764
    [Google Scholar]
  22. Dunster, J. N., Kruse, P. D., Duffett, M. L., & Ambrose, G. J. (2007). Geology and resource potential of the southern Georgina Basin, 1–232. (DIP007). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81746
    [Google Scholar]
  23. Dutkiewicz, A., Volk, H., Ridley, J., & George, S. C. (2007). Precambrian inclusion oils in the Roper Group: A review. In T. J.Munson & G. J.Ambrose (Eds.), Central Australian Basins Symposium (CABS) (pp. 326–348). Northern Territory Geological Survey.
    [Google Scholar]
  24. Evins, L. Z., Jourdan, F., & Phillips, D. (2009). The Cambrian Kalkarindji Large Igneous Province: Extent and characteristics based on new 40Ar/39Ar and geochemical data. Lithos, 110, 294–304. https://doi.org/10.1016/j.lithos.2009.01.014
    [Google Scholar]
  25. Fairbridge, R. W., & Finkl, C. W. J. (1980). Cratonic erosional unconformities and peneplains. The Journal of Geology, 88, 69–86. https://doi.org/10.1086/628474
    [Google Scholar]
  26. Faiz, M., Crombez, V., Delle Piane, C., Lupton, N., Camilleri, M., & Langhi, L. (2021). Petroleum systems model for source‐rock‐reservoir evauation in the Beetaloo Sub‐basin, 1–6. Conference Paper, 3rd AEGC: Geosciences for a Sustainable World, Brisbane, Australia.
  27. Flowers, R. M., Farley, K. A., & Ketcham, R. A. (2015). A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon. Earth and Planetary Science Letters, 432, 425–435. https://doi.org/10.1016/j.epsl.2015.09.053
    [Google Scholar]
  28. Frogtech Geoscience . (2018). SEEBASE study and GIS for greater McArthur Basin. (DIP017). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/87064
    [Google Scholar]
  29. Gallagher, K. (2012). Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth, 117, 1–16. https://doi.org/10.1029/2011jb008825
    [Google Scholar]
  30. Gard, M., Hasterok, D., & Halpin, J. A. (2019). Global whole‐rock geochemical database compilation. Earth System Science Data, 11, 1553–1566. https://doi.org/10.5194/essd‐11‐1553‐2019
    [Google Scholar]
  31. Gaughan, C. (2013). Geophysics and drilling collaboration final report for EL27472 Larrimah East project 2012. (CR2012‐1131). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/77200
    [Google Scholar]
  32. George, S. C., & Ahmad, M. (2002). Use of aromatic compound distributions to evaluate organic maturity of the Proterozoic middle Velkerri Formation, McArthur Basin, Australia. In M.Keep & S. J.Moss (Eds.), The Sedimentary Basins of Western Australia 3 (pp. 252–270). Proceedings of the Petroleum Exploration Society of Australia, Perth, Western Australia.
    [Google Scholar]
  33. George, S. C., Llorca, S. M., & Hamilton, P. J. (1994). An integrated analytical approach for determining the origin of solid bitumens in the McArthur Basin, northern Australia. Organic Geochemistry, 21, 235–248. https://doi.org/10.1016/0146‐6380(94)90187‐2
    [Google Scholar]
  34. Glass, L. M. (2002). Petrogenesis and geochronology of the North Australian Kalkarinji low‐Ti continental flood basalt province. (PhD thesis). Australian National University.
    [Google Scholar]
  35. Glass, L. M., & Phillips, D. (2006). The Kalkarindji continental flood basalt province: A new Cambrian large igneous province in Australia with possible links to faunal extinctions. Geology, 34, 461–464. https://doi.org/10.1130/g22122.1
    [Google Scholar]
  36. Gleadow, A. J. W., Duddy, I. R., Green, P. F., & Lovering, J. F. (1986). Confined fission track lengths in apatite: A diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology, 94, 405–415. https://doi.org/10.1007/bf00376334
    [Google Scholar]
  37. Glorie, S., Agostino, K., Dutch, R., Pawley, M., Hall, J., Danišík, M., Evans, N. J., & Collins, A. S. (2017). Thermal history and differential exhumation across the Eastern Musgrave Province, South Australia: Insights from low‐temperature thermochronology. Tectonophysics, 703–704, 23–41. https://doi.org/10.1016/j.tecto.2017.03.003
    [Google Scholar]
  38. Glorie, S., Alexandrov, I., Nixon, A., Jepson, G., Gillespie, J., & Jahn, B. M. (2017). Thermal and exhumation history of Sakhalin Island (Russia) constrained by apatite U‐Pb and fission track thermochronology. Journal of Asian Earth Sciences, 143, 326–342. https://doi.org/10.1016/j.jseaes.2017.05.011
    [Google Scholar]
  39. Glorie, S., Hall, J. W., Nixon, A., Collins, A. S., & Reid, A. (2019). Carboniferous fault reactivation at the northern margin of the metal‐rich Gawler Craton (South Australia): Implications for ore deposit exhumation and preservation. Ore Geology Reviews, 115, 103193. https://doi.org/10.1016/j.oregeorev.2019.103193
    [Google Scholar]
  40. Green, P. F., & Duddy, I. R. (2021). Discussion: Extracting thermal history from low temperature thermochronology. A comment on recent exchanges between Vermeesch and Tian and Gallagher and Ketcham. Earth‐Science Reviews, 216, 103197. https://doi.org/10.1016/j.earscirev.2020.103197
    [Google Scholar]
  41. Green, P. F., Duddy, I. R., Gleadow, A. J. W., Tingate, P. R., & Laslett, G. M. (1986). Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology, 59, 237–253. https://doi.org/10.1016/0168‐9622(86)90074‐6
    [Google Scholar]
  42. Haines, P. W., Hand, M., & Sandiford, M. (2001). Palaeozoic synorogenic sedimentation in central and northern Australia: A review of distribution and timing with implications for the evolution of intracontinental orogens. Australian Journal of Earth Sciences, 48, 911–928. https://doi.org/10.1046/j.1440‐0952.2001.00909.x
    [Google Scholar]
  43. Hall, J. W., Glorie, S., Collins, A. S., Reid, A., Evans, N., McInnes, B., & Foden, J. (2016). Exhumation history of the Peake and Denison Inliers: Insights from low‐temperature thermochronology. Australian Journal of Earth Sciences, 63, 805–820. https://doi.org/10.1080/08120099.2016.1253615
    [Google Scholar]
  44. Hall, J. W., Glorie, S., Reid, A. J., Collins, A. S., Jourdan, F., Danišík, M., & Evans, N. (2018). Thermal history of the northern Olympic Domain, Gawler Craton; correlations between thermochronometric data and mineralising systems. Gondwana Research, 56, 90–104. https://doi.org/10.1016/j.gr.2018.01.001
    [Google Scholar]
  45. Hand, M., Mawby, J., Miller, J. A., Ballevre, M., Hensen, B. J., Moller, A., & Buick, I. S. (1999). Tectonothermal evolution of the Harts and Strangways Range Region, eastern Arunta Inlier, central Australia. Geological Society of Australia, Specialist Group in Geochemistry, Mineralogy and Petrology, Field Guide, 4, 42.
    [Google Scholar]
  46. Hasebe, N., Barbarand, J., Jarvis, K., Carter, A., & Hurford, A. J. (2004). Apatite fission‐track chronometry using laser ablation ICP‐MS. Chemical Geology, 207, 135–145. https://doi.org/10.1016/j.chemgeo.2004.01.007
    [Google Scholar]
  47. Hasebe, N., Tamura, A., & Arai, S. (2013). Zeta equivalent fission‐track dating using LA‐ICP‐MS and examples with simultaneous U–Pb dating. Island Arc, 22, 280–291. https://doi.org/10.1111/iar.12040
    [Google Scholar]
  48. Hearing, T. W., Harvey, T. H. P., Williams, M., Leng, M. J., Lamb, A. L., Wilby, P. R., Gabbott, S. E., Pohl, A., & Donnadieu, Y. (2018). An early Cambrian greenhouse climate. Science Advances, 4, eaar5690. https://doi.org/10.1126/sciadv.aar5690
    [Google Scholar]
  49. Hibbird, S. A. (1993a). Burdo 1 well completion report. (PR1993‐0067). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/79292
    [Google Scholar]
  50. Hibbird, S. A. (1993b). Well completion report EP18—Chanin 1 Beetaloo Sub‐Basin of the McArthur Basin. (PR1993‐0043). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/79291
    [Google Scholar]
  51. Hibbird, S. A., & Slater, J. (1992). Well Completion Report EP18—Shortland 1 Beetaloo sub‐basin of the McArthur Basin. (PR1992‐0120). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/79438
    [Google Scholar]
  52. Hokin, G. (2015). Well completion report well BCFSC03 EP 184 McArthur Basin Northern Territory, Australia. (PR2014‐0074). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/79840
    [Google Scholar]
  53. Jackson, M. J., Powell, T. G., Summons, R. E., & Sweet, I. P. (1986). Hydrocarbon shows and petroleum source rocks in sediments as old as 1.7 × 10^9 years. Nature, 322, 727. https://doi.org/10.1038/322727a0
    [Google Scholar]
  54. Jackson, M. J., & Raiswell, R. (1991). Sedimentology and carbon‐sulphur geochemistry of the Velkerri Formation, a mid‐Proterozoic potential oil source in northern Australia. Precambrian Research, 54, 81–108. https://doi.org/10.1016/0301‐9268(91)90070‐Q
    [Google Scholar]
  55. Jackson, M. J., Sweet, I. P., & Powell, T. G. (1988). Studies on petroleum geology and geochemistry, Middle Proterozoic McArthur Basin, northern Australia I: Petroleum potential. The APPEA Journal, 28, 283–302. https://doi.org/10.1071/AJ87022
    [Google Scholar]
  56. Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., & Enzweiler, J. (2011). Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research, 35, 397–429. https://doi.org/10.1111/j.1751‐908X.2011.00120.x
    [Google Scholar]
  57. Jones, B. G. (1972). Upper Devonian to lower Carboniferous stratigraphy of the Pertnjara Group, Amadeus Basin, central Australia. Journal of the Geological Society of Australia, 19, 229–249. https://doi.org/10.1080/14400957208527885
    [Google Scholar]
  58. Jourdan, F., Hodges, K., Sell, B., Schaltegger, U., Wingate, M. T. D., Evins, L. Z., Söderlund, U., Haines, P. W., Phillips, D., & Blenkinsop, T. (2014). High‐precision dating of the Kalkarindji large igneous province, Australia, and synchrony with the Early–Middle Cambrian (Stage 4–5) extinction. Geology, 42, 543–546. https://doi.org/10.1130/g35434.1
    [Google Scholar]
  59. Kennard, J. M. (1991). Lower Cambrian archaeocyathan buildups, Todd River Dolomite, northeast Amadeus Basin, central Australia: Sedimentology and diagenesis, 195–225. (Bulletin 236). Bureau of Mineral Resourceshttps://ui.adsabs.harvard.edu/abs/1991ggsa.rept.195K
    [Google Scholar]
  60. Kositcin, N., Munson, T. J., & Whelan, J. A. (2017). Summary of results. Joint NTGS‐GA geochronology project: Greater McArthur Basin, July 2016–June 2017. (NTGS Record 2017‐012). Record. https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/86834
  61. Krassay, A. A. (1994). The Cretaceous geology of northeastern Arnhem Land, Northern Territory. (Record 1994/40). Australian Geological Survey Organisation.
    [Google Scholar]
  62. Kruse, P. D., & Radke, B. M. (2008). Ranken—Avon Downs, Northern Territory: Explanatory notes, 1‐41. (SE 53‐16, SF 53‐04). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81892
    [Google Scholar]
  63. Kruse, P. D., & West, P. W. (1980). Archaeocyatha of the Amadeus and Georgina Basins. BMR Journal of Australian Geology & Geophysics, 5, 165–181.
    [Google Scholar]
  64. Kruse, P. D., Wygralak, A. S., Sweet, P. D., Stuart‐Smith, P. G., Pieters, P. E., & Crick, I. H. (1994). Katherine, Northern Territory: Explanatory notes, 1–69. (SD 53‐9). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81894
    [Google Scholar]
  65. Lanigan, K. (1992). Well completion report EP33—Elliott 1 Beetaloo sub‐basin of the McArthur Basin. (PR1992‐0012). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/79452
    [Google Scholar]
  66. Lanigan, K., Hibbird, S., Menpes, S., & Torkington, J. (1994). Petroleum exploration in the Proterozoic Beetaloo Sub‐baisn, Northern Territory. The APPEA Journal, 34, 674–691. https://doi.org/10.1071/AJ93050
    [Google Scholar]
  67. Lanigan, K., & Ledlie, I. M. (1990a). McManus 1 EP24 McArthur Basin, Northern Territory well completion report. (PR1989‐0086). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/79425
    [Google Scholar]
  68. Lanigan, K., & Ledlie, I. M. (1990b). Walton 1‐2 EP24 McArthur Basin, Northern Territory well completion report. (PR1989‐0088). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/79496
    [Google Scholar]
  69. Lanigan, K., & Torkington, J. (1991). Well completion report EP19—Sever 1 Daly sub‐basin of the McArthur Basin. (PR1990‐0069). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/79258
    [Google Scholar]
  70. Laslett, G. M., Green, P. F., Duddy, I. R., & Gleadow, A. J. W. (1987). Thermal annealing of fission tracks in apatite 2. A quantitative analysis. Chemical Geology, 65, 1–13. https://doi.org/10.1016/0168‐9622(87)90057‐1
    [Google Scholar]
  71. Macdonald, F. A., Wingate, M. T. D., & Mitchell, K. (2005). Geology and age of the Glikson impact structure, Western Australia. Australian Journal of Earth Sciences, 52, 641–651. https://doi.org/10.1080/08120090500170419
    [Google Scholar]
  72. Mackinlay, M. (2016). Marmbulligan 1 basic well completion report. (PR2017‐W002). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/87789
    [Google Scholar]
  73. Markov, J., Foss, C., Swierczek, E., & Delle Piane, C. (2021). Kalkarindji through the geophysical lens: Structural characteristics of the Kalkarindji basalt from non‐seismic geophysical data, 43–47. Annual Geoscience Exploration Seminar (AGES) 2021, Alice Springs, Australia.
  74. Marks, M. A. W., Wenzel, T., Whitehouse, M. J., Loose, M., Zack, T., Barth, M., Worgard, L., Krasz, V., Eby, G. N., Stosnach, H., & Markl, G. (2012). The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: An integrated analytical approach. Chemical Geology, 291, 241–255. https://doi.org/10.1016/j.chemgeo.2011.10.026
    [Google Scholar]
  75. Matthews, I. (2008). Sturt Plateau Bitumen (SPB) project. Annual report EL's for the period 1 September 2007 to 1 September 2008. (CR2008‐0375). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/74552
    [Google Scholar]
  76. Mawby, J., Hand, M., & Foden, J. (1999). Sm‐Nd evidence for high grade Ordovician metamorphism in the Arunta Block, Central Australia. Journal of Metamorphic Geology, 17, 653–668. https://doi.org/10.1046/j.1525‐1314.1999.00224.x
    [Google Scholar]
  77. McConachie, B. A., Filatoff, J., & Senapati, N. (1990). Stratigraphy and petroleum potential of the onshore Carpentaria Basin, Queensland. The APPEA Journal, 30, 149–164. https://doi.org/10.1071/AJ89009
    [Google Scholar]
  78. McDannell, K. T. (2020). Notes on statistical age dispersion in fission‐track datasets: The chi‐square test, annealing variability, and analytical considerations. EarthArXiv.
  79. McDowell, F. W., McIntosh, W. C., & Farley, K. A. (2005). A precise Ar‐40‐Ar‐39 reference age for the Durango apatite (U‐Th)/He and fission‐track dating standard. Chemical Geology, 214, 249–263. https://doi.org/10.1016/j.chemgeo.2004.10.002
    [Google Scholar]
  80. Menpes, S. A. (1992). Well completion report EP18—Balmain 1. (PR1992‐0122). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/79434
    [Google Scholar]
  81. Menpes, S. A. (1993). Well completion report EP18—Ronald 1. (PR1993‐0056). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/79423
    [Google Scholar]
  82. Merdith, A. S., Williams, S. E., Collins, A. S., Tetley, M. G., Mulder, J. A., Blades, M. L., Young, A., Armistead, S. E., Cannon, J., Zahirovic, S., & Müller, R. D. (2021). Extending full‐plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic. Earth‐Science Reviews, 214, 103477. https://doi.org/10.1016/j.earscirev.2020.103477
    [Google Scholar]
  83. Moore, J. G., Phillips, R. L., Grigg, R. W., Peterson, D. W., & Swanson, D. A. (1973). Flow of lava into the Sea, 1969–1971, Kilauea Volcano, Hawaii. GSA Bulletin, 84, 537–546. https://doi.org/10.1130/0016‐7606(1973)84<537:Folits>2.0.Co;2
    [Google Scholar]
  84. Mory, A. J., & Beere, G. M. (1988). Geology of the onshore Bonaparte and Ord Basins in Western Australia. (Bulletin 134). Geological Survey of Western Australia.
    [Google Scholar]
  85. Munson, T. J. (2016). Sedimentary characterisation of the Wilton package, greater McArthur Basin, Northern Territory, 1–151. (NTGS Record 2016‐003). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/82741
    [Google Scholar]
  86. Nixon, A. L., Glorie, S., Collins, A. S., Blades, M. L., Simpson, A., & Whelan, J. A. (2021). Inter‐cratonic geochronological and geochemical correlations of the Derim Derim–Galiwinku/Yanliao reconstructed Large Igneous Province across the North Australian and North China cratons. Gondwana Research, 103, 473–486. https://doi.org/10.1016/j.gr.2021.10.027
    [Google Scholar]
  87. Nixon, A. L., Glorie, S., Collins, A. S., Whelan, J. A., Reno, B. L., Danišík, M., Wade, B. P., & Fraser, G. (2021). Footprints of the Alice Springs Orogeny preserved in far northern Australia: An application of multi‐kinetic thermochronology in the Pine Creek Orogen and Arnhem Province. Journal of the Geological Society, 178, jgs2020‐2173. https://doi.org/10.1144/jgs2020‐173
    [Google Scholar]
  88. O'Sullivan, P. B., & Parrish, R. R. (1995). The importance of apatite composition and single‐grain ages when interpreting fission track data from plutonic rocks: A case study from the Coast Ranges, British Columbia. Earth and Planetary Science Letters, 132, 213–224. https://doi.org/10.1016/0012‐821X(95)00058‐K
    [Google Scholar]
  89. Origin Energy Resources . (2015a). Amungee NW‐1H well completion report (basic), EP 98 Beetaloo Basin, Northern Territory. (PR2016‐W001). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/87095
    [Google Scholar]
  90. Origin Energy Resources . (2015b). Kalala S‐1 well completion report (basic), EP 98 Beetaloo Basin, Northern Territory. (PR2016‐W013). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/86448
    [Google Scholar]
  91. Origin Energy Resources . (2016). Beetaloo W‐1 well completion report (basic), EP 117 Beetaloo Basin, Northern Territory. (PR2017‐W004). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/87095
    [Google Scholar]
  92. Pangaea Resources . (2014a). Basic well completion report NT EP167 Tarlee S3. (PR2015‐0016). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/83524
    [Google Scholar]
  93. Pangaea Resources . (2014b). Basic well completion report, NT EP168, Hidden Valley S2. (PR2015‐0015). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/83245
    [Google Scholar]
  94. Pangaea Resources . (2015a). Basic well completion report NT EP167 Birdum Creek 1. (PR2016‐W006). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/86120
    [Google Scholar]
  95. Pangaea Resources . (2015b). Basic well completion report, NT EP167, Manbulloo S1. (PR2015‐0017). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/83784
    [Google Scholar]
  96. Pangaea Resources . (2016a). Basic well completion report NT EP168 Tarlee 1. (PR2016‐W002). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/86116
    [Google Scholar]
  97. Pangaea Resources . (2016b). Basic well completion report NT EP168 Tarlee 2. (PR2016‐W001). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/86259
    [Google Scholar]
  98. Pangaea Resources . (2016c). Basic well completion report, NT EP167, Wyworrie 1. (PR2016‐W007). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/86440
    [Google Scholar]
  99. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508–2518. https://doi.org/10.1039/C1JA10172B
    [Google Scholar]
  100. Quentin de Gromard, R., Kirkland, C. L., Howard, H. M., Wingate, M. T. D., Jourdan, F., McInnes, B. I. A., Danišík, M., Evans, N. J., McDonald, B. J., & Smithies, R. H. (2019). When will it end? Long‐lived intracontinental reactivation in central Australia. Geoscience Frontiers, 10, 149–164. https://doi.org/10.1016/j.gsf.2018.09.003
    [Google Scholar]
  101. Raimondo, T., Collins, A. S., Hand, M., Walker‐Hallam, A., Smithies, R. H., Evins, P. M., & Howard, H. M. (2010). The anatomy of a deep intracontinental orogen. Tectonics, 29, TC4024. https://doi.org/10.1029/2009tc002504
    [Google Scholar]
  102. Rawlings, D. J. (1999). Stratigraphic resolution of a multiphase intracratonic basin system: The McArthur Basin, northern Australia. Australian Journal of Earth Sciences, 46, 703–723. https://doi.org/10.1046/j.1440‐0952.1999.00739.x
    [Google Scholar]
  103. Reddy, M., Glorie, S., Reid, A., & Collins, A. S. (2015). Phanerozoic cooling history of the central Gawler Craton: Implications of new low‐temperature thermochronological data. MESA Journal, 75, 56–60.
    [Google Scholar]
  104. RobSearch Australia . (1998). Technical review of EP18 and EP(A)70 Beetaloo Basin, Northern Territory. (PR1989‐0034). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/89027
    [Google Scholar]
  105. Shaw, R. D., & Black, L. P. (1991). The history and tectonic implications of the Redbank Thrust Zone, central Australia, based on structural, metamorphic and Rb‐Sr isotopic evidence. Australian Journal of Earth Sciences, 38, 307–332. https://doi.org/10.1080/08120099108727975
    [Google Scholar]
  106. Shaw, R. D., Zeitler, P. K., McDougall, I., & Tingate, P. R. (1992). The Palaeozoic history of an unusual intracratonic thrust belt in central Australia based on 40Ar‐39Ar, K‐Ar and fission track dating. Journal of the Geological Society, 149, 937–954. https://doi.org/10.1144/gsjgs.149.6.0937
    [Google Scholar]
  107. Smith, T., Kelman, A. P., Nicoll, R., Edwards, D., Hall, L., Laurie, J., & Carr, L. (2013). An updated stratigraphic framework for the Georgina Basin, NT and Queensland. The APPEA Journal, 53, 487. https://doi.org/10.1071/AJ12098
    [Google Scholar]
  108. Spikings, R. A., Foster, D. A., & Kohn, B. P. (2006). Low‐temperature (<110°C) thermal history of the Mt Isa and Murphy Inliers, northeast Australia: Evidence from apatite fission track thermochronology. Australian Journal of Earth Sciences, 53, 151–165. https://doi.org/10.1080/08120090500434609
    [Google Scholar]
  109. Summerfield, M. A., & Hulton, N. J. (1994). Natural controls of fluvial denudation rates in major world drainage basins. Journal of Geophysical Research: Solid Earth, 99, 13871–13883. https://doi.org/10.1029/94JB00715
    [Google Scholar]
  110. Summons, R. E., Powell, T. G., & Boreham, C. J. (1988). Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: III. Composition of extractable hydrocarbons. Geochimica Et Cosmochimica Acta, 52, 1747–1763. https://doi.org/10.1016/0016‐7037(88)90001‐4
    [Google Scholar]
  111. Sweet, I. P., Brakel, A. T., Rawlings, D. J., Haines, P. W., Plumb, K. A., & Wygralak, A. S. (1999). Mount Marumba, Northern Territory: Explanatory notes, 1–84. (SD 53‐6). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81911
    [Google Scholar]
  112. Taylor, D., Kontorovich, A. E., Larichev, A. I., & Glikson, M. (1994). Petroleum source rocks in the Roper Group of the McArthur Basin: Source characterisation and maturity determinations using physical and chemical methods. The APPEA Journal, 34, 279–296. https://doi.org/10.1071/AJ93026
    [Google Scholar]
  113. Tingate, P. R., & Duddy, I. R. (2002). The thermal history of the eastern Officer Basin (South Australia): Evidence from apatite fission track analysis and organic maturity data. Tectonophysics, 349, 251–275. https://doi.org/10.1016/S0040‐1951(02)00056‐2
    [Google Scholar]
  114. Tissot, B., Durand, B., Espitalié, J., & Combaz, A. (1974). Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bulletin, 58, 499–506. https://doi.org/10.1306/83d91425‐16c7‐11d7‐8645000102c1865d
    [Google Scholar]
  115. Torkington, J., & Derrington, S. (1992). Well completion report EP18—Mason 1 Beetaloo sub‐basin of the McArthur Basin. (PR1992‐0027). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/79430
    [Google Scholar]
  116. Torkington, J., & Lanigan, K. (1991). Well completion report EP18—Jamison 1 Beetaloo sub‐basin of the McArthur Basin. (PR1991‐0020). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/79447
    [Google Scholar]
  117. Torkington, J., & Ledlie, I. M. (1988). Broughton 1 EP 5 McArthur Basin, Northern Territory well completion report. (PR1988‐0078). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/83784
    [Google Scholar]
  118. Torkington, J., Weste, G., Chiuoka, J., & Ledlie, I. M. (1989). Altree‐1 and 2 EP 24 McArthur Basin, Northern Territory well completion report. (PR1989‐0016). Northern Territory Geological Surveyhttps://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/79421
    [Google Scholar]
  119. Vermeesch, P. (2017). Statistics for LA‐ICP‐MS based fission track dating. Chemical Geology, 456, 19–27. https://doi.org/10.1016/j.chemgeo.2017.03.002
    [Google Scholar]
  120. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9, 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
    [Google Scholar]
  121. Wagner, G. A., & Van den Haute, P. (1992). Fission‐track dating. Kluwer Academic.
    [Google Scholar]
  122. Walter, M. R., Veevers, J. J., Calver, C. R., & Grey, K. (1995). Neoproterozoic stratigraphy of the Centralian Superbasin, Australia. Precambrian Research, 73, 173–195. https://doi.org/10.1016/0301‐9268(94)00077‐5
    [Google Scholar]
  123. Waples, D. W. (1980). Time and temperature in petroleum formation: Application of Lopatin's method to petroleum exploration. AAPG Bulletin, 64, 916–926. https://doi.org/10.1306/2f9193d2‐16ce‐11d7‐8645000102c1865d
    [Google Scholar]
  124. Warren, J. K., George, S. C., Hamilton, P. J., & Tingate, P. (1998). Proterozoic source rocks: Sedimentology and organic characteristics of the Velkerri Formation, Northern Territory, Australia1. AAPG Bulletin, 82, 442–463. https://doi.org/10.1306/1d9bc435‐172d‐11d7‐8645000102c1865d
    [Google Scholar]
  125. Wells, A. T. (1970). Geology of the Amadeus basin, central Australia. Bureau of Mineral Resources, Geology and Geophysics, Bulletin 100.
  126. Wotte, T., Skovsted, C. B., Whitehouse, M. J., & Kouchinsky, A. (2019). Isotopic evidence for temperate oceans during the Cambrian Explosion. Scientific Reports, 9, 6330. https://doi.org/10.1038/s41598‐019‐42719‐4
    [Google Scholar]
  127. Yang, B., Collins, A. S., Blades, M. L., Munson, T. J., Payne, J. L., Glorie, S., & Farkaš, J. (2020). Tectonic controls on sedimentary provenance and basin geography of the Mesoproterozoic Wilton package, McArthur Basin, northern Australia. Geological Magazine, 159, 1–20. https://doi.org/10.1017/S0016756820001223
    [Google Scholar]
  128. Yang, B., Collins, A. S., Cox, G. M., Jarrett, A. J. M., Denyszyn, S. W., Blades, M. L., Farkaš, J., & Glorie, S. (2020). Using Mesoproterozoic sedimentary geochemistry to reconstruct basin tectonic geography and link organic carbon productivity to nutrient flux from a Northern Australian large igneous Province. Basin Research, 32, 1734–1750. https://doi.org/10.1111/bre.12450
    [Google Scholar]
  129. Yang, B., Smith, T. M., Collins, A. S., Munson, T. J., Schoemaker, B., Nicholls, D., Cox, G., Farkas, J., & Glorie, S. (2018). Spatial and temporal variation in detrital zircon age provenance of the hydrocarbon‐bearing upper Roper Group, Beetaloo Sub‐basin, Northern Territory, Australia. Precambrian Research, 304, 140–155. https://doi.org/10.10164/j.precamres.2017.10.025
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12691
Loading
/content/journals/10.1111/bre.12691
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error