1887
Volume 34, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

Diffusion‐based stratigraphic models are widely used to simulate sedimentary systems and margin deltas. Diffusion‐based models assume that the topographic evolution primarily depends from its slope. Limited attention has however been given to the calibration of the transport coefficients. Here, we evaluate transport coefficient values from natural examples, the Ogooué and Zambezi rifted margin deltas over the last 5 to 12 Ma respectively. We developed a method to estimate transport coefficients based on high resolution seismic stratigraphy analysis of the stratigraphic architecture of these deltas. For each stratigraphic sequence, we calibrated the sand/shale ratios of the deposits, we restored their depositional slopes, we estimated their uncompacted accumulated volumes and we calculated the transport coefficient () from the sediment flux/slope ratio. Estimated values of fall within one order of magnitude (×0.1 km2/ka), a much narrower range than previously published values (×0.0001 to ×100 km2/ka). We show that the diffusion approximation is optimal at 10–100 km scale and 0.5–1 Ma time resolution, independently of the stratigraphic context. We show that the diffusion assumption is appropriate for the formation of the clinoforms (mainly gravity driven). It is however not optimal for the shelf and distal domains where additional processes (e.g., wave, flood, hemipelagic, turbidites, oceanic current), not accounted for it the diffusion assumption, significantly impact sediment transport. We documented a significant increase of values after 0.9 Ma, coeval of an increase in the amplitude of eustatic variations at this time indicating that the calibration of from present day sedimentary systems might not be optimal for simulations of sedimentary systems before the last million years.

,

The diffusion coefficient values vary according to the depositional domain. The diffusion assumption is optimal for the deltaic slope domain.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12696
2022-11-18
2022-11-30
Loading full text...

Full text loading...

References

  1. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment (3rd ed.). Wiley‐Blackwell.
    [Google Scholar]
  2. Asquith, D. O. (1970). Depositional topography and major marine environments, Late Cretaceous, Wyoming. AAPG Bulletin, 54(7), 1184–1224.
    [Google Scholar]
  3. Audet, D., & Fowler, A. (1992). A mathematical model for compaction in sedimentary basins. Geophysical Journal International, 110(3), 577–590.
    [Google Scholar]
  4. Bachman, R. T., & Hamilton, E. L. (1976). Density, porosity, and grain density of samples from Deep Sea Drilling Project Site 222 (Leg 23) in the Arabian Sea. Journal of Sedimentary Research, 46(3), 654–658.
    [Google Scholar]
  5. Baldwin, B., & Butler, C. O. (1985). Compaction curves. AAPG Bulletin, 69(4), 622–626.
    [Google Scholar]
  6. Begin, Z. B., Meyer, D. F., & Schumm, S. A. (1981). Development of longitudinal profiles of alluvial channels in response to base‐level lowering. Earth Surface Processes and Landforms, 6(1), 49–68.
    [Google Scholar]
  7. Boulila, S., Galbrun, B., Miller, K. G., Pekar, S. F., Browning, J. V., Laskar, J., & Wright, J. D. (2011). On the origin of Cenozoic and Mesozoic “third‐order” eustatic sequences. Earth‐Science Reviews, 109(3–4), 94–112.
    [Google Scholar]
  8. Braun, J., & Willett, S. D. (2013). A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution. Geomorphology, 180, 170–179.
    [Google Scholar]
  9. Bullimore, S., Henriksen, S., Liestøl, F. M., & Helland‐Hansen, W. (2005). Clinoform stacking patterns, shelf‐edge trajectories and facies associations in Tertiary coastal deltas, offshore Norway: Implications for the prediction of lithology in prograding systems. Norwegian Journal of Geology/Norsk Geologisk Forening, 85, 169–187.
    [Google Scholar]
  10. Burgess, P. M., Lammers, H., van Oosterhout, C., & Granjeon, D. (2006). Multivariate sequence stratigraphy: Tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios, and conditional frequency maps. AAPG Bulletin, 90(12), 1883–1901. https://doi.org/10.1306/06260605081
    [Google Scholar]
  11. Burgess, P. M., & Prince, G. D. (2015). Non‐unique stratal geometries: Implications for sequence stratigraphic interpretations. Basin Research, 27(3), 351–365.
    [Google Scholar]
  12. Burgess, P. M., Roberts, D., & Bally, A. (2012). A brief review of developments in stratigraphic forward modelling, 2000–2009. Regional Geology and Tectonics: Principles of Geologic Analysis, 1, 379–404.
    [Google Scholar]
  13. Burgess, P. M., Steel, R. J., Granjeon, D., Hampson, G. J., & Dalrymple, R. W. (2008). Stratigraphic forward modeling of basin‐margin clinoform systems: Implications for controls on topset and shelf width and timing of formation of shelf‐edge deltas. Recent Advances in Models of Siliciclastic Shallow‐Marine Stratigraphy, 90, 35–45.
    [Google Scholar]
  14. Candido, M., Cagliari, J., Tognoli, F. M. W., & Lavina, E. L. C. (2019). Stratigraphic modeling of a transgressive barrier‐lagoon in the Permian of Paraná Basin, southern Brazil. Journal of South American Earth Sciences, 90, 377–391.
    [Google Scholar]
  15. Carson, M. A., & Kirkby, M. J. (1972). Hillslope form and process. In Cambridge geographical studies (Vol. 3, p. 475). Cambridge University Press.
    [Google Scholar]
  16. Carvajal, C. R., & Steel, R. J. (2009). Shelf‐edge architecture and bypass of sand to deep water; influence of shelf‐edge processes, sea level, and sediment supply. Journal of Sedimentary Research, 79(9), 652–672.
    [Google Scholar]
  17. Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., Fielding, C. R., Fisher, W. L., Galloway, W. E., Gibling, M. R., Giles, K. A., Holbrook, J. M., Jordan, R., Kendall, C. G. S. C., Macurda, B., Martinsen, O. J., Miall, A. D., Neal, J. E., Nummedal, D., … Winker, C. (2009). Towards the standardization of sequence stratigraphy. Earth‐Science Reviews, 92(1–2), 1–33.
    [Google Scholar]
  18. Clark, S., Bruaset, A., Sømme, T., & Løseth, T. (2009). A flexible stochastic approach to constraining uncertainty in forward stratigraphic models. Presented at the MODSIM09 International Congress on Modelling and Simulation.
  19. Coulthard, T. J., Kirkby, M. J., & Macklin, M. G. (2000). Modelling geomorphic response to environmental change in an upland catchment. Hydrological Processes, 14(11–12), 2031–2045.
    [Google Scholar]
  20. Cross, T. A., & Lessenger, M. A. (1999). Construction and application of a stratigraphic inverse model. In J. W.Hardbaugh, W. L.Watney, E. C.Rankey, R.Slingerland, & R. H.Goldstein (Eds.), Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations (pp. 69–83). Special Publications of SEPM.
    [Google Scholar]
  21. Csato, I., Catuneanu, O., & Granjeon, D. (2014). Millennial‐scale sequence stratigraphy; numerical simulation with Dionisos. Journal of Sedimentary Research, 84(5), 394–406. https://doi.org/10.2110/jsr.2014.36
    [Google Scholar]
  22. Csato, I., Granjeon, D., Catuneanu, O., & Baum, G. R. (2012). A three‐dimensional stratigraphic model for the Messinian crisis in the Pannonian Basin, eastern Hungary. Basin Research, 25(2), 121–148.
    [Google Scholar]
  23. Csato, I., Kendall, C. G. S. C., & Moore, P. D. (2007). The Messinian problem in the Pannonian Basin, Eastern Hungary—Insights from stratigraphic simulations. Sedimentary Geology, 201(1–2), 111–140.
    [Google Scholar]
  24. Culling, W. E. H. (1960). Analytical theory of erosion. The Journal of Geology, 68, 336–344.
    [Google Scholar]
  25. De Boer, B., Van de Wal, R., Bintanja, R., Lourens, L., & Tuenter, E. (2010). Cenozoic global ice‐volume and temperature simulations with 1‐D ice‐sheet models forced by benthic δ18O records. Annals of Glaciology, 51(55), 23–33.
    [Google Scholar]
  26. Deibert, J. E., Benda, T., Løseth, T., Schellpeper, M., & Steel, R. J. (2003). Eocene clinoform growth in front of a storm‐wave‐dominated shelf, Central Basin, Spitsbergen: No significant sand delivery to deepwater areas. Journal of Sedimentary Research, 73(4), 546–558.
    [Google Scholar]
  27. Diaz‐Esteve, A., & Pierce, A. (2017). Contourites as a primary regional control on deep‐water sediment deposition: Examples from the Mozambique Basin. Third EAGE Eastern Africa Petroleum Geoscience Forum, 2017(1), 1–3.
    [Google Scholar]
  28. Ding, X., Salles, T., Flament, N., & Rey, P. (2019). Quantitative stratigraphic analysis in a source‐to‐sink numerical framework. Geoscientific Model Development, 12(6), 2571–2585.
    [Google Scholar]
  29. Euzen, T., Joseph, P., du Fornel, E., Lesur, S., Granjeon, D., & Guillocheau, F. (2004). Three‐dimensional stratigraphic modelling of the Gres d'Annot system, Eocene‐Oligocene, SE France. Geological Society Special Publications, 221, 161–180.
    [Google Scholar]
  30. Faugères, J. C., Stow, D. A., Imbert, P., & Viana, A. (1999). Seismic features diagnostic of contourite drifts. Marine Geology, 162(1), 1–38.
    [Google Scholar]
  31. Fierens, R., Droz, L., Toucanne, S., Raisson, F., Jouet, G., Babonneau, N., Miramontes, E., Landurain, S., & Jorry, S. J. (2019). Late Quaternary geomorphology and sedimentary processes in the Zambezi turbidite system (Mozambique Channel). Geomorphology, 334, 1–28.
    [Google Scholar]
  32. Flemings, P. B., & Jordan, T. E. (1989). A synthetic stratigraphic model of foreland basin development. Journal of Geophysical Research: Solid Earth, 94(B4), 3851–3866.
    [Google Scholar]
  33. Fowler, C., & Nisbet, E. (1985). The subsidence of the Williston Basin. Canadian Journal of Earth Sciences, 22(3), 408–415.
    [Google Scholar]
  34. Giles, M. R. (1997). Diagenesis: A quantitative perspective: Implications for basin modelling and rock property prediction. Springer.
    [Google Scholar]
  35. Glørstad‐Clark, E., Faleide, J. I., Lundschien, B. A., & Nystuen, J. P. (2010). Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. Marine and Petroleum Geology, 27(7), 1448–1475.
    [Google Scholar]
  36. Granjeon, D. (1996). Modelisation stratigraphique deterministe; conception et applications d'un modele diffusif 3D multilithologique [PhD thesis, Geosciences Rennes: Rennes, France]. In Deterministic stratigraphic modelling; conception and applications of a multi‐lithologic 3D model (Vol. 78).
  37. Granjeon, D. (2014). 3D forward modelling of the impact of sediment transport and level cycles on continental margins and incised valleys. Special Publication of the International Association of Sedimentologists, 46, 453–472.
    [Google Scholar]
  38. Granjeon, D., & Joseph, P. (1999). Concepts and applications of a 3‐D multiple lithology, diffusive model in stratigraphic modeling. Special Publication—Society for Sedimentary Geology, 62, 197–210.
    [Google Scholar]
  39. Guillocheau, F., Chelalou, R., Linol, B., Dauteuil, O., Robin, C., Mvondo, F., Callec, Y., & Colin, J. P. (2015). Cenozoic landscape evolution in and around the Congo Basin: Constraints from sediments and planation surfaces. In Geology and resource potential of the Congo Basin (pp. 271–313). Springer.
    [Google Scholar]
  40. Hansen, J., Sato, M., Russell, G., & Kharecha, P. (2013). Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2001), 20120294.
    [Google Scholar]
  41. Harris, A. D., Carvajal, C., Covault, J., Perlmutter, M., & Sun, T. (2015). Numerical stratigraphic modeling of climatic controls on basin‐scale sedimentation. AAPG Annual Convention and Exhibition, 31.
    [Google Scholar]
  42. Harris, A. D., Covault, J. A., Madof, A. S., Sun, T., Sylvester, Z., & Granjeon, D. (2016). Three‐dimensional numerical modeling of eustatic control on continental‐margin sand distribution. Journal of Sedimentary Research, 86(12), 1434–1443.
    [Google Scholar]
  43. Hawie, N., Barrois, A., Marfisi, E., Murat, B., Hall, J., El‐Wazir, Z., Al‐Madani, N., & Aillud, G. (2015). Forward stratigraphic modelling, deterministic approach to improve carbonate heterogeneity prediction; lower cretaceous, Abu Dhabi. Abu Dhabi International Petroleum Exhibition and Conference.
  44. Helland‐Hansen, W., & Gjelberg, J. G. (1994). Conceptual basis and variability in sequence stratigraphy: A different perspective. Sedimentary Geology, 92(1–2), 31–52.
    [Google Scholar]
  45. Helland‐Hansen, W., & Hampson, G. J. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21(5), 454–483. https://doi.org/10.1111/j.1365‐2117.2009.00425.x
    [Google Scholar]
  46. Helland‐Hansen, W., & Martinsen, O. J. (1996). Shoreline trajectories and sequences; description of variable depositional‐dip scenarios. Journal of Sedimentary Research, 66(4), 670–688.
    [Google Scholar]
  47. Henriksen, S., Hampson, G. J., Helland‐Hansen, W., Johannessen, E. P., & Steel, R. J. (2009). Shelf edge and shoreline trajectories, a dynamic approach to stratigraphic analysis. Basin Research, 21(5), 445–453. https://doi.org/10.1111/j.1365‐2117.2009.00432.x
    [Google Scholar]
  48. Henriksen, S., Helland‐Hansen, W., & Bullimore, S. (2011). Relationships between shelf‐edge trajectories and sediment dispersal along depositional dip and strike: A different approach to sequence stratigraphy. Basin Research, 23(1), 3–21. https://doi.org/10.1111/j.1365‐2117.2010.00463.x
    [Google Scholar]
  49. Houston, W. S., Huntoon, J. E., & Kamola, D. L. (2000). Modeling of Cretaceous foreland‐basin parasequences, Utah, with implications for timing of Sevier thrusting. Geology, 28(3), 267–270.
    [Google Scholar]
  50. Johannessen, E. P., & Steel, R. J. (2005). Shelf‐margin clinoforms and prediction of deepwater sands. Basin Research, 17(4), 521–550.
    [Google Scholar]
  51. Jordan, T. E., & Flemings, P. B. (1991). Large‐scale stratigraphic architecture, eustatic variation, and unsteady tectonism: A theoretical evaluation. Journal of Geophysical Research: Solid Earth, 96(B4), 6681–6699.
    [Google Scholar]
  52. Kaufman, P., Grotzinger, J. P., & McCormick, D. S. (1991). Depth‐dependent diffusion algorithm for simulation of sedimentation in shallow marine depositional systems. Kansas Geological Survey Bulletin, 233, 489–508.
    [Google Scholar]
  53. Kendall, C. G. S. C., Strobel, J., Cannon, R., Bezdek, J., & Biswas, G. (1991). The simulation of the sedimentary fill of basins. Journal of Geophysical Research: Solid Earth, 96(B4), 6911–6929.
    [Google Scholar]
  54. Kenyon, P. M., & Turcotte, D. L. (1985). Morphology of a delta prograding by bulk sediment transport. Geological Society of America Bulletin, 96(11), 1457–1465.
    [Google Scholar]
  55. Kertznus, V., & Kneller, B. (2009). Clinoform quantification for assessing the effects of external forcing on continental margin development. Basin Research, 21(5), 738–758.
    [Google Scholar]
  56. Klausen, T. G., & Helland‐Hansen, W. (2018). Methods for restoring and describing ancient clinoform surfaces. Journal of Sedimentary Research, 88(2), 241–259.
    [Google Scholar]
  57. Kolodka, C., Vennin, E., Bourillot, R., Granjeon, D., & Desaubliaux, G. (2016). Stratigraphic modelling of platform architecture and carbonate production: A Messinian case study (Sorbas Basin, SE Spain). Basin Research, 28(5), 658–684.
    [Google Scholar]
  58. Kominz, M. A., & Pekar, S. F. (2001). Oligocene eustasy from two‐dimensional sequence stratigraphic backstripping. Geological Society of America Bulletin, 113(3), 291–304.
    [Google Scholar]
  59. König, M., & Jokat, W. (2010). Advanced insights into magmatism and volcanism of the Mozambique Ridge and Mozambique Basin in the view of new potential field data. Geophysical Journal International, 180(1), 158–180.
    [Google Scholar]
  60. Larue, D. K., & Martinez, P. A. (1989). Use of bed‐form climb models to analyze geometry and preservation potential of clastic facies and erosional surfaces. AAPG Bulletin, 73(1), 40–53.
    [Google Scholar]
  61. Laskar, J., Fienga, A., Gastineau, M., & Manche, H. (2011). La2010: A new orbital solution for the long‐term motion of the Earth. Astronomy & Astrophysics, 532, A89.
    [Google Scholar]
  62. Leroux, E. (2012). Quantification des flux sédimentaires et de la subsidence du bassin Provençal [PhD thesis]. Université de Bretagne Occidentale.
  63. Leroux, E., Rabineau, M., Aslanian, D., Granjeon, D., Droz, L., & Gorini, C. (2014). Stratigraphic simulations of the shelf of the Gulf of Lions; testing subsidence rates and sea‐level curves during the Pliocene and Quaternary. Terra Nova, 26(3), 230–238. https://doi.org/10.1111/ter.12091
    [Google Scholar]
  64. Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003. https://doi.org/10.1029/2004PA001071
    [Google Scholar]
  65. Lisiecki, L. E., & Raymo, M. E. (2007). Plio–Pleistocene climate evolution: Trends and transitions in glacial cycle dynamics. Quaternary Science Reviews, 26(1–2), 56–69.
    [Google Scholar]
  66. Marcussen, Ø., Maast, T. E., Mondol, N. H., Jahren, J., & Bjørlykke, K. (2010). Changes in physical properties of a reservoir sandstone as a function of burial depth—The Etive Formation, northern North Sea. Marine and Petroleum Geology, 27(8), 1725–1735.
    [Google Scholar]
  67. Marcussen, Ø., Thyberg, B. I., Peltonen, C., Jahren, J., Bjørlykke, K., & Faleide, J. I. (2009). Physical properties of Cenozoic mudstones from the northern North Sea: Impact of clay mineralogy on compaction trends. AAPG Bulletin, 93(1), 127–150.
    [Google Scholar]
  68. Martinez, M., & Dera, G. (2015). Orbital pacing of carbon fluxes by a ∼9‐My eccentricity cycle during the Mesozoic. Proceedings of the National Academy of Sciences, 112(41), 12604–12609.
    [Google Scholar]
  69. Mignard, S., Mulder, T., Martinez, P., & Garlan, T. (2019). The Ogooue Fan (offshore Gabon): A modern example of deep‐sea fan on a complex slope profile. Solid Earth, 10(3), 851–869.
    [Google Scholar]
  70. Mignard, S. L. A., Mulder, T., Martinez, P., Charlier, K., Rossignol, L., & Garlan, T. (2017). Deep‐sea terrigenous organic carbon transfer and accumulation: Impact of sea‐level variations and sedimentation processes off the Ogooue River (Gabon). Marine and Petroleum Geology, 85, 35–53.
    [Google Scholar]
  71. Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., & Wright, J. D. (2020). Cenozoic sea‐level and cryospheric evolution from deep‐sea geochemical and continental margin records. Science Advances, 6(20), eaaz1346.
    [Google Scholar]
  72. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie‐Blick, N., & Pekar, S. F. (2005). The Phanerozoic record of global sea‐level change. Science, 310(5752), 1293–1298.
    [Google Scholar]
  73. Miramontes, E., Penven, P., Fierens, R., Droz, L., Toucanne, S., Jorry, S. J., Jouet, G., Pastor, L., Jacinto, R. S., & Gaillot, A. (2019). The influence of bottom currents on the Zambezi Valley morphology (Mozambique Channel, SW Indian Ocean): In situ current observations and hydrodynamic modelling. Marine Geology, 410, 42–55.
    [Google Scholar]
  74. Mitchell, N. C. (1996). Creep in pelagic sediments and potential for morphologic dating of marine fault scarps. Geophysical Research Letters, 23(5), 483–486.
    [Google Scholar]
  75. Mitchell, N. C., & Huthnance, J. M. (2008). Oceanographic currents and the convexity of the uppermost continental slope. Journal of Sedimentary Research, 78(1), 29–44.
    [Google Scholar]
  76. Mitchum, R. M., Vail, P. R., & Sangree, J. B. (1977). Seismic stratigraphy and global changes of sea level, Part 6: Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In AAPG Memoir 26 Seismic Stratigraphy—Applications to Hydrocarbon Exploration.
  77. Mougamba, R. (1999). Chronologie et architecture des systèmes turbiditiques cénozoïques du prisme sédimentaire de l'Ogooué (Marge Nord‐Gabon) [PhD thesis]. Université de Lille 1.
  78. Mueller, C. O., Jokat, W., & Schreckenberger, B. (2016). The crustal structure of Beira High, central Mozambique—Combined investigation of wide‐angle seismic and potential field data. Tectonophysics, 683, 233–254.
    [Google Scholar]
  79. Murray, A. B., & Paola, C. (1994). A cellular model of braided rivers. Nature, 371(6492), 54–57.
    [Google Scholar]
  80. Olariu, C., & Steel, R. J. (2009). Influence of point‐source sediment‐supply on modern shelf‐slope morphology: Implications for interpretation of ancient shelf margins. Basin Research, 21(5), 484–501.
    [Google Scholar]
  81. Overeem, I., Syvitski, J. P. M., & Hutton, E. W. H. (2005). Three‐dimensional numerical modeling of deltas. In L.Giosan & J. P.Bhattacharya (Eds.), River deltas: Concepts, models and examples (Vol. 83, pp. 13–30). SEPM Special Publication.
    [Google Scholar]
  82. Paola, C. (2000). Quantitative models of sedimentary basin filling. Sedimentology, 47(s1), 121–178.
    [Google Scholar]
  83. Parker, G., Paola, C., Whipple, K. X., & Mohrig, D. (1998). Alluvial fans formed by channelized fluvial and sheet flow. I: Theory. Journal of Hydraulic Engineering, 124(10), 985–995.
    [Google Scholar]
  84. Past Interglacials Working Group of PAGES . (2016). Interglacials of the last 800,000 years. Reviews of Geophysics, 54(1), 162–219.
    [Google Scholar]
  85. Patruno, S., Hampson, G. J., & Jackson, C. A. (2015). Quantitative characterisation of deltaic and subaqueous clinoforms. Earth‐Science Reviews, 142, 79–119.
    [Google Scholar]
  86. Patruno, S., & Helland‐Hansen, W. (2018). Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth‐Science Reviews, 185, 202–233.
    [Google Scholar]
  87. Pirmez, C., Pratson, L. F., & Steckler, M. S. (1998). Clinoform development by advection‐diffusion of suspended sediment: Modeling and comparison to natural systems. Journal of Geophysical Research‐All Series, 103, 24–141.
    [Google Scholar]
  88. Ponte, J.‐P., Robin, C., Guillocheau, F., Popescu, S., Suc, J.‐P., Dall'Asta, M., Melinte‐Dobrinescu, M. C., Bubik, M., Dupont, G., & Gaillot, J. (2019). The Zambezi delta (Mozambique channel, East Africa): High resolution dating combining bio‐orbital and seismic stratigraphies to determine climate (palaeoprecipitation) and tectonic controls on a passive margin. Marine and Petroleum Geology, 105, 293–312.
    [Google Scholar]
  89. Posamentier, H. W., & Allen, G. P. (1993). Variability of the sequence stratigraphic model: Effects of local basin factors. Sedimentary Geology, 86(1–2), 91–109.
    [Google Scholar]
  90. Quiquerez, A., Allemand, P., & Dromart, G. (2000). DIBAFILL: A 3‐D two‐lithology diffusive model for basin infilling. Computers and Geosciences, 26(9–10), 1029–1042.
    [Google Scholar]
  91. Rebesco, M., Hernández‐Molina, F. J., Van Rooij, D., & Wåhlin, A. (2014). Contourites and associated sediments controlled by deep‐water circulation processes: State‐of‐the‐art and future considerations. Marine Geology, 352, 111–154.
    [Google Scholar]
  92. Reynolds, D. J., Steckler, M. S., & Coakley, B. J. (1991). The role of the sediment load in sequence stratigraphy: The influence of flexural isostasy and compaction. Journal of Geophysical Research: Solid Earth, 96(B4), 6931–6949.
    [Google Scholar]
  93. Rich, J. L. (1951). Three critical environments of deposition, and criteria for recognition of rocks deposited in each of them. Geological Society of America Bulletin, 62(1), 1–20.
    [Google Scholar]
  94. Rivenaes, J. C. (1992). Application of a dual‐lithology, depth‐dependent diffusion equation in stratigraphic simulation. Basin Research, 4(2), 133–146.
    [Google Scholar]
  95. Rivenaes, J. C. (1997). Impact of sediment transport efficiency on large‐scale sequence architecture: Results from stratigraphic computer simulation. Basin Research, 9(2), 91–105.
    [Google Scholar]
  96. Rohais, S., Eschard, R., Ford, M., Guillocheau, F., & Moretti, I. (2007). Stratigraphic architecture of the Plio‐Pleistocene infill of the Corinth Rift: Implications for its structural evolution. Tectonophysics, 440(1–4), 5–28.
    [Google Scholar]
  97. Rommerskirchen, F., Condon, T., Mollenhauer, G., Dupont, L., & Schefuss, E. (2011). Miocene to Pliocene development of surface and subsurface temperatures in the Benguela Current system. Paleoceanography, 26(3), PA3216.
    [Google Scholar]
  98. Ross, W. C., Halliwell, B. A., May, J. A., Watts, D. E., & Syvitski, J. P. M. (1994). Slope readjustment: A new model for the development of submarine fans and aprons. Geology, 22(6), 511–514.
    [Google Scholar]
  99. Rouby, D., Braun, J., Robin, C., Dauteuil, O., & Deschamps, F. (2013). Long‐term stratigraphic evolution of Atlantic‐type passive margins: A numerical approach of interactions between surface processes, flexural isostasy and 3D thermal subsidence. Tectonophysics, 604, 83–103.
    [Google Scholar]
  100. Salles, T. (2016). Badlands: A parallel basin and landscape dynamics model. SoftwareX, 5, 195–202.
    [Google Scholar]
  101. Salles, T., Ding, X., & Brocard, G. (2018). pyBadlands: A framework to simulate sediment transport, landscape dynamics and basin stratigraphic evolution through space and time. PLoS One, 13(4), e0195557.
    [Google Scholar]
  102. Salles, T., & Hardiman, L. (2016). Badlands: An open‐source, flexible and parallel framework to study landscape dynamics. Computers and Geosciences, 91, 77–89.
    [Google Scholar]
  103. Sansom, P. (2018). Hybrid turbidite–contourite systems of the Tanzanian margin. Petroleum Geoscience, 24(3), 258–276.
    [Google Scholar]
  104. Sclater, J. G., & Christie, P. A. (1980). Continental stretching: An explanation of the post‐mid‐Cretaceous subsidence of the central North Sea basin. Journal of Geophysical Research: Solid Earth, 85(B7), 3711–3739.
    [Google Scholar]
  105. Spratt, R. M., & Lisiecki, L. E. (2016). A Late Pleistocene sea level stack. Climate of the Past, 12(4), 1079–1092.
    [Google Scholar]
  106. Steckler, M. S., Mountain, G. S., Miller, K. G., & Christie‐Blick, N. (1999). Reconstruction of Tertiary progradation and clinoform development on the New Jersey passive margin by 2‐D backstripping. Marine Geology, 154(1), 399–420.
    [Google Scholar]
  107. Steckler, M., Reynolds, D., Coakley, B., Swift, B., & Jarrard, R. (1993). Modelling passive margin sequence stratigraphy. In H. W.Posamentier, C. P.Summerhayes, B. U.Haq, & G. P.Allen (Eds.), Sequence stratigraphy and facies associations. International Association of Sedimentologists Special Publication 18 (pp. 19–41). Blackwell Sientific Publications.
    [Google Scholar]
  108. Steckler, M. S., & Watts, A. B. (1978). Subsidence of the Atlantic‐type continental margin off New York. Earth and Planetary Science Letters, 41(1), 1–13.
    [Google Scholar]
  109. Steel, R., & Olsen, T. (2002). Clinoforms, clinoform trajectories and deepwater sands. Program and Abstracts—Society of Economic Paleontologists. Gulf Coast Section. Research Conference, 22, 367–380.
    [Google Scholar]
  110. Strasser, A., Hillgärtner, H., Hug, W., & Pittet, B. (2000). Third‐order depositional sequences reflecting Milankovitch cyclicity. Terra Nova, 12(6), 303–311.
    [Google Scholar]
  111. Strobel, J., Cannon, R., Christopher, G. S., Kendall, C. S., Biswas, G., & Bezdek, J. (1989). Interactive (SEDPAK) simulation of clastic and carbonate sediments in shelf to basin settings. Computers and Geosciences, 15(8), 1279–1290.
    [Google Scholar]
  112. Syvitski, J. P. M., & Daughney, S. (1992). DELTA2: Delta progradation and basin filling. Computers and Geosciences, 18(7), 839–897.
    [Google Scholar]
  113. Syvitski, J. P. M., Smith, J. N., Calabrese, E., & Boudreau, B. (1988). Basin sedimentation and the growth of prograding deltas. Journal of Geophysical Research: Oceans, 93(C6), 6895–6908.
    [Google Scholar]
  114. Tetzlaff, D., & Priddy, G. (2001). Sedimentary process modeling: From academia to industry. In D. F.Merriam & J. C.Davis (Eds.), Geologic modeling and simulation (pp. 45–69). Kluwer Academic/Plenum Publishers.
    [Google Scholar]
  115. Thiéblemont, A., Hernández‐Molina, F. J., Miramontes, E., Raisson, F., & Penven, P. (2019). Contourite depositional systems along the Mozambique channel: The interplay between bottom currents and sedimentary processes. Deep Sea Research Part I: Oceanographic Research Papers, 147, 79–99.
    [Google Scholar]
  116. Thiéblemont, A., Hernandez‐Molina, F. J., Ponte, J.‐P., Robin, C., Guillocheau, F., Cazzola, C., & Raisson, F. (2020). Seismic stratigraphic framework and depositional history for Cretaceous and Cenozoic contourite depositional systems of the Mozambique Channel, SW Indian Ocean. Marine Geology, 425, 106192.
    [Google Scholar]
  117. Thorne, J. (1995). On the scale independent shape of prograding stratigraphic units. In Fractals in petroleum geology and earth processes (pp. 97–112). Springer.
    [Google Scholar]
  118. Thorne, J. A., & Swift, D. J. P. (1991). Sedimentation on continental margins, VI: A regime model for depositional sequences, their component systems tracts, and bounding surfaces. In Shelf sand and sandstone bodies: Geometry, facies and sequence stratigraphy (Vol. 14, pp. 189–255). International Association of Sedimentologists, Special Publications.
    [Google Scholar]
  119. Tucker, G. E., & Slingerland, R. L. (1994). Erosional dynamics, flexural isostasy, and long‐lived escarpments: A numerical modeling study. Journal of Geophysical Research: Solid Earth, 99(B6), 12229–12243.
    [Google Scholar]
  120. Vail, P. R., Mitchum, R. M., & Thompson, S. I. (1977). Seismic stratigraphy and global changes of sea level: Part 3, Relative changes of sea level from coastal onlap. In Seismic stratigraphy—applications to hydrocarbon exploration (pp. 63–81). American Association of Petroleum Geologists. https://archives.datapages.com/data/specpubs/seismic1/data/a165/a165/0001/0050/0063.htm
    [Google Scholar]
  121. Watts, A. B., & Ryan, W. B. F. (1976). Flexure of the lithosphere and continental margin basins. In Developments in geotectonics (Vol. 12, pp. 25–44). Elsevier.
    [Google Scholar]
  122. Wehr, F. L. (1993). Effects of variations in subsidence and sediment supply on parasequence stacking patterns: Chapter 14: Recent developments in siliciclastic sequence stratigraphy. In F.Weimer & H. W.Posamentier (Eds.), Siliclastic Sequence Stratigraphy: Recent Developments and Applications (Vol. 58, pp. 369–379). American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  123. Wiles, E., Green, A., Watkeys, M., & Jokat, W. (2017). Zambezi continental margin: Compartmentalized sediment transfer routes to the abyssal Mozambique Channel. Marine Geophysical Research, 38(3), 227–240.
    [Google Scholar]
  124. Yuan, X. P., Braun, J., Guerit, L., Simon, B., Bovy, B., Rouby, D., Robin, C., & Jiao, R. (2019). Linking continental erosion to marine sediment transport and deposition: A new implicit and O(N) method for inverse analysis. Earth and Planetary Science Letters, 524, 115728.
    [Google Scholar]
  125. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science (New York, N.Y.), 292(5517), 686–693.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12696
Loading
/content/journals/10.1111/bre.12696
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error