1887
Volume 34, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

We evaluate a simple stratigraphic forward model that incorporates nonlocal marine sediment transport processes and find that it improves on purely local models in its ability to produce observed stratigraphy on the Southeast Atlantic Margin.

, Abstract

Passive margin stratigraphy contains time‐integrated records of landscapes that have long since vanished. Quantitatively reading the stratigraphic record using coupled landscape evolution and stratigraphic forward models (SFMs) is a promising approach to extracting information about landscape history. However, there is no consensus about the optimal form of simple SFMs because there has been a lack of direct tests against observed stratigraphy in well‐constrained test cases. Specifically, the extent to which SFM behaviour over geologic space and timescales should be governed by local (downslope sediment flux depends only on local slope) versus nonlocal (sediment flux depends on factors other than local slope, such as the history of slopes experienced along a transport pathway) processes is currently unclear. Here, we develop a nonlocal, nonlinear SFM that incorporates slope bypass and long‐distance sediment transport, both of which have been previously identified as important model components but not thoroughly tested. Our model collapses to the local, linear model under certain parameterizations such that best‐fit parameter values can indicate optimal model structure. Comparing 2‐D implementations of both models against seven detailed seismic sections from the Southeast Atlantic Margin, we invert the stratigraphic data for best‐fit model parameter values and demonstrate that best‐fit parameterizations are not compatible with the local, linear diffusion model. Fitting observed stratigraphy requires parameter values consistent with important contributions from slope bypass and long‐distance transport processes. The nonlocal, nonlinear model yields improved fits to the data regardless of whether the model is compared against only the modern bathymetric surface or the full set of seismic reflectors identified in the data. Results suggest that processes of sediment bypass and long‐distance transport are required to model realistic passive margin stratigraphy and are therefore important to consider when inverting the stratigraphic record to infer past perturbations to source regions.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12698
2022-11-18
2022-11-30
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/6/bre12698.html?itemId=/content/journals/10.1111/bre.12698&mimeType=html&fmt=ahah

References

  1. Aizawa, M., Bluck, B., Cartwright, J., Milner, S., Swart, R., & Ward, J. (2000). Constraints on the geomorphological evolution of Namibia from the offshore stratigraphic record. Communications of the Geological Survey of Namibia, 12, 337–346.
    [Google Scholar]
  2. Allen, P. A., & Allen, J. R. (2013). Basin analysis, principles and application to petroleum play assessment (p. 632). Wiley‐Blackwell.
    [Google Scholar]
  3. Andrews, D. J., & Bucknam, R. C. (1987). Fitting degradation of shoreline scarps by a nonlinear diffusion model. Journal of Geophysical Research: Solid Earth, 92(B12), 12857–12867. https://doi.org/10.1029/JB092iB12p12857
    [Google Scholar]
  4. Baby, G., Guillocheau, F., Braun, J., Robin, C., & Dall'Asta, M. (2019). Solid sedimentation rates history of the southern African continental margins: Implications for the uplift history of the south African plateau. Terra Nova, 32(1), 53–65. https://doi.org/10.1111/ter.12435
    [Google Scholar]
  5. Baby, G., Guillocheau, F., Morin, J., Ressouche, J., Robin, C., Broucke, O., & Dall'Asta, M. (2018). Post‐rift stratigraphic evolution of the Atlantic margin of Namibia and South Africa: Implications for the vertical movements of the margin and the uplift history of the South African Plateau. Marine and Petroleum Geology, 97, 169–191. https://doi.org/10.1016/j.marpetgeo.2018.06.030
    [Google Scholar]
  6. Barnhart, K. R., Glade, R. C., Shobe, C. M., & Tucker, G. E. (2019). Terrainbento 1.0: A Python package for multi‐model analysis in long‐term drainage basin evolution. Geoscientific Model Development, 12, 1267. https://doi.org/10.5194/gmd‐12‐1267‐2019
    [Google Scholar]
  7. Barnhart, K. R., Tucker, G. E., Doty, S., Shobe, C. M., Glade, R. C., Rossi, M. W., & Hill, M. C. (2020a). Inverting topography for landscape evolution model process representation: Part 1, conceptualization and sensitivity analysis. Journal of Geophysical Research: Earth Surface, 125(7), e2018JF004961. https://doi.org/10.1029/2018JF004961
    [Google Scholar]
  8. Barnhart, K. R., Tucker, G. E., Doty, S., Shobe, C. M., Glade, R. C., Rossi, M. W., & Hill, M. C. (2020b). Inverting topography for landscape evolution model process representation: Part 2, calibration and validation. Journal of Geophysical Research: Earth Surface, 125(7), e2018JF004963. https://doi.org/10.1029/2018JF004963
    [Google Scholar]
  9. Barnhart, K. R., Tucker, G. E., Doty, S., Shobe, C. M., Glade, R. C., Rossi, M. W., & Hill, M. C. (2020c). Inverting topography for landscape evolution model process representation: Part 3, determining parameter ranges for select mature geomorphic transport laws and connecting changes in fluvial erodibility to changes in climate. Journal of Geophysical Research: Earth Surface, 125(7), e2019JF005287. https://doi.org/10.1029/2019JF005287
    [Google Scholar]
  10. Beaumont, C., Fullsack, P., & Hamilton, J. (1992). Erosional control of active compressional orogens. In K. R.McClay (Ed.), Thrust tectonics (pp. 1–18). Chapman and Hall.
    [Google Scholar]
  11. Bessin, P., Guillocheau, F., Robin, C., Braun, J., Bauer, H., & Schroëtter, J.‐M. (2017). Quantification of vertical movement of low elevation topography combining a new compilation of global sea‐level curves and scattered marine deposits (Armorican massif, western France). Earth and Planetary Science Letters, 470, 25–36. https://doi.org/10.1016/j.epsl.2017.04.018
    [Google Scholar]
  12. Bornholdt, S., Nordlund, U., & Westphal, H. (1999). Inverse stratigraphic modeling using genetic algorithms. In J. W.Harbaugh, W. L.Watney, E. C.Rankey, R.Slingerland, R. H.Goldstein, & E. K.Franseen (Eds.), Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations (pp. 219–232). SEPM (Society for Sedimentary Geology). https://doi.org/10.2110/pec.99.62.0085
    [Google Scholar]
  13. Bornholdt, S., & Westphal, H. (1998). Automation of stratigraphic simulations: Quasi‐backward modeling using genetic agorithms. In A.Mascle, C.Puigdefabregas, H. P.Luterbacher, & M.Fernandez (Eds.), Cenozoic foreland basins of Western Europe (Vol. 134, pp. 371–379). Geological Society Special Publications.
    [Google Scholar]
  14. Braun, J. (2021). Comparing the transport‐limited and ζ‐q models for sediment transport. Earth Surface Dynamics, 10, 301–327. https://doi.org/10.5194/esurf‐10‐301‐2022
    [Google Scholar]
  15. Braun, J., Deschamps, F., Rouby, D., & Dauteuil, O. (2013). Flexure of the lithosphere and the geodynamical evolution of non‐cylindrical rifted passive margins: Results from a numerical model incorporating variable elastic thickness, surface processes and 3D thermal subsidence. Tectonophysics, 604, 72–82. https://doi.org/10.1016/j.tecto.2012.09.033
    [Google Scholar]
  16. Braun, J., Guillocheau, F., Robin, C., Baby, G., & Jelsma, H. (2014). Rapid erosion of the southern African plateau as it climbs over a mantle superswell. Journal of Geophysical Research: Solid Earth, 119, 6093–6112. https://doi.org/10.1002/2014JB010998
    [Google Scholar]
  17. Burgess, P. M. (2012). A brief review of developments in stratigraphic forward modelling 2000–2009. In D. G.Roberts & A. W.Bally (Eds.), Regional geology and tectonics: Principles of geologic analysis (pp. 378–404). Elsevier.
    [Google Scholar]
  18. Burgess, P. M., Lammers, H., van Oosterhout, C., & Granjeon, D. (2006). Multivariate sequence stratigraphy: Tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios, and conditional frequency maps. American Association of Petroleum Geologists Bulletin, 90(12), 1883–1901. https://doi.org/10.1306/06260605081
    [Google Scholar]
  19. Campforts, B., Shobe, C. M., Steer, P., Vanmaercke, M., Lague, D., & Braun, J. (2020). HyLands 1.0: A hybrid landscape evolution model to simulate the impact of landslides and landslide‐derived sediment on landscape evolution. Geoscientific Model Development, 13, 3863–3886. https://doi.org/10.5194/gmd‐13‐3863‐2020
    [Google Scholar]
  20. Carretier, S., Martinod, P., Reich, M., & Godderis, Y. (2016). Modelling sediment clasts transport during landscape evolution. Earth Surface Dynamics, 4, 237–251. https://doi.org/10.5194/esurf‐4‐237‐2016
    [Google Scholar]
  21. Cross, T. A., & Lessenger, M. A. (1999). Construction and application of a stratigraphic inverse model. In J. W.Harbaugh, W. L.Watney, E. C.Rankey, R.Slingerland, R. H.Goldstein, & E. K.Franseen (Eds.), Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations (pp. 69–83). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.99.62.0069
    [Google Scholar]
  22. Dauteuil, O., Rouby, D., Braun, J., Guillocheau, F., & Deschamps, F. (2013). Post‐breakup evolution of the Namibian margin: Constrains from numerical modeling. Tectonophysics, 604, 122–138. https://doi.org/10.1016/j.tecto.2013.03.034
    [Google Scholar]
  23. Davy, P., & Lague, D. (2009). Fluvial erosion/transport equation of landscape evolution models revisited. Journal of Geophysical Research, 114, F03007. https://doi.org/10.1029/2008JF001146
    [Google Scholar]
  24. DiBiase, R. A., & Whipple, K. X. (2011). The influence of erosion thresholds and runoff variability on the relationships among topography, climate, and erosion rate. Journal of Geophysical Research, 116, e2011JF002095. https://doi.org/10.1029/2011JF002095
    [Google Scholar]
  25. Ding, X., Salles, T., Flament, N., Mallard, C., & Rey, P. F. (2019). Drainage and sedimentary responses to dynamic topography. Geophysical Research Letters, 46(24), 14385–14394. https://doi.org/10.1029/2019GL084400
    [Google Scholar]
  26. Ding, X., Salles, T., Flament, N., & Rey, P. (2019). Quantitative stratigraphic analysis in a source‐to‐sink numerical framework. Geoscientific Model Development, 12, 2571–2585. https://doi.org/10.5194/gmd‐12‐2571‐2019
    [Google Scholar]
  27. Doane, T. H., Furbish, D. J., Roering, J. J., Schumer, R., & Morgan, D. J. (2018). Nonlocal sediment transport on steep lateral moraines, eastern Sierra Nevada, California, USA. Journal of Geophysical Research: Earth Surface, 123(1), 187–208. https://doi.org/10.1002/2017JF004325
    [Google Scholar]
  28. Falivene, O., Frascati, A., Bolla Pittaluga, M., & Martin, J. (2019). Three‐dimensional reduced‐complexity simulation of fluvio‐deltaic clastic stratigraphy. Journal of Sedimentary Research, 89, 46–65. https://doi.org/10.2110/jsr.2018.73
    [Google Scholar]
  29. Falivene, O., Frascati, A., Gesbert, S., Pickens, J., Hsu, Y., & Rovira, A. (2014). Automatic calibration of stratigraphic forward models for predicting reservoir presence in exploration. American Association of Petroleum Geologists Bulletin, 98(9), 1811–1835. https://doi.org/10.1306/02271413028
    [Google Scholar]
  30. Falivene, O., Prather, B. E., & Martin, J. (2020). Quantifying sand delivery to deep water during changing sea‐level: Numerical models from the Quaternary Brazos Icehouse continental margin. Basin Research, 32, 1711–1733. https://doi.org/10.1111/bre.12449
    [Google Scholar]
  31. Foufoula‐Georgiou, E., Ganti, V., & Dietrich, W. E. (2010). A nonlocal theory of sediment transport on hillslopes. Journal of Geophysical Research: Earth Surface, 115(F2), e2009JF001280. https://doi.org/10.1029/2009JF001280
    [Google Scholar]
  32. Furbish, D. J., & Roering, J. J. (2013). Sediment disentrainment and the concept of local versus nonlocal transport on hillslopes. Journal of Geophysical Research: Earth Surface, 118(2), 937–952. https://doi.org/10.1002/jgrf.20071
    [Google Scholar]
  33. Furbish, D. J., Roering, J. J., Doane, T. H., Roth, D. L., Williams, S. G., & Abbott, A. M. (2021). Rarefied particle motions on hillslopes—Part 1: Theory. Earth Surface Dynamics, 9(3), 539–576. https://doi.org/10.5194/esurf‐9‐539‐2021
    [Google Scholar]
  34. Granjeon, D. (2014). 3D forward modelling of the impact of sediment transport and base level cycles on continental margins and incised valleys. International Association of Sedimentology Special Publication, 46, 453–472.
    [Google Scholar]
  35. Granjeon, D., & Joseph, P. (1999). Concepts and applications of a 3‐D multiple lithology, diffusive model in stratigraphic modeling. In J. W.Harbaugh, W. L.Watney, E. C.Rankey, R.Slingerland, R. H.Goldstein, & E. K.Franseen (Eds.), Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations (pp. 197–210). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.99.62.0197
    [Google Scholar]
  36. Guerit, L., Yuan, X. P., Carretier, S., Bonnet, S., Rohais, S., Braun, J., & Rouby, D. (2019). Fluvial landscape evolution controlled by the sediment deposition coefficient: Estimation from experimental and natural landscapes. Geology, 47(9), 853–856. https://doi.org/10.1130/G46356.1
    [Google Scholar]
  37. Guillocheau, F., Rouby, D., Robin, C., Helm, C., Rolland, N., Le Carlier de Veslud, C., & Braun, J. (2012). Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: A new method applied to the Namibia‐South Africa margin. Basin Research, 24, 3–30. https://doi.org/10.1111/j.1365‐2117.2011.00511.x
    [Google Scholar]
  38. Harris, A. D., Baumgartner, S. E., Sun, T., & Granjeon, D. (2018). A poor relationship between sea level and deep‐water sand delivery. Sedimentary Geology, 370, 42–51. https://doi.org/10.1016/j.sedgeo.2018.04.002
    [Google Scholar]
  39. Harris, A. D., Covault, J. A., Baumgartner, S., Sun, T., & Granjeon, D. (2020). Numerical modeling of icehouse and greenhouse sea‐level changes on a continental margin: Sea‐level modulation of deltaic avulsion processes. Marine and Petroleum Geology, 111, 807–814. https://doi.org/10.1016/j.marpetgeo.2019.08.055
    [Google Scholar]
  40. Harris, A. D., Covault, J. A., Madof, A. S., Sun, T., Sylvester, Z., & Granjeon, D. (2016). Three‐dimensional numerical modeling of eustatic control on continental‐margin sand distribution. Journal of Sedimentary Research, 86, 1434–1443. https://doi.org/10.2110/jsr.2016.85
    [Google Scholar]
  41. Hereema, C. J., Talling, P. J., Cartigny, M. J., Paull, C. K., Bailey, L., Simmons, S. M., Parsons, D. R., Clare, M. A., Gwiazda, R., Lundsten, E., & Anderson, K. (2020). What determines the downstream evolution of turbidity currents?Earth and Planetary Science Letters, 532, 116023. https://doi.org/10.1016/j.epsl.2019.116023
    [Google Scholar]
  42. Hirsch, K. K., Schenck‐Wenderoth, M., van Wees, J.‐D., Kuhlmann, G., & Paton, D. A. (2010). Tectonic subsidence history and thermal evolution of the Orange Basin. Marine and Petroleum Geology, 27, 565–584. https://doi.org/10.1016/j.marpetgeo.2009.06.009
    [Google Scholar]
  43. Hobley, D. E. J., Sinclair, H. D., Mudd, S. M., & Cowie, P. A. (2011). Field calibration of sediment flux dependent river incision. Journal of Geophysical Research: Earth Surface, 116(F4), e2010JF001935. https://doi.org/10.1029/2010JF001935
    [Google Scholar]
  44. Imhof, M. G., & Sharma, A. K. (2006). Quantitative seismostratigraphic inversion of a prograding delta from seismic data. Marine and Petroleum Geology, 23, 735–744. https://doi.org/10.1016/j.marpetgeo.2006.04.004
    [Google Scholar]
  45. Imhof, M. G., & Sharma, A. K. (2007). Seismostratigraphic inversion: Appraisal, ambiguity, and uncertainty. Geophysics, 72(4), R51–R66. https://doi.org/10.1190/1.2720496
    [Google Scholar]
  46. Jerolmack, D. J., & Paola, C. (2010). Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37(19), L19401. https://doi.org/10.1029/2010GL044638
    [Google Scholar]
  47. Kaufman, P., Grotzinger, J. P., & McCormick, D. S. (1992). Depth‐dependent diffusion algorithm for simulation of sedimentation in shallow marine depositional systems. Kansas Geological Survey Bulletin, 233, 489–508.
    [Google Scholar]
  48. Kenyon, P. M., & Turcotte, D. L. (1985). Morphology of a delta prograding by bulk sediment transport. Geological Society of America Bulletin, 96(11), 1457. https://doi.org/10.1130/0016‐7606(1985)96<1457:MOADPB>2.0.CO;2‐1465
    [Google Scholar]
  49. Klinger, E., Rickert, D., & Hasenauer, J. (2018). pyABC: Distributed, likelihood‐free inference. Bioinformatics, 34(20), 3591–3593. https://doi.org/10.1093/bioinformatics/bty361
    [Google Scholar]
  50. Kooi, H., & Beaumont, C. (1994). Escarpment evolution on high‐elevation rifted margins: Insights derived from a surface processes model that combines diffusion, advection, and reaction. Journal of Geophysical Research, 99(12), 12191–12209.
    [Google Scholar]
  51. Lessenger, M. A., & Cross, T. A. (1996). An inverse stratigraphic simulation model—Is stratigraphic inversion possible?Energy Exploration and Exploitation, 14(6), 627–637. https://doi.org/10.1177/014459879601400606
    [Google Scholar]
  52. Lowe, D. R. (1976). Grain flow and grain flow deposits. Journal of Sedimentary Petrology, 46(1), 188–199.
    [Google Scholar]
  53. Luchi, R., Balachandar, S., Seminara, G., & Parker, G. (2018). Turbidity currents with equilibrium basal driving layers: A mechanism for long runout. Geophysical Research Letters, 45(3), 1518–1526. https://doi.org/10.1002/2017GL075608
    [Google Scholar]
  54. Martin, J., Paola, C., Abreu, V., Neal, J., & Sheets, B. (2009). Sequence stratigraphy of experimental strata under known conditions of differential subsidence and variable base level. American Association of Petroleum Geologists Bulletin, 93(4), 503–533. https://doi.org/10.1306/12110808057
    [Google Scholar]
  55. McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40(1), 25–32. https://doi.org/10.1016/0012‐821X(78)90071‐7
    [Google Scholar]
  56. Mohrig, D., Ellis, C., Parker, G., Whipple, K. X., & Hondzo, M. (1998). Hydroplaning of subaqueous debris flows. Geological Society of America Bulletin, 110(3), 387–394. https://doi.org/10.1130/0016‐7606(1998)110<0387:HOSDF>2.3.CO;2
    [Google Scholar]
  57. Molnar, P., Brown, E. T., Burchfiel, B. C., Deng, Q., Feng, X., Li, J., Raisbeck, G. M., Shi, J., Zhangming, W., Yiou, F., & You, H. (1994). Quaternary climate change and the formation of river terraces across growing anticlines on the north flank of the Tien Shan, China. The Journal of Geology, 102(5), 583–602. https://doi.org/10.1086/629700
    [Google Scholar]
  58. Moretti, I., & Turcotte, D. L. (1985). A model for erosion, sedimentation, and flexure with application to New Caledonia. Journal of Geodynamics, 3(1–2), 155–168. https://doi.org/10.1016/0264‐3707(85)90026‐2
    [Google Scholar]
  59. Niedoroda, A. W., Reed, C. W., Swift, D. J. P., Arato, H., & Hoyanagi, K. (1995). Modeling shore‐normal large‐scale coastal evolution. Marine Geology, 126, 181–199. https://doi.org/10.1016/0025‐3227(95)98961‐7
    [Google Scholar]
  60. O'Malley, C. P. B., White, N. J., Stephenson, S. N., & Roberts, G. G. (2021). Large‐scale tectonic forcing of the African landscape. Journal of Geophysical Research: Earth Surface, 126, e2021JF006345. https://doi.org/10.1029/2021JF006345
    [Google Scholar]
  61. Paola, C. (2000). Quantitative models of sedimentary basin filling. Sedimentology, 47(Suppl. 1), 121–178. https://doi.org/10.1046/j.1365‐3091.2000.00006.x
    [Google Scholar]
  62. Parker, G., Fukushima, Y., & Pantin, H. M. (1986). Self‐accelerating turbidity currents. Journal of Fluid Mechanics, 171, 145–181. https://doi.org/10.1017/S0022112086001404
    [Google Scholar]
  63. Paton, D. A., van der Spuy, D., di Primio, R., & Horsfield, B. (2008). Tectonically induced adjustment of passive‐margin accommodation space: Influence on the hydrocarbon potential of the Orange Basin, South Africa. American Association of Petroleum Geologists Bulletin, 92(5), 589–609. https://doi.org/10.1306/12280707023
    [Google Scholar]
  64. Pazzaglia, F. J., & Brandon, M. T. (1996). Macrogeomorphic evolution of the post‐Triassic Appalachian mountains determined by deconvolution of the offshore basin sedimentary record. Basin Research, 8(3), 255–278. https://doi.org/10.1046/j.1365‐2117.1996.00274.x
    [Google Scholar]
  65. Pirmez, C., Pratson, L. F., & Steckler, M. S. (1998). Clinoform development by advection–diffusion of suspended sediment: Modeling and comparison to natural systems. Journal of Geophysical Research, 103(B10), 24141–24157. https://doi.org/10.1029/98JB01516
    [Google Scholar]
  66. Poag, C. W. (1992). U.S. Middle Atlantic continental rise: Provenance, dispersal, and deposition of Jurassic to Quaternary sediments. In C. W.Poag & P. C.Graciansky (Eds.), Geologic evolution of Atlantic continental rises (pp. 100–156). Springer.
    [Google Scholar]
  67. Poag, C. W., & Sevon, W. D. (1989). A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the U.S. Middle Atlantic continental margin. Geomorphology, 2(1–3), 119–157. https://doi.org/10.1016/0169‐555X(89)90009‐3
    [Google Scholar]
  68. Ramsay, P. J., & Cooper, J. A. G. (2002). Late quaternary sea‐level change in South Africa. Quaternary Research, 57(1), 82–90. https://doi.org/10.1006/qres.2001.2290
    [Google Scholar]
  69. Rivenaes, J. C. (1992). Application of a dual‐lithology, depth‐dependent diffusion equation in stratigraphic simulation. Basin Research, 4, 133–146. https://doi.org/10.1111/j.1365‐2117.1992.tb00136.x
    [Google Scholar]
  70. Rivenaes, J. C. (1997). Impact of sediment transport efficiency on large‐scale sequence architecture: Results from stratigraphic computer simulation. Basin Research, 9, 91–105. https://doi.org/10.1046/j.1365‐2117.1997.00037.x
    [Google Scholar]
  71. Roering, J. J., Kirchner, J. W., & Dietrich, W. E. (1999). Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resources Research, 35(3), 853–870. https://doi.org/10.1029/1998WR900090
    [Google Scholar]
  72. Ross, W. C., Halliwell, B. A., May, J. A., Watts, D. E., & Syvitski, J. P. M. (1994). Slope readjustment: A new model for the development of submarine fans and aprons. Geology, 22, 511–514. https://doi.org/10.1130/0091‐7613(1994)022<0511:SRANMF>2.3.CO;2
    [Google Scholar]
  73. Rouby, D., Bonnet, S., Guillocheau, F., Gallagher, K., Robin, C., Biancotto, F., Dauteuil, O., & Braun, J. (2009). Sediment supply to the Orange sedimentary system over the last 150 my: An evaluation from sedimentation/denudation balance. Marine and Petroleum Geology, 26(6), 782–794. https://doi.org/10.1016/j.marpetgeo.2008.08.004
    [Google Scholar]
  74. Rouby, D., Braun, J., Robin, C., Dauteuil, O., & Deschamps, F. (2013). Long‐term stratigraphic evolution of Atlantic‐type passive margins: A numerical approach of interactions between surface processes, flexural isostasy and 3D thermal subsidence. Tectonophysics, 604, 83–103. https://doi.org/10.1016/j.tecto.2013.02.003
    [Google Scholar]
  75. Sadler, P. M. (1981). Sediment accumulation rates and the completeness of stratigraphic sections. The Journal of Geology, 89(5), 569–584. https://doi.org/10.1086/628622
    [Google Scholar]
  76. Salles, T. (2019). eSCAPE: Regional to global scale landscape evolution model v2.0. Geoscientific Model Development, 12, 4165–4184. https://doi.org/10.5194/gmd‐12‐4165‐2019
    [Google Scholar]
  77. Salles, T., Ding, X., & Brocard, G. (2018). pyBadlands: A framework to simulate sediment transport, landscape dynamics and basin stratigraphic evolution through space and time. PLoS ONE, 13(4), e0195557. https://doi.org/10.1371/journal.pone.0195557
    [Google Scholar]
  78. Salles, T., & Hardiman, L. (2016). Badlands: An open‐source, flexible and parallel framework to study landscape dynamics. Computers & Geosciences, 91, 77–89. https://doi.org/10.1016/j.cageo.2016.03.011
    [Google Scholar]
  79. Schanz, S. A., Montgomery, D. R., Collins, B. D., & Duvall, A. R. (2018). Multiple paths to straths: A review and reassessment of terrace genesis. Geomorphology, 312, 12–23. https://doi.org/10.1016/j.geomorph.2018.03.028
    [Google Scholar]
  80. Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: An explanation of the post‐mid‐cretaceous subsidence of the Central North Sea Basin. Journal of Geophysical Research: Solid Earth, 85(B7), 3711–3739. https://doi.org/10.1029/JB085iB07p03711
    [Google Scholar]
  81. Shobe, C. M., Braun, J., Yuan, X. P., Campforts, B., Gailleton, B., Baby, G., Guillocheau, F., & Robin, C. (2022). Code and data to accompany “Inverting passive margin stratigraphy for marine sediment transport dynamics over geologic time”: Figshare data set. https://doi.org/10.6084/m9.figshare.20205077
    [Google Scholar]
  82. Shobe, C. M., Tucker, G. E., & Barnhart, K. R. (2017). The SPACE 1.0 model: A Landlab component for 2‐D calculation of sediment transport, bedrock erosion, and landscape evolution. Geoscientific Model Development, 10(12), 4577–4604. https://doi.org/10.5194/gmd‐10‐4577‐2017
    [Google Scholar]
  83. Sisson, S. A., Fan, Y., & Tanaka, M. M. (2007). Sequential Monte Carlo without likelihoods. Proceedings of the National Academy of Sciences of the United States of America, 104(6), 1760–1765. https://doi.org/10.1073/pnas.0607208104
    [Google Scholar]
  84. Sømme, T. O., Helland‐Hansen, W., & Granjeon, D. (2009). Impact of eustatic amplitude variations on shelf morphology, sediment dispersal, and sequence stratigraphic interpretation: Icehouse versus greenhouse systems. Geology, 37(7), 587–590. https://doi.org/10.1130/G25511A.1
    [Google Scholar]
  85. Stanley, J. R., Braun, J., Baby, G., Guillocheau, F., Robin, C., Flowers, R. M., Brown, R., Wildman, M., & Beucher, R. (2020). Constraining plateau uplift in southern Africa by combining thermochronology, sediment flux, topography, and landscape evolution modeling. Journal of Geophysical Research: Solid Earth, 126(7), e2020JB021243. https://doi.org/10.1029/2020JB021243
    [Google Scholar]
  86. Steckler, M. S., Reynolds, D. J., Coakley, B. J., Swift, B. A., & Jarrad, R. (1993). Modelling passive margin sequence stratigraphy. In H. W.Posamentier, C. P.Summerhayes, B. U.Haq, & G. P.Allen (Eds.), Sequence stratigraphy and facies associations (pp. 19–41). International Association of Sedimentologists. https://doi.org/10.1002/9781444304015.ch2
    [Google Scholar]
  87. Steckler, M. S., Swift, D. J. P., Syvitski, J. P., Goff, J. A., & Niedoroda, A. W. (1996). Modeling the sedimentology and stratigraphy of continental margins. Oceanography, 9(3), 183–188.
    [Google Scholar]
  88. Steckler, M. S., Watts, A. B., & Thorne, J. A. (1988). Subsidence and basin modeling at the U.S. Atlantic passive margin. In R. E.Sheridan & J. A.Grow (Eds.), The Atlantic continental margin, U.S.: Geological Society of America, The Geology of North America (Vol. 1–2, pp. 399–416). Geological Society of America.
    [Google Scholar]
  89. Straub, K. M., Duller, R. A., Foreman, B. Z., & Hajek, E. A. (2020). Buffered, incomplete, and shredded: The challenges of reading an imperfect stratigraphic record. Journal of Geophysical Research: Earth Surface, 125(3), e2019JF005079. https://doi.org/10.1029/2019JF005079
    [Google Scholar]
  90. Syvitski, J. P. M., & Hutton, E. W. H. (2001). 2D SEDFLUX 1.0C:: An advance process‐response numerical model for the fill of marine sedimentary basins. Computers & Geosciences, 27(6), 731–753. https://doi.org/10.1016/S0098‐3004(00)00139‐4
    [Google Scholar]
  91. Syvitski, J. P. M., Smith, J. N., Calabrese, E. A., & Boudreau, B. P. (1988). Basin sedimentation and the growth of prograding deltas. Journal of Geophysical Research: Oceans, 93(C6), 6895–6906. https://doi.org/10.1029/JC093iC06p06895
    [Google Scholar]
  92. Talling, P. J., Summer, E. J., Masson, D. G., & Malgesini, G. (2012). Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59, 1937–2003. https://doi.org/10.1111/j.1365‐3091.2012.01353.x
    [Google Scholar]
  93. Thran, A. C., East, M., Webster, J. M., Salles, T., & Petit, C. (2020). The influence of carbonate platforms on the geomorphological development of a mixed carbonate‐siliciclastic margin (Great Barrier Reef, Australia). Geochemistry, Geophysics, Geosystems, 21, e2020GC008915. https://doi.org/10.1029/2020GC008915
    [Google Scholar]
  94. Toni, T., Welch, D., Strelkowa, N., Ipsen, A., & Stumpf, M. P. H. (2009). Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of the Royal Society Interface, 6, 187–202. https://doi.org/10.1098/rsif.2008.0172
    [Google Scholar]
  95. Valla, P. G., van der Beek, P. A., & Lague, D. (2010). Fluvial incision into bedrock: Insights from morphometric analysis and numerical modeling of gorges incising glacial hanging valleys (Western Alps, France). Journal of Geophysical Research: Earth Surface, 115(F2), e2008JF001079. https://doi.org/10.1029/2008JF001079
    [Google Scholar]
  96. van Balen, R. T., van der Beek, P. A., & Cloetingh, S. A. P. L. (1995). The effect of rift shoulder erosion on stratal patterns at passive margins: Implications for sequence stratigraphy. Earth and Planetary Science Letters, 134, 527–544. https://doi.org/10.1016/0012‐821X(95)98955‐L
    [Google Scholar]
  97. van der Beek, P., & Bishop, P. (2003). Cenozoic river profile development in the upper Lachlan catchment (SE Australia) as a test of quantitative fluvial incision models. Journal of Geophysical Research: Solid Earth, 108(B6), e2002JB002125. https://doi.org/10.1029/2002JB002125
    [Google Scholar]
  98. Wynn, R. B., Weaver, P. P. E., Masson, D. G., & Stow, D. A. V. (2002). Turbidite depositional architecture across three interconnected deep‐water basins on the north‐west African margin. Sedimentology, 49(4), 669–695. https://doi.org/10.1046/j.1365‐3091.2002.00471.x
    [Google Scholar]
  99. Yanites, B. J., Becker, J. K., Madritsch, H., Schnellmann, M., & Ehlers, T. A. (2018). Lithologic effects on landscape response to base level changes: A modeling study in the context of the Eastern Jura Mountains, Switzerland. Journal of Geophysical Research: Earth Surface, 122, 2196–2222. https://doi.org/10.1002/2016JF004101
    [Google Scholar]
  100. Yuan, X. P., Braun, J., Guerit, L., Rouby, D., & Cordonnier, G. (2019). A new efficient method to solve the stream power law model taking into account sediment deposition. Journal of Geophysical Research: Earth Surface, 124, 1346–1365. https://doi.org/10.1029/2018JF004867
    [Google Scholar]
  101. Yuan, X. P., Braun, J., Guerit, L., Simon, B., Bovy, B., Rouby, D., Robin, C., & Jiao, R. (2019). Linking continental erosion to marine sediment transport and deposition: A new implicit and O(N) method for inverse analysis. Earth and Planetary Science Letters, 524, 115728. https://doi.org/10.1016/j.epsl.2019.115728
    [Google Scholar]
  102. Yuan, X. P., Guerit, L., Braun, J., Rouby, D., & Shobe, C. M. (2022). Thickness of fluvial deposits records climate oscillations. Journal of Geophysical Research: Solid Earth, 127(4), e2021JB023510. https://doi.org/10.1029/2021JB023510
    [Google Scholar]
  103. Zhang, J., Flaig, P., Wartes, M., Aschoff, J., & Shuster, M. (2021). Integrating stratigraphic modelling, inversion analysis, and shelf‐margin records to guide provenance analysis: An example from the cretaceous Colville Basin, Arctic Alaska. Basin Research, 33(3), 1954–1966. https://doi.org/10.1111/bre.12543
    [Google Scholar]
  104. Zhang, J., Sylvester, Z., & Covault, J. (2020). How do basin margins record long‐term tectonic and climatic changes?Geology, 48(9), 893–897. https://doi.org/10.1130/G47498.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12698
Loading
/content/journals/10.1111/bre.12698
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error