1887
Volume 34, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

Regional model sections from (a) North Domain, and (b) South Domain illustrating the main salt‐related structural styles of both domains and their relationship with the updip Merluza Graben, the Albian Gap, where the first post‐salt interval is absent, and the inflated salt and associated fold‐belt formed in the downdip end of the model, over the Sao Paulo Plateau.

, Abstract

The Santos Basin, offshore Brazil contains a complex set of salt‐tectonic structures, the origins of which are debated, that is, the Albian Gap and the São Paulo Plateau (SPP). The Albian Gap is a ca. 450 km long, 60 km wide feature characterized by a post‐Albian, counter‐regional rollover overlying depleted Aptian salt, and in which the Albian is largely absent. The SPP, located immediately downdip, is defined by a pre‐salt structural high overlain by ca. 2.5 km thick salt. Another prominent feature is the Merluza Graben, a rift‐related depocentre that underlies the southern portion of the Albian Gap and displays significant (3–4 km) base‐salt relief along its main faults. Two competing hypotheses have been proposed to explain the kinematics of these provinces. One invokes post‐Albian extension in the Albian Gap and kinematically‐linked contraction in the SPP. The other invokes post‐Albian salt expulsion in the Albian Gap and salt inflation in the SPP. Recent studies, however, suggest these processes likely alternate in time and space, contributing nearly equally to the evolution of these domains. We apply 3D physical modelling to (i) test this hypothesis; and (ii) to more generally understand how gravity gliding and spreading over three‐dimensionally variable base‐salt relief control regional salt tectonics. The results show a similar salt‐related evolution and structural styles to those proposed in the most recent studies. They also (i) explain the origin of the ca. 25 km wide diapir precursor of the Albian Gap by early salt inflation against base‐salt steps; (ii) show that normal faults with different polarities and rollover types form due to the interplay between gliding and spreading over different base‐salt domains and (iii) provide a mechanism for the origin of strata encased within salt structures. This improves our understanding of the distribution and origin of salt‐related structural styles in worldwide salt basins.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12695
2022-11-18
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/6/bre12695.html?itemId=/content/journals/10.1111/bre.12695&mimeType=html&fmt=ahah

References

  1. Adam, J., & Krézsek, C. (2012). Basin‐scale salt tectonic processes of the Laurentian Basin, eastern Canada: Insights from integrated regional 2D seismic interpretation and 4D physical experiments. Geological Society, London, Special Publications, 363(1), 331–360.
    [Google Scholar]
  2. Adam, J., Urai, J., Wieneke, B., Oncken, O., Pfeiffer, K., Kukowski, N., Lohrmann, J., Hoth, S., van der Zee, W., & Schmatz, J. (2005). Shear localisation and strain distribution during tectonic faulting—New insights from granular‐flow experiments and high‐resolution optical image correlation techniques. Journal of Structural Geology, 27, 283–301. https://doi.org/10.1016/j.jsg.2004.08.008
    [Google Scholar]
  3. Brun, J. P., & Fort, X. (2011). Salt tectonics at passive margins: Geology versus models. Marine and Petroleum Geology, 28(6), 1123–1145.
    [Google Scholar]
  4. Cobbold, P. R., Szatmari, P., Demercian, L. S., Coelho, D., & Rossello, E. A. (1995). Seismic and experimental evidence for thin‐skinned horizontal shortening by convergent radial gliding on evaporites, deep‐water Santos Basin, Brazil. In M. P. A.Jackson, D. G.Roberts, & S.Snelson (Eds.), Salt tectonics: A global perspective (Vol. 65, pp. 305–321). AAPG Memoir.
    [Google Scholar]
  5. Davison, I., Anderson, L., & Nuttall, P. (2012). Salt deposition, loading and gravity drainage in the Campos and Santos salt basins. Geological Society of London Special Publications, 363(1), 159–174.
    [Google Scholar]
  6. Dell'Ertole, D., & Schellart, W. P. (2013). The development of sheath folds in viscously stratified materials in simple shear conditions: An analogue approach. Journal of Structural Geology, 56, 129–141. https://doi.org/10.1016/j.jsg.2013.09.002
    [Google Scholar]
  7. Demercian, S., Szatmari, P., & Cobbold, P. R. (1993). Style and pattern of salt diapirs due to thin‐skinned gravitational gliding, Campos and Santos basins, offshore Brazil. Tectonophysics, 228(3–4), 393–433.
    [Google Scholar]
  8. Deptuck, M. E., & Kendell, K. L. (2017). A review of Mesozoic‐Cenozoic salt tectonics along the Scotian margin, eastern Canada. In J. I.Soto, J.Flinch, & G.Tari (Eds.), Permo‐Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins: Tectonics and Hydrocarbon Potential (pp. 287–312). Elsevier. https://doi.org/10.1016/B978‐0‐12‐809417‐4.00014‐8
    [Google Scholar]
  9. do Amarante, F. B., Jackson, C. A. L., Pichel, L. M., dos Santos Scherer, C. M., & Kuchle, J. (2021). Pre‐salt rift morphology controls salt tectonics in the Campos Basin, offshore SE Brazil. Basin Research, 33(5), 2837–2861.
    [Google Scholar]
  10. Dooley, T. P., & Hudec, M. R. (2017). The effects of base‐salt relief on salt flow and suprasalt deformation patterns — Part 2: Application to the eastern Gulf of Mexico. Interpretation, 5(1), SD25–SD38.
    [Google Scholar]
  11. Dooley, T. P., Hudec, M. R., Carruthers, D., Jackson, M. P., & Luo, G. (2017). The effects of base‐salt relief on salt flow and suprasalt deformation patterns—Part 1: Flow across simple steps in the base of salt. Interpretation, 5(1), SD1–SD23.
    [Google Scholar]
  12. Dooley, T. P., Hudec, M. R., Pichel, L. M., & Jackson, M. P. (2018). The impact of base‐salt relief on salt flow and suprasalt deformation patterns at the autochthonous, paraautochthonous and allochthonous level: Insights from physical models. Geological Society, London, Special Publications, 476, 287–315.
    [Google Scholar]
  13. Dooley, T. P., Jackson, M. P., & Hudec, M. R. (2007). Initiation and growth of salt‐based thrust belts on passive margins: Results from physical models. Basin Research, 19(1), 165–177.
    [Google Scholar]
  14. Evans, S. L., & Jackson, C. A. L. (2020). Base‐salt relief controls salt‐related deformation in the outer Kwanza Basin, offshore Angola. Basin Research, 32(4), 668–687.
    [Google Scholar]
  15. Fernandez, N., Duffy, O. B., Hudec, M. R., Jackson, M. P., Burg, G., Jackson, C. A. L., & Dooley, T. P. (2017). The origin of salt‐encased sediment packages: Observations from the SE Precaspian Basin (Kazakhstan). Journal of Structural Geology, 97, 237–256.
    [Google Scholar]
  16. Ferrer, O., Gratacos, O., Roca, E., & Munoz, J. A. (2017). Modeling the interaction between presalt seamounts and gravitational failure in salt‐bearing passive margins: The Messinian case in the northwestern Mediterranean Basin. Interpretation, 5, 99–117.
    [Google Scholar]
  17. Fiduk, J. C., & Rowan, M. G. (2012). Analysis of folding and deformation within layered evaporites in blocks BM‐S‐8 & ‐9, Santos Basin, Brazil. Geological Society, London, Special Publications, 363(1), 471–487.
    [Google Scholar]
  18. Garcia, S. F., Letouzey, J., Rudkiewicz, J. L., Danderfer Filho, A., & de Lamotte, D. F. (2012). Structural modeling based on sequential restoration of gravitational salt deformation in the Santos Basin (Brazil). Marine and Petroleum Geology, 35(1), 337–353.
    [Google Scholar]
  19. Ge, H., Jackson, M. P., & Vendeville, B. C. (1997). Kinematics and dynamics of salt tectonics driven by progradation. AAPG Bulletin, 81(3), 398–423.
    [Google Scholar]
  20. Gemmer, L., Ings, S. J., Medvedev, S., & Beaumont, C. (2004). Salt tectonics driven by differential sediment loading: Stability analysis and finite‐element experiments. Basin Research, 16(2), 199–218.
    [Google Scholar]
  21. Gemmer, L., Beaumont, C., & Ings, S. J. (2005). Dynamic modelling of passive margin salt tectonics: Effects of water loading, sediment properties and sedimentation patterns. Basin Research, 17(3), 383–402.
    [Google Scholar]
  22. Giles, K. A., & Rowan, M. G. (2012). Concepts in halokinetic‐sequence deformation and stratigraphy. Geological Society, London, Special Publications, 363(1), 7–31.
    [Google Scholar]
  23. Gomes, P. O., Kilsdonk, B., Minken, J., Grow, T., & Barragan, R. (2009). The outer high of the Santos Basin, southern São Paulo plateau, Brazil: Pre‐salt exploration outbreak, paleogeographic setting, and evolution of the syn‐rift structures. In AAPG International Conference and Exhibition (pp. 15–18).
    [Google Scholar]
  24. Guerra, M. C., & Underhill, J. R. (2012). Role of halokinesis in controlling structural styles and sediment dispersal in the Santos Basin, offshore Brazil. Geological Society, London, Special Publications, 363(1), 175–206.
    [Google Scholar]
  25. Heine, C., Zoethout, J., & Müller, R. D. (2013). Kinematics of the South Atlantic rift. Solid Earth, 4(2), 215–253.
    [Google Scholar]
  26. Horsfield, W. T. (1977). An experimental approach to basement‐controlled faulting. Geologie en Mijnbouw, 56, 363–370.
    [Google Scholar]
  27. Hubbert, M. K. (1951). Mechanical basis for certain familiar geologic structures. Geological Society of America Bulletin, 62(2), 355.
    [Google Scholar]
  28. Hudec, M. R., Dooley, T. P., Peel, F. J., & Soto, J. I. (2020). Controls on the evolution of passive‐margin salt basins: Structure and evolution of the Salina del bravo region, northeastern Mexico. Bulletin, 132(5–6), 997–1012.
    [Google Scholar]
  29. Jackson, C. A. L., Rodriguez, C. R., Rotevatn, A., & Bell, R. E. (2014). Geological and geophysical expression of a primary salt weld: An example from the Santos Basin, Brazil. Interpretation, 2(4), SM77–SM89.
    [Google Scholar]
  30. Jackson, C. A. L., Jackson, M. P., & Hudec, M. R. (2015). Understanding the kinematics of salt‐bearing passive margins: A critical test of competing hypotheses for the origin of the Albian gap, Santos Basin, offshore Brazil. Geological Society of America Bulletin, 127(11–12), 1730–1751.
    [Google Scholar]
  31. Jackson, C. A. L., Jackson, M. P., Hudec, M. R., & Rodriguez, C. R. (2015). Enigmatic structures within salt walls of the Santos Basin—Part 1: Geometry and kinematics from 3D seismic reflection and well data. Journal of Structural Geology, 75, 135–162.
    [Google Scholar]
  32. Jackson, M. P., & Hudec, M. R. (2017). Salt tectonics: Principles and practice. Cambridge University Press.
    [Google Scholar]
  33. Karner, G. D., & Gambôa, L. A. P. (2007). Timing and origin of the South Atlantic pre‐salt sag basins and their capping evaporites. Geological Society, London, Special Publications, 285(1), 15–35.
    [Google Scholar]
  34. Krézsek, C., Adam, J., & Grujic, D. (2007). Mechanics of fault and expulsion rollover systems developed on passive margins detached on salt: Insights from analogue modelling and optical strain monitoring. Geological Society, London, Special Publications, 292(1), 103–121.
    [Google Scholar]
  35. Kukla, P. A., Strozyk, F., & Mohriak, W. U. (2018). South Atlantic salt basins—Witnesses of complex passive margin evolution. Gondwana Research, 53, 41–57.
    [Google Scholar]
  36. Lebit, H., Arasanipalai, S., Tilton, J., & Ollagnon, P. (2019). Santos vision: Innovative seismic data processing in a super giant oil basin. GeoExPro.
    [Google Scholar]
  37. Magee, C., Pichel, L. M., Madden‐Nadeau, A. L., Jackson, C. A. L., & Mohriak, W. (2020). Salt‐magma interactions influence intrusion distribution and salt tectonics in the Santos Basin, offshore Brazil. Basin Research, 33(3), 1820–1843.
    [Google Scholar]
  38. Meisling, K. E., Cobbold, P. R., & Mount, V. S. (2001). Segmentation of an obliquely rifted margin, Campos and Santos basins, southeastern Brazil. AAPG Bulletin, 85(11), 1903–1924.
    [Google Scholar]
  39. Modica, C. J., & Brush, E. R. (2004). Postrift sequence stratigraphy, paleogeography, and fill history of the deep‐water Santos Basin, offshore Southeast Brazil. AAPG Bulletin, 88(7), 923–945.
    [Google Scholar]
  40. Mohriak, W. U., Macedo, J. M., Castellani, R. T., Rangel, H. D., Barros, A. Z. N., Latgé, M. A. L., Mizusaki, A. M. P., Szatmari, P., Demercian, L. S., Rizzo, J. G., & Aires, J. R. (1995). Salt tectonics and structural styles in the deep‐water province of the Cabo Frio region, Rio de Janeiro, Brazil. In M. P. A.Jackson, D. G.Roberts, & S.Snelson (Eds.), Salt tectonics: A global perspective (Vol. 65, pp. 273–304). AAPG Memoir.
    [Google Scholar]
  41. Mohriak, W., Nemčok, M., & Enciso, G. (2008). South Atlantic divergent margin evolution: Rift‐border uplift and salt tectonics in the basins of SE Brazil. Geological Society, London, Special Publications, 294(1), 365–398.
    [Google Scholar]
  42. Pichel, L. M., Peel, F., Jackson, C. A.‐L., & Huuse, M. (2018). Geometry and kinematics of salt‐detached ramp syncline basins. Journal of Structural Geology, 115, 208–230. https://doi.org/10.1016/j.jsg.2018.07.016
    [Google Scholar]
  43. Pichel, L. M., Huuse, M., Redfern, J., & Finch, E. (2019). The influence of base‐salt relief, rift topography and regional events on salt tectonics offshore Morocco. Marine and Petroleum Geology, 103, 87–113.
    [Google Scholar]
  44. Pichel, L. M., Finch, E., & Gawthorpe, R. L. (2019). The impact of pre‐salt rift topography on salt tectonics: A discrete‐element modeling approach. Tectonics, 38(4), 1466–1488.
    [Google Scholar]
  45. Pichel, L. M., Jackson, C. A. L., Peel, F., & Dooley, T. P. (2019). Base‐salt relief controls salt‐tectonic structural style, São Paulo plateau, Santos Basin, Brazil. Basin Research.
    [Google Scholar]
  46. Pichel, L. M., & Jackson, C. A. L. (2020). The enigma of the Albian gap: Spatial variability and the competition between salt expulsion and extension. Journal of the Geological Society, 177(6), 1129–1148.
    [Google Scholar]
  47. Pichel, L. M., Jackson, C. A. L., Peel, F., & Ferrer, O. (2021). The Merluza Graben: How a failed spreading center influenced margin structure, and salt deposition and tectonics in the Santos Basin. Brazil. Tectonics, 40(10), e2020TC006640.
    [Google Scholar]
  48. Quirk, D. G., Schødt, N., Lassen, B., Ings, S. J., Hsu, D., Hirsch, K. K., & Von Nicolai, C. (2012). Salt tectonics on passive margins: Examples from Santos, Campos and kwanza basins. Geological Society, London, Special Publications, 363(1), 207–244.
    [Google Scholar]
  49. Rodriguez, C. R., Jackson, C. L., Rotevatn, A., Bell, R. E., & Francis, M. (2019). Dual tectonic‐climatic controls on salt giant deposition in the Santos Basin, offshore Brazil. Geosphere, 14(1), 215–242.
    [Google Scholar]
  50. Rowan, M. G., & Ratliff, R. A. (2012). Cross‐section restoration of salt‐related deformation: Best practices and potential pitfalls. Journal of Structural Geology, 41, 24–37.
    [Google Scholar]
  51. Rowan, M. G., Tilton, J., Lebit, H., & Fiduk, J. C. (2022). Thin‐skinned extensional salt tectonics, counterregional faults, and the Albian gap of Brazil. Marine and Petroleum Geology, 137, 105478.
    [Google Scholar]
  52. Tari, G., & Jabour, H. (2013). Salt tectonics along the Atlantic margin of Morocco. Geological Society, London, Special Publications, 369(1), 337–353.
    [Google Scholar]
  53. Weijermars, R., & Schmeling, H. (1986). Scaling of Newtonian and non‐Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity). Physics of the Earth and Planetary Interiors, 43, 316–330.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12695
Loading
/content/journals/10.1111/bre.12695
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error