1887
Volume 34, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

Depositional models for retroarc foreland basin systems commonly imply a direct link between thrust belt dynamics and sediment supply, despite documented complexity between orogen‐transverse and orogen‐parallel (axial) sediment routing systems. Previous detrital zircon provenance studies from the Straight Cliffs Formation in the Kaiparowits Plateau of southern Utah indicate primary axial source areas to the south (Mogollon Highlands), and southwest (Cordilleran magmatic arc), with relatively minor transverse input from the Sevier fold‐thrust belt to the west. Complementary data from 32 new samples are presented to investigate whether these trends persist in correlated strata from sections most proximal to the active fold‐thrust belt, as well as strata proximal to the Mogollon Highlands. This study aims to improve statistical robustness through higher‐n datasets (>300 analyses/sample) and addresses the possibility of recycling of zircon grains from strata in the exhumed Sevier fold‐thrust belt. Based on this provenance dataset, we infer that orogen‐transverse deposition was mainly limited to the most proximal sections (within ca. 75 km of the fold‐thrust belt), but included episodic distribution across the foredeep that was associated with distinct intervals of widespread amalgamated sand and gravel sheet deposits. In contrast, more distal parts of the foredeep record long‐distance fluvial transport (>400 km) of zircons from the active Cordilleran magmatic arc as well as Yavapai‐Mazatzal basement rocks in central Arizona (the Mogollon Highlands). Palaeogeographic reconstructions suggest the apex of a large basin‐axial fluvial system may have been located at the structural syntaxis between the Sevier fold‐thrust belt and western margin of the Mogollon Highlands. This interpretation is supported by detrital zircon data presented here, thus extending the possibility that the Palaeogene ‘California River’ may have existed by at least Late Cretaceous time. Ultimately, these data point to extrabasinal controls on sediment supply, which was largely decoupled from flexural accommodation controls in this archetype retroarc foreland basin.

,

New detrital zircon provenance data from the Upper Cretaceous Straight Cliffs Formation and equivalent Iron Springs Formation of southern Utah indicates that orogen‐transverse deposition was limited to the most proximal sections within ca. 75 km of the Sevier fold‐thrust belt. The majority of foredeep deposits record long‐distance fluvial transport (>400 km) of zircons from the active Cordilleran magmatic arc and Yavapai‐Mazatzal basement rocks in central Arizona (the Mogollon Highlands). The data suggest that the apex of a large basin‐axial fluvial system may have been located at the structural syntaxis between the Sevier fold‐thrust belt and western margin of the Mogollon Highlands, and point to extrabasinal controls on sediment supply, which was largely decoupled from flexural accommodation controls within the Sevier foreland basin.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12692
2022-11-18
2022-11-30
Loading full text...

Full text loading...

References

  1. Allen, J. L., & Johnson, C. L. (2010). Sedimentary facies, paleoenvironments, and relative sea level changes in the John Henry Member, Cretaceous Straight Cliffs Formation, southern Utah, USA. Geology of South‐Central Utah: Utah Geological Society Publication, 39, 225–247. http://www.earth.utah.edu/basins/pubs/AllenandJohnson_UGA.pdf
    [Google Scholar]
  2. Allen, J. L., Johnson, C. L., Heumann, M. J., Gooley, J., & Gallin, W. (2012). Composition: A preliminary case study using a quantitative electron microscope scanner (QEMScan). Geological Society of America Special Papers, 2487, 177–194. https://doi.org/10.1130/2012.2487(11)
    [Google Scholar]
  3. Amato, J. M. (2019). Detrital zircon ages from Proterozoic, Paleozoic, and Cretaceous clastic strata in Southern New Mexico, U.S.A.: Rocky Mountain. Geology, 54, 19–32. https://doi.org/10.24872/rmgjournal.54.1.19
    [Google Scholar]
  4. Anderson, L. P., & Dinter, D. A. (2010). Deformation and sedimentation in the southern Sevier Foreland, Red Hills, southwestern Utah (Vol. 39). Geology of South‐Central Utah, Utah Geological Association Publication.
    [Google Scholar]
  5. Angevine, C. L., Heller, P. L., & Paola, C. (1990). Quantitative sedimentary basin modeling: American Association of Petroleum Geologists, Introduction: Chapter 1, No. 32.
  6. Barth, A. P., & Wooden, J. L. (2006). Timing of magmatism following initial convergence at a passive margin, Southwestern U.S. Cordillera, and ages of lower crustal magma sources. The Journal of Geology, 114, 231–245.
    [Google Scholar]
  7. Barth, A. P., Wooden, J. L., Jacobson, C. E., & Probst, K. (2004). U–Pb geochronology and geochemistry of the McCoy Mountains Formation, southeastern California: A Cretaceous retroarc foreland basin. Geological Society of America Bulletin, 116, 142–153. https://doi.org/10.1130/B25288.1
    [Google Scholar]
  8. Bartschi, N. C., Saylor, J. E., Lapen, T. J., Blum, M. D., Pettit, B. S., & Andrea, R. A. (2018). Tectonic controls on Late Cretaceous sediment provenance and stratigraphic architecture in the Book Cliffs, Utah. Geological Society of America Bulletin, 130(11–12), 1763–1781.
    [Google Scholar]
  9. Beaumont, C. (1981). Foreland basins. Geophysical Journal International, 65(2), 291–329.
    [Google Scholar]
  10. Biek, R. F., Rowley, P. D., Anderson, J. J., Maldonado, F., Moore, D. W., Hacker, D. B., Eaton, J. G., Hereford, R., Sable, E. G., Filkorn, H. F., & Matyjasik, B. (2015). Geologic Map of the Panguitch 30′ × 60′ Quadrangle, Garfield, Iron, and Kane Counties, Utah, Utah Geological Survey Map 270DM, scale 1:62,500.
  11. Biek, R. F., Rowley, P. D., Hayden, J. M., Hacker, D. B., Willis, G. C., Hintze, L. F., Anderson, R. E., & Brown, K. D. (2009). Map 242, Geologic Map of the St. George and East Part of the Clover Mountains, 30′×60′ Quadrangles, Washington and Iron Counties, Utah. Utah Geological Survey ISBN 1‐55791‐816‐3.
    [Google Scholar]
  12. Bilodeau, W. L. (1986). The Mesozoic Mogollon Highlands, Arizona: An early Cretaceous Rift shoulder. The Journal of Geology, 94, 724–735. http://www.jstor.org/stable/3007833
    [Google Scholar]
  13. Bradley, D. C., & Kidd, W. S. F. (1991). Flexural extension of the upper continental crust in collisional foredeeps. Geological Society of America Bulletin, 103, 1416–1438.
    [Google Scholar]
  14. Brozovic, N., & Burbank, D. W. (2000). Dynamic fluvial systems and gravel progradation in the Himalayan foreland. Geological Society of America Bulletin, 112(3), 394–412.
    [Google Scholar]
  15. Burbank, D. W., Verges, J., Munoz, J. A., & Bentham, P. (1992). Coeval hindward‐ and forward‐imbricating thrusting in the south‐ central Pyrenees, Spain: Timing and rates of shortening and deposition. Geological Society of America Bulletin, 104, 3–17. https://doi.org/10.1130/0016‐7606(1992)104<0003:CHAFIT>2.3.CO;2
    [Google Scholar]
  16. Burgess, P. M., Gurnis, M., & Moresi, L. (1997). Formation of sequences in the cratonic interior of North America by interaction between mantle, eustatic, and stratigraphic processes. Geological Society of America Bulletin, 109, 1515–1535. https://doi.org/10.1130/0016‐7606(1997)109<1515:FOSITC>2.3.CO;2
    [Google Scholar]
  17. Carbonell, P. J. T., & Olivero, E. B. (2008). Structure and Evolution of the Fuegian Andes foreland thrust‐fold belt, Tierra del Fuego, Argentina: Paleogeographic implications. Journal of South American Earth Scienes, 25(4), 417–439. https://doi.org/10.1016/i.isames.2007.12.002
    [Google Scholar]
  18. Carbonell, P. J. T., & Olivero, E. B. (2012). Sand dispersal in the southeastern Austral Basin, Tierra del Fuego, Argentina: Outcrop insights from Eocene channeled turbidite systems. Journal of South American Earth Sciences, 33, 80–101. https://doi.org/10.1016/j.jsames.2011.08.002
    [Google Scholar]
  19. Carbonell, P. J. T., & Olivero, E. B. (2019). Tectonic control on the evolution of depositional systems in a fossil, marine foreland basin: Example from the SE Austral Basin, Tierra del Fuego, Argentina. Tierra del Fuego, Argentina, Marine and Petroleum Geology, 104, 40–60. https://doi.org/10.1016/j.marpetgeo.2019.03.022
    [Google Scholar]
  20. Catuneanu, O. (2002). Sequence stratigraphy of clastic systems: Concepts, merits, and pitfalls. Journal of African Earth Sciences, 35(1), 1–43.
    [Google Scholar]
  21. Chapman, J. B., & DeCelles, P. G. (2021). Beveling the Colorado Plateau: Early Mesozoic rift‐related flexure explains erosion and anomalous deposition in the southern Cordilleran foreland basin. Tectonics, 40, e2020TC006517. https://doi.org/10.1029/2020TC006517
    [Google Scholar]
  22. Chen, J. H., & Moore, J. G. (1979). Late Jurassic Independence dike swarm in eastern California. Geology, 7, 129–133. https://doi.org/10.1130/0091‐7613(1979)7<129:LJIDSI>2.0.CO;2
    [Google Scholar]
  23. Chentnik, B. M., Johnson, C. L., Mulhern, J. S., & Stright, L. (2015). Valleys, Estuaries, and Lagoons: Paleoenvironments and regressive—Trangressive architectue of the Upper Cretaceous Straight Cliffs Formation, Utah, U.S.A. Journal of Sedimentary Research, 85, 1166–1196.
    [Google Scholar]
  24. Copeland, P., Currie, C. A., Lawton, T. F., & Murphy, M. A. (2017). Location, location, location: The variable lifespan of the laramide orogeny. Geology, 45, 223–226. https://doi.org/10.1130/G38810.1
    [Google Scholar]
  25. Currie, B. S. (2002). Structural configuration of the early Cretaceous Cordilleran Foreland Basin system and Sevier Thrust Belt, Utah and Colorado. The Journal of Geology, 110, 697–718. https://doi.org/10.1086/342626
    [Google Scholar]
  26. Daniel, C. G., Pfeifer, L. S., Jones, J. V., III, & McFarlane, C. M. (2013). Detrital zircon evidence for non‐Laurentian provenance, Mesoproterozoic (ca. 1490–1450 Ma) deposition and orogen‐ esis in a reconstructed orogenic belt, northern New Mexico, U.S.A.: Defining the Picuris orogeny. Geological Society of America Bulletin, 125, 1423–1441.
    [Google Scholar]
  27. Davis, S. J., Dickinson, W. R., Gehrels, G. E., Spencer, J. E., Lawton, T. F., & Carroll, A. R. (2010). The Paleogene California River: Evidence of Mojave‐Uinta paleodrainage from U–Pb ages of detrital zircons. Geology, 38, 931–934. https://doi.org/10.1130/G31250.1
    [Google Scholar]
  28. DeCelles, P. G., Carrapa, B., Horton, B. K., & Gehrels, G. E. (2011). Cenozoic foreland basin system in the central Andes of northwestern Argentina: Implications for Andean geodynamics and modes of deformation. Tectonics, 30, 1–30. https://doi.org/10.1029/2011TC002948
    [Google Scholar]
  29. DeCelles, P. G., & Cavazza, W. (1999). A comparison of fluvial megafans in the Cordilleran (Upper Cretaceous) and modern Himalayan foreland basin systems. Geological Society of America Bulletin, 111, 1315–1334. https://doi.org/10.1130/0016‐7606(1999)111<1315
    [Google Scholar]
  30. DeCelles, P. G., & Coogan, J. C. (2006). Regional structure and kinematic history of the Sevier fold‐and‐thrust belt, central Utah. Bulletin of the Geological Society of America, 118, 841–864. https://doi.org/10.1130/B25759.1
    [Google Scholar]
  31. DeCelles, P. G., Ducea, M. N., Kapp, P., & Zandt, G. (2009). Cyclicity in Cordilleran orogenic systems. Nature Geoscience, 2, 251–257. https://doi.org/10.1038/ngeo469
    [Google Scholar]
  32. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 9, 172–176.
    [Google Scholar]
  33. DeCelles, P. G., & Graham, S. A. (2015). Cyclical processes in the North American Cordilleran orogenic system. Geology, 43, 499–502. https://doi.org/10.1130/G36482.1
    [Google Scholar]
  34. DeCelles, P. G., Lawton, T. F., & Mitra, G. (1995). Thrust timing, growth of structural culminations, and synorogenic sedimentation in the type Sevier orogenic belt, western United States. Geology, 23, 699–702.
    [Google Scholar]
  35. Dickinson, W. R. (2008). Accretionary Mesozoic‐Cenozoic expansion of the Cordilleran continental margin in California and adjacent Oregon. Geosphere, 4, 329–353.
    [Google Scholar]
  36. Dickinson, W. R. (2013). Interpreting sediment dispersal in Western North America from detrital zircon ages. Search and Discovery Article, #50818.
  37. Dickinson, W. R., Fiorillo, A. R., Hall, D. L., Monreal, R., Potochnik, A. R., & Swift, P. N. (1989). Cretaceous Strata of southern Arizon. In J. P.Jenney & S. J.Reynolds (Eds.), Geologic evolution of Arizona (Vol. 17, pp. 447–461). Arizona Geological Society Digest.
    [Google Scholar]
  38. Dickinson, W. R., & Gehrels, G. E. (2003). U–Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA: Paleogeographic implications. Sedimentary Geology, 163, 29–66. https://doi.org/10.1016/S0037‐0738(03)00158‐1
    [Google Scholar]
  39. Dickinson, W. R., & Gehrels, G. E. (2008a). Sediment delivery to the Cordilleran foreland basin: Insights from U–Pb ages of detrital zircons in Upper Jurassic and Cretaceous strata of the Colorado Plateau. American Journal of Science, 308(10), 1041–1082.
    [Google Scholar]
  40. Dickinson, W. R., & Gehrels, G. E. (2008b). U–Pb ages of detrital zircons in relation to paleogeography: Triassic paleodrainage networks and sediment dispersal across southwest Laurentia. Journal of Sedimentary Research, 78(12), 745–764.
    [Google Scholar]
  41. Dickinson, W. R., & Gehrels, G. E. (2009). Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288, 115–125. https://doi.org/10.1016/j.epsl.2009.09.013
    [Google Scholar]
  42. Dickinson, W. R., & Lawton, T. F. (2001a). Carboniferous to Cretaceous assembly and fragmentation of Mexico. GSA Bulletin, 113, 1142–1160.
    [Google Scholar]
  43. Dickinson, W. R., & Lawton, T. F. (2001b). Tectonic setting and sandstone petrofacies of the Bisbee basin (USA‐Mexico). Journal of South American Earth Sciences, 14, 475–504. https://doi.org/10.1016/S0895‐9811(01)00046‐3
    [Google Scholar]
  44. Dickinson, W. R., Lawton, T. F., Pecha, M., Davis, S. J., Gehrels, G. E., & Young, R. A. (2012). Provenance of the Paleogene Colton Formation (Uinta Basin) And Cretaceous‐Paleogene provenance evolution in the Utah foreland: Evidence from U‐Pb ages of detrital zircons, paleocurrent trends, and sandstone petrofacies. Geosphere, 8, 854–880. https://doi.org/10.1130/GES00763.1
    [Google Scholar]
  45. Dickinson, W. R., & Snyder, W. S. (1978). Plate tectonics of the Laramide orogeny. In V.Matthews (Ed.), Laramide folding associated with basement block faulting in the Western United States (Vol. 151, pp. 355–366). Geological Society of America.
    [Google Scholar]
  46. Drummond, C. N., Wilkinson, B. H., & Lohmann, K. C. (1996). Climatic control of fluvial‐lacustrine cyclicity in the Cretaceous Cordilleran Foreland Basin, western United States. Sedimentology, 43, 677–689.
    [Google Scholar]
  47. Ducea, M. N. (2001). The California arc: Thick granitic batholiths, eclogitic residues, lithospheric‐scale thrusting, and magmatic flare‐ups. GSA Today, 11, 4–10.
    [Google Scholar]
  48. Ducea, M. N., & Barton, M. D. (2007). Igniting flare‐up events in Cordilleran arcs. Geology, 35, 1047–1050.
    [Google Scholar]
  49. Eaton, J. G. (1999). Vertebrate paleontology of the Iron Springs Formation, Upper Cretaceous, southwestern Utah. Vertebrate Paleontology in Utah, 99–1, 339–343.
    [Google Scholar]
  50. Dumitru, T. A., & Stockli, D. F. (1998). A better way to separate apatite from zircon using constriction tubes. Advances in Fission‐Track Geochronology, 325–330.
    [Google Scholar]
  51. Eaton, J. G., Laurin, J., Kirkland, J. I., Tibert, N. E., Leckie, R. M., Sageman, B. B., Goldstrand, P. M., Moore, D. W., Straub, A. W., Cobban, W. A., & Dalebout, J. D. (2001). Cretaceous and Early Tertiary geology of Cedar and Parowan Canyons, western Markagunt Plateau, Utah. In M. C.Erskine, J. E.Faulds, J. M.Bartley, & P. D.Rowley (Eds.), The geologic transition, high plateaus to Great Basin—a symposium and field guide (The Mackin Volume) (Vol. GB78, pp. 337–363). Utah Geological Association Publication 30 and American Association of Petroleum Geologists, Pacific Section Publication.
    [Google Scholar]
  52. Eaton, J. G., Laurin, J., Kirkland, J. I., Tibert, N. E., Leckie, R. M., Sageman, B. B., Goldstrand, P. M., Moore, D. W., Straub, A. W., Cobban, W. A., & Dalebout, J. D. (2002). Cretaceous and Early Tertiary geology of Cedar and Parowan Canyons, western Markagunt Plateau, Utah: Utah Geological Association Field Trip Road Log, September, 2001 (Vol. GB78, pp. 337–363). Utah Geological Association Publication 30—Pacific Section American Association of Petroleum Geologists Publication.
    [Google Scholar]
  53. Eaton, J. G., & Nations, J. D. (1991). Stratigraphy, depositional environments, and sedimentary tectonics of the western margin, Cretaceous Western Interior Seaway. Geological Society of America Special Paper, 260, 1–8. https://doi.org/10.1130/SPE260‐p1
    [Google Scholar]
  54. Edwards, C. M., Howell, J. A., & Flint, S. S. (2005). Depositional and Stratigraphic Architecture of the Santonian Emery Sandstone of the Mancos Shale: Implications for Late Cretaceous Evolution of the Western Interior Foreland Basin of Central Utah, U.S.A. Journal of Sedimentary Research, 75, 280–299. https://doi.org/10.2110/jsr.2005.021
    [Google Scholar]
  55. El Euch‐El Koundi, N., Ferry, S., Ouaja, M., & Zargouni, F. (2018). New insights on sedimentology, sequence stratigraphy and palaeogeographic reconstruction of the Tortonian‐Early Messinian Kechabta series in Kechabta Foreland Basin (Northern Tunisia). Journal of African Earth Sciences, 145, 18–31.
    [Google Scholar]
  56. Eriksson, K. A., Campbell, I. H., Palin, J. M., & Allen, C. M. (2003). Predominance of Grenvillian magmatism recorded in detrital zircons from modern Appalachian rivers. Journal of Geology, 111, 707–717.
    [Google Scholar]
  57. Eriksson, K. A., Campbell, I. H., Palin, J. M., Allen, C. M., & Bock, B. (2004). Evidence for multiple recycling in neoproterozoic through Pennsylvanian sedimentary rocks of the Central Appalachian Basin. The Journal of Geology, 112, 261–276. https://doi.org/10.1086/382758
    [Google Scholar]
  58. Fedo, C. M., Sircombe, K. N., & Rainbird, R. H. (2003). Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy & Geochemistry, 53, 277–303. https://doi.org/10.2113/0530277
    [Google Scholar]
  59. Ferron, C. (2019). Detrital zircon signal inversion in the Cretaceous Southwestern US Interior Seaway—A Case Study from the Gallup System New Mexico [PhD thesis]. McMaster University.
    [Google Scholar]
  60. Fillmore, R. (1991). Tectonic influence on sedimentation in southern Sevier foreland Iron Springs. Geological Society of America Special Paper, 260, 9–26.
    [Google Scholar]
  61. Fillmore, R. P., & Middleton, L. T. (1989). Tectonic and transport controls on conglomerate composition, Upper Cretaceous of Soutwest Utah. SEPM, 62, 113–122.
    [Google Scholar]
  62. Findlay, C. P. I. (2020). Integration of paleohydraulic reconstruction and provenance methods in ancient fluvial and aeolian systems [PhD Thesis] (pp. 1–202). Texas A&M University.
    [Google Scholar]
  63. Fosdick, J. C., Graham, S. A., & Hilley, G. E. (2014). Influence of attenuated lithosphere and sediment loading on flexure of the deep‐water Magallanes retroarc foreland basin, Southern Andes. Tectonics, 33, 2505–2525. https://doi.org/10.1002/2014TC003684
    [Google Scholar]
  64. Friedrich, A. M., & Bartley, J. M. (2003). Three‐dimensional structural reconstruction of a thrust system overprinted by postorogenic extension, Wah Wah thrust zone, southwestern Utah. Bulletin of the Geological Society of America, 115, 1473–1491. https://doi.org/10.1130/B25148.1
    [Google Scholar]
  65. Gain, S. E. M., Gréau, Y., Henry, H., Belousova, E., Dainis, I., Griffin, W. L., & O'Reilly, S. Y. (2019). Mud Tank Zircon: Long‐term evaluation of a reference material for U–Pb dating, Hf‐isotope analysis and trace element analysis. Geostandards and Geoanalytical Research, 43, 339–354. https://doi.org/10.1111/ggr.12265
    [Google Scholar]
  66. Garcia‐Castellanos, D. (2002). Interplay between lithospheric flexure and river transport in foreland basins. Basin Research, 14, 89–104. https://doi.org/10.1046/j.1365‐2117.2002.00174.x
    [Google Scholar]
  67. Garzanti, E., Andò, S., & Vezzoli, G. (2009). Grain‐size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters, 277(3–4), 422–432.
    [Google Scholar]
  68. Gehrels, G. (2011). Detrital zircon U‐Pb geochronology: Current methods and new opportunities. Tectonics of sedimentary basins. In C.Busby, A. A.Azor (Eds.), Tectonics of sedimentary basins: Recent advances (pp. 45–62). Blackwell Publishing.
    [Google Scholar]
  69. Gerber, M. E., Miller, C. F., & Wooden, J. L. (1995). Plutonism at the interior margin of the Jurassic magmatic arc, Mojave Desert, California. In D. M.Miller & C.Busby (Eds.), Jurassic magmatism and tectonics of the North American cordillera (Vol. 299, pp. 351–374). Geological Society of America. https://doi.org/10.1130/SPE299‐p351
    [Google Scholar]
  70. Gleason, J. D., Miller, C. F., Wooden, J. L., & Bennett, V. C. (1994). Petrogenesis of the highly potassic 1.42 Ga Barrel Spring pluton, southeastern California, with implications for mid‐Proterozoic magma genesis in the southwestern USA. Contributions to Mineralogy and Petrology, 118, 182–197. https://doi.org/10.1007/BF01052868
    [Google Scholar]
  71. Goldstrand, P. M. (1994). Tectonic development of Upper Cretaceous to Eocene strata of southwestern Utah. Geological Society of America Bulletin, 106, 145–154. https://doi.org/10.1130/0016‐7606(1994)106<0145:TDOUCT>2.3.CO;2
    [Google Scholar]
  72. Goldstrand, P. M., Trexler, J. H., Kowallis, B. J., & Eaton, J. G. (1993). Late Cretaceous to Early Tertiary Tectonostratigraphy of Southwestern Utah. Museum of Northern Arizona Bulletin, 59, 181–188.
    [Google Scholar]
  73. Gooley, J. T., Johnson, C. L., & Pettinga, L. (2016). Spatial and temporal variation of fluvial architecture within a prograding clastic wedge of the Late Cretaceous Western Interior Basin (Kaiparowits Plateau), U.S.A. Journal of Sedimentary Research, 86, 125–147. https://doi.org/10.2110/jsr.2016.11
    [Google Scholar]
  74. Gradstein, F., Ogg, J., Agterberg, F., Hardenbol, J., & van Veen, P. (2020). Some constraints on the Phanerozoic timescale: Stratigraphy (pp. 11–19). CRC Press.
    [Google Scholar]
  75. Gustason, E. R. (1989). Stratigraphy and Sedimentology of the Middle Cretaceous (Albian‐Cenomanian) Dakota Formation, Southwestern Utah [PhD thesis]. University of Colorado, Boulder.
    [Google Scholar]
  76. Hajek, E. A., Huzurbazar, S. V., Mohrig, D., Lynds, R. M., & Heller, P. L. (2010). Statistical characterization of grain‐size distributions in sandy fluvial systems. Journal of Sedimentary Research, 80, 184–192. https://doi.org/10.2110/jsr.2010.020
    [Google Scholar]
  77. Hartley, A. J., Weissmann, G. S., Nichols, G. J., & Warwick, G. L. (2010). Large distributive fluvial systems: Characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80, 167–183. https://doi.org/10.2110/jsr.2010.016
    [Google Scholar]
  78. Heller, P. L., Angevine, C. L., Winslow, N. S., & Paola, C. (1988). Two‐phase stratigraphic model of foreland‐basin sequences. Geology, 16, 501–504.
    [Google Scholar]
  79. Heller, P. L., & Liu, L. (2016). Dynamic topography and vertical motion of the U.S. Rocky Mountain region prior to and during the Laramide orogeny. Geological Society of America Bulletin, 128, 973–988. https://doi.org/10.1130/B31431.1
    [Google Scholar]
  80. Hietpas, J., Samson, S., Moecher, D., & Chakraborty, S. (2011). Enhancing tectonic and provenance information from detrital zircon studies: Assessing terrane‐scale sampling and grain‐scale characterization. Journal of the Geological Society of London, 168, 309–318.
    [Google Scholar]
  81. Horton, B. K., Constenius, K. N., & DeCelles, P. G. (2004). Tectonic control on coarse‐grained foreland‐basin sequences: An example from the Cordilleran foreland basin, Utah. Geology, 32, 637–640. https://doi.org/10.1130/G20407.1
    [Google Scholar]
  82. Horton, B. K., & DeCelles, P. G. (2001). Modern and ancient fuvial megafans in the foreland basin system of the central Andes, southern Bolivia: Implications for drainage network evolution in fold‐ thrust belts. Basin Research, 13, 43–63.
    [Google Scholar]
  83. Ibañez‐Mejia, M., Pullen, A., Pepper, M., Urbani, F., Ghoshal, G., & Ibañez‐Mejia, J. C. (2018). Use and abuse of detrital zircon U‐Pb geochronology‐A case from the Río Orinoco delta, eastern Venezuela. Geology, 46, 1019–1022. https://doi.org/10.1130/G45596.1
    [Google Scholar]
  84. Ingersoll, R. V. (2011). Tectonics of sedimentary basins, with revised nomenclature: Tectonics of sedimentary basins. In C. J. Busby, & Azor, A. (Eds.), Tectonics of sedimentary basins (pp. 1–43). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781444347166.ch1
    [Google Scholar]
  85. James, E. W. (1989). Southern extension of the Independence dike swarm of eastern California. Geology, 17, 587–590. https://doi.org/10.1130/0091‐7613(1989)017<0587:SEOTID>2.3.CO;2
    [Google Scholar]
  86. Jordan, T. E. (1981). Thrust loads and foreland basin evolution, Cretaceous, western United States. AAPG Bulletin, 65, 2506–2520. https://doi.org/10.1306/03B599F4‐16D1‐11D7‐8645000102C1865D
    [Google Scholar]
  87. Jordan, T. E. (1995). Retroarc foreland and related basins: Tectonics of sedimentary basins (Edited by C. J. Busby & R. V. Ingersoll) (pp. 331–362). Blackwell Science.
    [Google Scholar]
  88. Kamola, D. L., & Van Wagoner, J. C. (1995). Stratigraphy and facies architecture of parasequences with examples from the Spring Canyon Member, Blackhawk Formation, Utah. AAPG Memoir, 64, 27–54http://archives.datapages.com/data/specpubs/memoir64/ch03/0027.htm
    [Google Scholar]
  89. Knapp, J. H., & Heizler, M. T. (1990). Thermal history of crystalline nappes of the Maria fold and thrust belt, west‐central Arizona. Journal of Geophysical Research, 95, 20049–20073.
    [Google Scholar]
  90. Laskowski, A. K., DeCelles, P. G., & Gehrels, G. E. (2013). Detrital zircon geochronology of Cordilleran retroarc foreland basin strata, western North America. Tectonics, 32, 1027–1048. https://doi.org/10.1002/tect.20065
    [Google Scholar]
  91. Laurin, J., & Sageman, B. B. (2001). Tectono‐sedimentary evolution of the western margin of the Colorado Plateau during the latest Cenomanian and Early Turonian. Utah Geological Association Publication, 30, 57–74.
    [Google Scholar]
  92. Lawrence, R. L., Cox, R., Mapes, R. W., & Coleman, D. S. (2011). Hydrodynamic fractionation of zircon age populations. Bulletin of the Geological Society of America, 123, 295–305. https://doi.org/10.1130/B30151.1
    [Google Scholar]
  93. Lawton, T. F. (1983). Late Cretaceous fluvial systems and the age of foreland uplifts in central Utah. Rocky Mountain Association of Geologists.
    [Google Scholar]
  94. Lawton, T. F., & Bradford, B. A. (2011). Correlation and Provenance of Upper Cretaceous (Campanian) Fluvial Strata, Utah, U.S.A., from Zircon U–Pb Geochronology and Petrography. Journal of Sedimentary Research, 81, 495–512. https://doi.org/10.2110/jsr.2011.45
    [Google Scholar]
  95. Lawton, T. F., Hunt, G. J., & Gehrels, G. E. (2010). Detrital zircon record of thrust belt unroofing in Lower Cretaceous synorogenic conglomerates, central Utah. Geology, 38, 463–466. https://doi.org/10.1130/G30684.1
    [Google Scholar]
  96. Lawton, T. F., Pollock, S. L., & Robinson, R. J. (2003). Integrating Sandstone Petrology and Nonmarine Sequence Stratigraphy: Application to the Late Cretaceous Fluvial Systems of Southwestern Utah, U.S.A. Journal of Sedimentary Research, 73, 389–406. https://doi.org/10.1306/100702730389
    [Google Scholar]
  97. Lawton, T. F., Schellenbach, W. L., & Nugent, A. E. (2014). Megafan and Axial‐River Systems In the Southern Cordilleran Foreland Basin: Drip Tank Member of Straight Cliffs Formation and Adjacent Strata, Southern Utah, USA. Journal of Sedimentary Research, 84, 407–434. https://doi.org/10.2110/jsr.2014.33
    [Google Scholar]
  98. Leier, A. L., & Gehrels, G. E. (2011). Continental‐scale detrital zircon provenance signatures in Lower Cretaceous strata, western North America. Geology, 39, 399–402. https://doi.org/10.1130/G31762.1
    [Google Scholar]
  99. Lin, W., Ferron, C., Karner, S., & Bhattacharya, J. P. (2020). Classification of paralic channel sub‐environments in an ancient system using outcrops: The Cretaceous gallup system, New Mexico, U.S.A.Journal of Sedimentary Research, 90, 1094–1113. https://doi.org/10.2110/JSR.2019.191
    [Google Scholar]
  100. Lin, W., Kynaston, D., Ferron, C., Bhattacharya, J. P., & Matthews, W. (2021). Depositional and sequence stratigraphic model of transgressive shelf sandstone: The Late Cretaceous Tocito Sandstone, San Juan Bain, New Mexico, U.S.A. Journal of Sedimentary Research, 91, 415–432. https://doi.org/10.2110/jsr.2020.121
    [Google Scholar]
  101. Liu, L., & Gurnis, M. (2008). Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection. Journal of Geophysical Research: Solid Earth, 113, 1–17. https://doi.org/10.1029/2007JB005594
    [Google Scholar]
  102. Liu, L., & Gurnis, M. (2010). Dynamic subsidence and uplift of the Colorado Plateau. Geology, 38, 663–666. https://doi.org/10.1130/G30624.1
    [Google Scholar]
  103. Liu, L., Gurnis, M., Seton, M., Saleeby, J., Müller, R. D., & Jackson, J. M. (2010). The role of oceanic plateau subduction in the Laramide orogeny. Nature Geoscience, 3, 353–357. https://doi.org/10.1038/ngeo829
    [Google Scholar]
  104. Liu, S., & Nummedal, D. (2004). Late Cretaceous subsidence in Wyoming: Quantifying the dynamic component. Geology, 32, 397–400. https://doi.org/10.1130/G20318.1
    [Google Scholar]
  105. Liu, S., Nummedal, D., & Liu, L. (2011). Migration of dynamic subsidence across the Late Cretaceous United States Western Interior Basin in response to Farallon plate subduction. Geology, 39, 555–558. https://doi.org/10.1130/G31692.1
    [Google Scholar]
  106. Liu, S. F., Nummedal, D., Yin, P. G., & Luo, H. J. (2005). Linkage of Sevier thrusting episodes and late Cretaceous foreland basin megasequences across southern Wyoming (USA). Basin Research, 17, 487–506. https://doi.org/10.1111/j.1365‐2117.2005.00277.x
    [Google Scholar]
  107. Livaccari, R. F., Burke, K., & Şengör, A. M. C. (1981). Was the Laramide orogeny related to subduction of an oceanic plateau. Nature, 289, 276–278. https://doi.org/10.1038/289276a0
    [Google Scholar]
  108. Ludwig, K. R. (2012). Isoplot v. 3.75: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, no. 5, 1–75.
  109. Ludwig, W. J., Ewing, J. I., Ewing, M., Murauchi, S., Den, N., Asano, S., Hotta, H., Hayakawa, M., Asanuma, T., Ichikawa, K., & Noguchi, I. (1966). Sediments and structure of the Japan Trench. Journal of Geophysical Research, 71, 2121–2137.
    [Google Scholar]
  110. Mahoney, J. J., Duncan, R. A., Tejada, M. L. G., Sager, W. W., & Bralower, T. J. (2005). Jurassic‐Cretaceous boundary age and mid‐ocean‐ridge–type mantle source for Shatsky Rise. Geology, 33(3), 185–188.
    [Google Scholar]
  111. Markwitz, V., Kirkland, C. L., Wyrwoll, K. H., Hancock, E. A., Evans, N. J., & Lu, Y. (2017). Variations in zircon provenance constrain age and geometry of an Early Paleozoic rift in the Pinjarra Orogen, East Gondwana. Tectonics, 36(11), 2477–2496.
    [Google Scholar]
  112. Miall, A. D. (2006). How do we identify big rivers? And how big is big?Sedimentary Geology, 186(1–2), 39–50, ISSN 0037‐0738. https://doi.org/10.1016/j.sedgeo.2005.10.001
    [Google Scholar]
  113. Matthews, W., & Guest, B. (2017). A practical approach for collecting large‐n detrital zircon U–Pb datasets by quadrupole LA‐ICP‐MS. Geostandards and Geoanalytical Research, 41(2), 161–180. https://doi.org/10.1111/ggr.12146.
    [Google Scholar]
  114. Miller, G. M. (1966). Structure and stratigraphy of southern part of Wah Wah Mountains, Southwest Utah. AAPG Bulletin, 50(5), 858–900. https://doi.org/10.1306/5D25B601‐16C1‐11D7‐8645000102C1865D
    [Google Scholar]
  115. Mitrovica, J. X., Beaumont, C., & Jarvis, G. T. (1989). Tilting of continental interiors by the dynamical effects of subduction. Tectonics, 8, 1079–1094. https://doi.org/10.1029/TC008i005p01079
    [Google Scholar]
  116. Moecher, D. P., & Samson, S. D. (2006). Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis. Earth and Planetary Science Letters, 247, 252–266. https://doi.org/10.1016/j.epsl.2006.04.035
    [Google Scholar]
  117. Moore, J. G., & Hopson, C. A. (1961). The Independence Dike Swarm in eastern California. American Journal of Science, 259, 241–259.
    [Google Scholar]
  118. Mulhern, J. S., & Johnson, C. L. (2016). Time–space variability of paralic strata deposited in a high accommodation, high sediment supply setting: Example from the Cretaceous of Utah: Sedimentology of Paralic Reservoirs. Recent Advances, Geological Society of London, Special Publication, 444, 349–392. https://doi.org/10.1144/SP444.7
    [Google Scholar]
  119. New Mexico Bureau of Geology and Mineral Resources . (2003). Geologic map of New Mexico, scale 1:500,000.
  120. Nyman, M. W., Karlstrom, K. E., Kirby, E., & Graubard, C. M. (1994). Mesoproterozoic contractional orogeny in western North America: Evidence from ca. 1.4 Ga plutons. Geology, 22(10), 901–904.
    [Google Scholar]
  121. Olivero, E. B., & Torres Carbonell, P. J. (2020). Stratigraphy and depositional architecture of the Viamonte Formation, Miocene, Tierra del Fuego, Argentina: The interplay between deep‐marine transverse and longitudinal depositional systems. Revista de la Asociacion Geologica Argentina, 78(2), 135–162.
    [Google Scholar]
  122. Oruche, N. E., & Dix, G. R. (2021). Sequence stratigraphy of a Middle to Upper Ordovician foreland succession (Ottawa Embayment, central Canada): Evidence for tectonic control on sequence architecture along southern Laurentia. Basin Research, 33(1), 779–808.
    [Google Scholar]
  123. Owen, A., Nichols, G. J., Hartley, A. J., Weissmann, G. S., & Scuderi, L. A. (2015). Quantification of a distributive fluvial system: The Salt Wash DFS of the Morrison. SEPM Journal of Sedimentary Research, 85, 544–561. https://doi.org/10.2110/jsr.2015.35
    [Google Scholar]
  124. Painter, C. S., & Carrapa, B. (2013). Flexural versus dynamic processes of subsidence in the North American Cordillera foreland basin. Geophysical Research Letters, 40, 4249–4253. https://doi.org/10.1002/grl.50831
    [Google Scholar]
  125. Pang, M., & Nummedal, D. (1995). Flexural subsidence and basement tectonics of the Cretaceous Western Interior Basin, United States. Geology, 23, 173–176. https://doi.org/10.1130/0091‐7613(1995)023<0173:FSABTO>2.3.CO;2
    [Google Scholar]
  126. Parra, M., Mora, A., Jaramillo, C., Torres, V., Zeilinger, G., & Strecker, M. R. (2010). Tectonic controls on Cenozoic foreland basin development in the north‐eastern Andes, Colombia. Basin Research, 22(6), 874–903.
    [Google Scholar]
  127. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508–2518.
    [Google Scholar]
  128. Pecha, M. E., Gehrels, G. E., Karlstrom, K. E., Dickinson, W. R., Donahue, M. S., Gonzales, D. A., & Blum, M. D. (2018). Provenance of Cretaceous through Eocene strata of the Four Corners region: Insights from detrital zircons in the San Juan Basin, New Mexico and Colorado. Geosphere, 14(2), 785–811. https://doi.org/10.1130/GES01485.1
    [Google Scholar]
  129. Perez, N. D., & Horton, B. K. (2014). Oligocene‐miocene deformational and depositional history of the andean hinterland basin in the northern altiplano Plateau, Southern Peru. Tectonics, 33, 1819–1847. https://doi.org/10.1002/2014TC003647
    [Google Scholar]
  130. Peterson, F. (1969). Cretaceous sedimentation and tectonism in the southern Kaiparowits Region, Utah. U.S. Geological Survey Open‐File Report 69‐202, 272 p. https://doi.org/10.3133/ofr69202
  131. Peterson, F., & Waldrop, H. A. (1965). Jurassic and Cretaceous stratigraphy of south‐central Kaiparowits Plateau, Utah. Guidebook to the Geology of Utah, 19, 47–69.
    [Google Scholar]
  132. Pettit, B. S., Blum, M., Pecha, M., McLean, N., Bartschi, N. C., & Saylor, J. E. (2019). Detrital‐Zircon U‐Pb Paleodrainage Reconstruction and Geochronology of the Campanian Blackhawk–Castlegate Succession, Wasatch Plateau and Book Cliffs, Utah, USA. Journal of Sedimentary Research, 89(4), 273–292.
    [Google Scholar]
  133. Primm, J. W., Johnson, C. L., & Stearns, M. (2018). Basin‐axial progradation of a sediment supply driven distributive fluvial system in the Late Cretaceous southern Utah foreland. Basin Research, 30, 249–278. https://doi.org/10.1111/bre.12252
    [Google Scholar]
  134. Pujols, E. J., & Stockli, D. F. (2021). Zircon (U‐Th)/(He‐Pb) double‐dating constraints on the interplay between thrust deformation and foreland basin architecture, Sevier foreland basin, Utah. Geosphere, 17, 1890–1913. https://doi.org/10.1130/GES02372.1
    [Google Scholar]
  135. Pujols, E. J., Stockli, D. F., Constenius, K. N., & Horton, B. K. (2020). Thermochronological and Geochronological Constraints on Late Cretaceous Unroofing and Proximal Sedimentation in the Sevier Orogenic Belt, Utah. Tectonics, 39, 1–32. https://doi.org/10.1029/2019TC005794
    [Google Scholar]
  136. Pullen, A., Gehrels, G. E., Ib, C., & Pecha, M. (2014). What happens when n=1000? Creating large‐n geochronological datasets with LA‐ICP‐MS for geologic investigations. Journal of Analysis at Spectrom, 29, 971–980. https://doi.org/10.1039/c4ja00024b
    [Google Scholar]
  137. Raines, K. M., Hubbard, S. M., Kukulski, R. B., Leier, A. L., & Gehrels, G. E. (2013). Sediment dispersal in an evolving foreland: Detrital zircon geochronology from upper jurassic and lowermost Cretaceous strata, alberta basin, Canada. Bulletin of the Geological Society of America, 125, 741–755. https://doi.org/10.1130/B30671.1
    [Google Scholar]
  138. Robinson, R. A., & Slingerland, R. L. (1998). Origin of fluvial grain‐size trends in a foreland basin; the Pocono Formation on the central Appalachian Basin. Journal of Sedimentary Research, 68(3), 473–486.
    [Google Scholar]
  139. Saleeby, J. (2003). Segmentation of the Laramide Slab ‐ Evidence from the southern Sierra Nevada region. Bulletin of the Geological Society of America, 115, 655–668. https://doi.org/10.1130/0016‐7606(2003)115<0655:SOTLSF>2.0.CO;2
    [Google Scholar]
  140. Saylor, J. E., & Sundell, K. E. (2016). Quantifying comparison of large detrital geochronology data sets. Geosphere, 12, 1–18.
    [Google Scholar]
  141. Schermer, E. R., & Busby, C. (1994). Jurassic magmatism in thecentral Mojave Desert: implications for arc paleogeography and preservation of continental volcanic sequences. Geological Society of America Bulletin, 106, 767–790. https://doi.org/10.1130/0016‐7606(1994)106<0767:JMITCM>2.3.CO;2
    [Google Scholar]
  142. Schwartz, T. M., Surpless, K. D., Colgan, J. P., Johnstone, S. A., & Holm‐Denoma, C. S. (2021). Detrital zircon record of magmatism and sediment dispersal across the North American Cordilleran arc system (28–48°N). Earth‐Science Reviews, 220, 103734. https://doi.org/10.1016/J.EARSCIREV.2021.103734
    [Google Scholar]
  143. Shanley, K. W., & McCabe, P. J. (1995). Sequence stratigraphy of Turonian—Santonian strata, Kaiparowits Plateau, southern Utah, U.S.A.: Implications for regional correlation and foreland basin evolution. AAPG Memoir 64 Sequence Stratigraphy of Foreland Basin Deposits, 103–136.
  144. Sharman, G. R., Sharman, J. P., & Sylvester, Z. (2018). detritalPy: A Python‐based toolset for visualizing and analysing detrital geo‐thermochronologic data. The Depositional Record, 4(2), 202–215.
    [Google Scholar]
  145. Sircombe, K. N., & Stern, R. A. (2002). An investigation of artificial biasing in detrital zircon U–Pb geochronology due to magnetic separation in sample preparation. Geochimica et Cosmochimica Acta, 66, 2379–2397. https://doi.org/10.1016/S0016‐7037(02)00839‐6
    [Google Scholar]
  146. Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S., Morris, G. A., Nasdala, L., Norberg, N., & Schaltegger, U. (2008). Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1‐2), 1–35.
    [Google Scholar]
  147. Spencer, J. E., Richard, S. M., Gehrels, G. E., Gleason, J. D., & Dickinson, W. R. (2011). Age and tectonic setting of the Mesozoic McCoy Mountains Formation in western Arizona, USA. Bulletin of the Geological Society of America, 123, 1258–1274. https://doi.org/10.1130/B30206.1
    [Google Scholar]
  148. St. Pierre, G. A. E., & Johnson, C. L. (2021). Faulty foundations: Early breakup of the southern Utah Cordilleran foreland basin. GSA Bulletin, 134, 547–566. https://doi.org/10.1130/B35872.1
    [Google Scholar]
  149. Stone, P., Page, V. M., Hamilton, W., & Howard, K. A. (1987). Cretaceous age of the upper part of the McCoy Mountains Formation, southeastern California and southwestern Arizona, and its tectonic significance: reconciliation of paleobotanical and paleomagnetic evidence. Geology, 15, 561–564. https://doi.org/10.1130/0091‐7613(1987)15<561:CAOTUP>2.0.CO;2
    [Google Scholar]
  150. Szwarc, T. S., Johnson, C. L., Stright, L. E., & McFarlane, C. M. (2015). Interactions between axial and transverse drainage systems in the Late Cretaceous Cordilleran foreland basin: Evidence from detrital zircons in the Straight Cliffs Formation, southern Utah, USA. Geological Society of America Bulletin, 127, 372–392. https://doi.org/10.1130/B31039.1
    [Google Scholar]
  151. Tilton, T. L. (1991). Upper Cretaceous stratigraphy of the southern Paunsaugunt Plateau, Kane County, Utah (PhD thesis). University of Utah, Salt Lake City, 162 p.
  152. Titus, A. L., Eaton, J. G., & Sertich, J. (2016). Late Cretaceous stratigraphy and vertebrate faunas of the Markagunt, Paunsaugunt, and Kaiparowits Plateaus, southern Utah. Geology of the Intermountain West, 3, 229–291.
    [Google Scholar]
  153. Titus, A. L., Powell, J. D., Roberts, E. M., Sampson, S. D., Pollock, S. L., Kirkland, J. I., & Albright, L. B. (2005). Late Cretaceous stratigraphy, depositional environments, and macrovertebrate paleontology of the Kaiparowits Plateau, Grand Staircase‐Escalante National Monument, Utah. Vol. 80301. https://doi.org/10.1130/2005.fl
  154. Tosdal, R. M., & Stone, P. (1994). Stratigraphic relations and U–Pb geochronology of the Upper Cretaceous upper McCoy Mountains Formation, southwestern Arizona. Geological Society of America Bulletin, 106, 476–491. https://doi.org/10.1130/0016‐7606(1994)106<0476:SRAUPG>2.3.CO;2
    [Google Scholar]
  155. Tufano, B. C., & Pietras, J. T. (2017). Coupled flexural‐dynamic subsidence modeling approach for retro‐foreland basins: Example from the Western Canada Sedimentary Basin. GSA Bulletin, 129, 1622–1635.
    [Google Scholar]
  156. Turner, C. E., & Fishman, N. S. (1991). Jurassic Lake T'oo'dichi’: a large alkaline, saline lake, Morrison Formation, eastern Colorado Plateau. Geological Society of America Bulletin, 103, 538–558.
    [Google Scholar]
  157. Van Wagoner, J. C. (1995). Sequence stratigraphy and marine to nonmarine facies architecture of foreland basin strata, Book Cliffs, Utah, USA. AAPG Special Volume: Sequence Stratigraphy of Foreland Basins, Memoir, 4, 137–223.
    [Google Scholar]
  158. Vermeesch, P. (2004). How many grains are needed for a provenance study?Earth and Planetary Science Letters, 224, 441–451. https://doi.org/10.1016/j.epsl.2004.05.037
    [Google Scholar]
  159. Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chemical Geology, 312–313, 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021
    [Google Scholar]
  160. Vermeesch, P. (2013). Multi‐sample comparison of detrital age distributions. Chemical Geology, 341, 140–146. https://doi.org/10.1016/j.chemgeo.2013.01.010
    [Google Scholar]
  161. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9, 1479–1493.
    [Google Scholar]
  162. Vermeesch, P. (2021). On the treatment of discordant detrital zircon U–Pb data. Geochronology, 3, 247–257. https://doi.org/10.5194/gchron‐3‐247‐2021
    [Google Scholar]
  163. Walker, J. D., Martin, M. W., & Glazner, A. F. (2002). Late Paleozoic to Mesozoic development of the Mojave Desert and environs, California. Memoir of the Geological Society of America, 195, 1–18. https://doi.org/10.1130/0‐8137‐1195‐9.1
    [Google Scholar]
  164. Wang, Y., Straub, K. M., Hajek, E. A., Wang, Y., Straub, K. M., & Hajek, E. A. (2011). Scale‐dependent compensational stacking: An estimate of autogenic time scales in channelized sedimentary deposits. Geology, 39(9), 811–814. https://doi.org/10.1130/G32068.1
    [Google Scholar]
  165. Waschbusch, P. J., & Royden, L. H. (1992). Spatial and temporal evolution of foredeep basins: lateral strength variations and inelastic yielding in continental lithosphere. Basin Research, 4, 179–196.
    [Google Scholar]
  166. Weissmann, G. S., Hartley, A. J., Nichols, G. J., Sciences, E., Holloway, R., Scuderi, L. A., Olson, M. E., Buehler, H. A., & Massengill, L. C. (2011). Alluvial facies distributions in continental sedimentary basins ‐ distributive fluvial systems (pp. 327–355). SEPM Special Publications.
    [Google Scholar]
  167. Weissmann, G. S., Hartley, A. J., Nichols, G. J., Scuderi, L. A., Olson, M., Buehler, H., & Banteah, R. (2010). Fluvial form in modern continental sedimentary basins: Distributive fluvial systems. Geology, 38, 39–42. https://doi.org/10.1130/G30242.1
    [Google Scholar]
  168. Wiedenbeck, M., Hanchar, J. M., Peck, W. H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., & Franchi, I. (2004). Further characterisation of the 91,500 zircon crystal. Geostandards and Geoanalytical Research, 28, 9–39.
    [Google Scholar]
  169. Wiedenbeck, M. A. P. C., Alle, P., Corfu, F. Y., Griffin, W. L., Meier, M., Oberli, F. V., Quadt, A. V., Roddick, J. C., & Spiegel, W. (1995). Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostandards Newsletter, 19, 1–23.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12692
Loading
/content/journals/10.1111/bre.12692
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error