1887
Volume 34, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

Opening mode and morphology of the synrift half‐graben (Chilpo and Sinheung) subbasins and the possible movement of bounding faults during formation of the Miocene Pohang Basin. The opening of the subbasins was initiated along the NNW‐trending strike‐slip faults and extended by subvertical rotation of hangingwall blocks under the NW–SE extensional regime, suggesting a wedge‐shaped transtensional model for the Pohang Basin.

, Abstract

Early synrift half‐grabens, herein named the Chilpo and Sinheung subbasins, have been newly recognised in the north‐central area of the Miocene Pohang Basin, Korea. The subbasins are closely aligned along an array of NNW‐trending strike‐slip faults and are bounded by ENE‐striking normal faults. The sediment infill of the subbasins consists of a deepening‐ and fining‐upward sequence of alluvial cobble to boulder conglomerate (FA1), alluvial to nearshore granule to pebble conglomerate and sandstone (FA2) and hemipelagic mudstone (FA3). The younger strata sequentially onlap the older strata in the hangingwall basement or transfer zones, whereas the footwall basement is directly onlapped by the younger hemipelagic mudstone. These patterns may have resulted from a series of domino‐style block rotations, in which subsidence along normal faults caused the differential creation of accommodation space, whilst simultaneous uplift in the upslope of rotated hangingwall blocks controlled denudation, the shedding of sediments to downslope areas and asymmetric stacking of sediments in both subbasins. In contrast to the western margin of the Pohang Basin, where large footwall‐derived fan‐delta systems developed along the bounding faults, in the Chilpo and Sinheung subbasins, small hangingwall‐derived alluvial‐fan deltas formed during rifting. The development of these domino‐style half‐grabens would have resulted from the detachment and simultaneous transrotation of the crustal block away from the northwest during accelerated extension in the Pohang Basin. Recent geophysical studies have detected very thin basin‐fill sediments in the north‐central Pohang Basin and faults that are similar in orientation to those identified in this study, thereby supporting our observations. These findings confirm the early opening of the Pohang Basin, supporting the hypothesis that all of the Miocene basins in southeastern Korea formed in a setting of NW–SE extension, and further suggest the development of the wedge‐shaped transtensional basin, in response to the opening of the East Sea (Sea of Japan) after 17 Ma.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12699
2022-11-18
2024-04-20
Loading full text...

Full text loading...

References

  1. Bak, Y.‐S., Lee, J.‐D., Yun, H., Oh, J., & Lee, S.‐J. (2012). Radiolarians from the Pohang Basin, Southeast Korea and paleoceanographic implications. Acta Geologica Sinica, 86(6), 1426–1433. https://doi.org/10.1111/1755‐6724.12011
    [Google Scholar]
  2. Barr, D. (1987). Structural/stratigraphic models for extensional basins of half‐graben type. Journal of Structural Geology, 9(4), 491–500. https://doi.org/10.1016/0191‐8141(87)90124‐6
    [Google Scholar]
  3. Benvenuti, M. (2003). Facies analysis and tectonic significance of lacustrine fan‐deltaic successions in the Pliocene‐Pleistocene Mugello Basin, Central Italy. Sedimentary Geology, 157(3–4), 197–234. https://doi.org/10.1016/S0037‐0738(02)00234‐8
    [Google Scholar]
  4. Blair, T. C. (1999). Sedimentary processes and facies of the waterlaid Anvil Spring Canyon alluvial fan, Death Valley, California. Sedimentology, 46(5), 913–940. https://doi.org/10.1046/j.1365‐3091.1999.00259.x
    [Google Scholar]
  5. Blair, T. C., & McPherson, J. G. (1994). Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. Journal of Sedimentary Research, A64(3), 450–489. https://doi.org/10.1306/D4267DDE‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  6. Blair, T. C., & McPherson, J. G. (2009). Processes and forms of alluvial fans. In A. D.Abrahams & A. J.Parsons (Eds.), Geomorphology of desert environments (2nd ed., pp. 413–467). Springer.
    [Google Scholar]
  7. Burchfiel, B. C., Nakow, R., & Tzankow, T. (2003). Evidence from the Mesta half‐graben, SW Bulgaria, for the late Eocene beginning of Aegean extension in the Central Balkan Peninsula. Tectonophysics, 375(1–4), 61–76. https://doi.org/10.1016/j.tecto.2003.09.001
    [Google Scholar]
  8. Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025–1028. https://doi.org/10.1130/0091‐7613(1996)024<1025:FZAAPS>2.3.CO;2
    [Google Scholar]
  9. Chang, K.‐H., Woo, B.‐G., Lee, J.‐H., Park, S.‐O., & Akira, Y. (1990). Cretaceous and early Cenozoic stratigraphy and history of eastern Kyongsang Basin, S. Korea. Journal of the Geological of the Geological Society of Korea, 26(5), 471–487.
    [Google Scholar]
  10. Cheon, Y., Son, M., Song, C. W., Kim, J.‐S., & Sohn, Y. K. (2012). Geometry and kinematics of the Ocheon fault system along the boundary between the Miocene Pohang and Janggi basins, SE Korea, and its tectonic implications. Geosciences Journal, 16(3), 253–273.
    [Google Scholar]
  11. Choe, M. Y., & Chough, S. K. (1988). The Hunghae formation, SE Korea: Miocene debris aprons in a back‐arc intraslope basin. Sedimentology, 35(2), 239–255. https://doi.org/10.1111/j.1365‐3091.1988.tb00947.x
    [Google Scholar]
  12. Choi, J.‐H., Edwards, P., Ko, K., & Kim, Y.‐S. (2016). Definition and classification of fault damage zones: A review and a new methodological approach. Earth‐Science Reviews, 152, 70–87. https://doi.org/10.1016/j.earscirev.2015.11.006
    [Google Scholar]
  13. Choi, P.‐Y. (2006). ‘Singwang strike‐slip duplex’ around the Pohang Basin, SE Korea: Its structural evolution and role in opening and fill of the Miocene basin. Geosciences Journal, 10(2), 145–157. https://doi.org/10.1007/BF02910359
    [Google Scholar]
  14. Choi, S., Ryu, I.‐C., Lee, Y.‐C., & Son, Y. (2020). Gravity and magnetic field interpretation to detect deep buried paleobasinal fault lines contributing to intraplate earthquakes: A case study from Pohang Basin, SE Korea. Geophysical Journal International, 220(1), 490–500. https://doi.org/10.1093/gji/ggz464
    [Google Scholar]
  15. Chough, S. K., & Hwang, I. G. (1997). The Duksung fan delta, SE Korea: Growth of delta lobes on a Gilbert‐type topset in response to relative sea‐level rise. Journal of Sedimentary Research, 67(4), 725–739. https://doi.org/10.1306/D4268626‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  16. Chough, S. K., Hwang, I. G., & Choe, M. Y. (1990). The Miocene Doumsan fan‐delta, Southeast Korea: A composite fan‐delta system in back‐arc margin. Journal of Sedimentary Petrology, 60(3), 445–455. https://doi.org/10.1306/212F91BA‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  17. Chough, S. K., Kwon, S.‐T., Ree, J.‐H., & Choi, D. K. (2000). Tectonic and sedimentary evolution of the Korean peninsula: A review and new view. Earth‐Science Reviews, 52(1–3), 175–235. https://doi.org/10.1016/S0012‐8252(00)00029‐5
    [Google Scholar]
  18. Coussot, P., & Meunier, M. (1996). Recognition, classification and mechanical description of debris flows. Earth‐Science Reviews, 40(3–4), 209–227. https://doi.org/10.1016/0012‐8252(95)00065‐8
    [Google Scholar]
  19. Cowie, P. A., Gupta, S., & Dawers, N. H. (2000). Implications of fault array evolution for synrift depocenter development: Insights from a numerical fault growth model. Basin Research, 12(3–4), 241–261. https://doi.org/10.1111/j.1365‐2117.2000.00126.x
    [Google Scholar]
  20. Fabbri, O., Charvet, J., & Fournier, M. (1996). Alternate senses of displacement along the Tsushima fault system during the Neogene based on fracture analyses near the western margin of the Japan Sea. Tectonophysics, 257(2–4), 275–295. https://doi.org/10.1016/0040‐1951(95)00151‐4
    [Google Scholar]
  21. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12(3–4), 195–218. https://doi.org/10.1111/j.1365‐2117.2000.00121.x
    [Google Scholar]
  22. Groshong, R. H. (1989). Half‐graben structures: Balanced models of extensional fault‐bend folds. Geological Society of America Bulletin, 101(1), 96–105. https://doi.org/10.1130/0016‐7606(1989)101<0096:HGSBMO>2.3.CO;2
    [Google Scholar]
  23. Gupta, S., Cowie, P. A., Dawers, N. H., & Underhill, J. R. (1998). A mechanism to explain rift‐basin subsidence and stratigraphic patterns through fault‐array evolution. Geology, 26(7), 595–598. https://doi.org/10.1130/0091‐7613(1998)026<0595:AMTERB>2.3.CO;2
    [Google Scholar]
  24. Han, J. H., Kwak, Y. H., Son, J. D., & Son, B. K. (1987). Tectonic evolution and depositional environments of the Tertiary sedimentary basin, southeastern part of Korea. Korea Institute of Energy and Resources Report, KR‐86‐2‐(B)‐4, 109 p. (in Korean with English abstract)
  25. Hong, S. W., Chough, S. K., & Hwang, I. G. (1998). Provenance of coarse‐grained detritus in fan‐delta systems, Miocene Pohang Basin, SE Korea: Implications for boundary fault movements. Geosciences Journal, 2(1), 46–58. https://doi.org/10.1007/BF02910203
    [Google Scholar]
  26. Hwang, I. G., & Chough, S. K. (2000). The Maesan fan delta, Miocene Pohang Basin, SE Korea: Architecture and depositional processes of a high‐gradient fan‐delta‐fed slope system. Sedimentology, 47(5), 995–1010. https://doi.org/10.1046/j.1365‐3091.2000.00335.x
    [Google Scholar]
  27. Hwang, I. G., Chough, S. K., Hong, S. W., & Choe, M. Y. (1995). Controls and evolution of fan delta systems in the Miocene Pohang Basin, SE Korea. Sedimentary Geology, 98(1–4), 147–179. https://doi.org/10.1016/0037‐0738(95)00031‐3
    [Google Scholar]
  28. Hwang, I. G., Son, J., & Cho, S. (2021). Event stratigraphy of Yeonil Group, Pohang Basin: Based on correlation of 21 deep cores and outcrop sections. Journal of the Geological Society of Korea, 57(5), 649–678. (in Korean with English abstract). https://doi.org/10.14770/jgsk.2021.57.5.649
    [Google Scholar]
  29. Ingersoll, R. V. (2011). Tectonics of sedimentary basins, with revised nomenclature. In C. J.Busby & A.Azor (Eds.), Tectonics of sedimentary basins: Recent advances (1st ed., pp. 3–43). Blackwell Publishing Ltd.. https://doi.org/10.1002/9781444347166.ch1
    [Google Scholar]
  30. Ingle, J. C. (1992). Subsidence of the Japan Sea: Stratigraphic evidence from ODP sites and onshore sections. In K.Tamaki, K.Suyehiro, J.Allan, & M.McWilliams (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 127/128, pt. 2, pp. 1197–1218).
    [Google Scholar]
  31. Isozaki, Y., Aoki, K., Nakama, T., & Yanai, S. (2010). New insight into a subduction‐related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Research, 18(4), 82–105. https://doi.org/10.1016/j.gr.2010.02.015
    [Google Scholar]
  32. Jin, M.‐S., Kim, S.‐J., Shin, S.‐C., & Lee, J.‐Y. (1989). K/Ar and fission‐track dating for granites and volcanic rocks in the southeastern part of the Korean Peninsula. Research on Isotope Geology, Korea Institute of Energy and Resources, KR‐88‐6D, pp. 53–84.
  33. Jolivet, L., Shibuya, H., & Fournier, M. (1995). Paleomagnetic rotations and the Japan Sea opening. In J.Natland (Ed.), Active margins and marginal basins of the western Pacific. Geophysical Monograph, 88 (pp. 355–369). American Geophysical Union.
    [Google Scholar]
  34. Jolivet, L., Tamaki, K., & Fournier, M. (1994). Japan Sea, opening history and mechanism: A synthesis. Journal of Geophysical Research, 99(B11), 22237–22259. https://doi.org/10.1029/93JB03463
    [Google Scholar]
  35. Kang, S. Y., Kim, K.‐H., Chiu, J. M., & Liu, L. (2020). Microtremor HVSR analysis of heterogeneous shallow sedimentary structures at Pohang, South Korea. Journal of Geophysics and Engineering, 17(5), 861–869. https://doi.org/10.1093/jge/gxaa035
    [Google Scholar]
  36. Kim, B. K. (1965). The stratigraphic and paleontologic studies on the tertiary (Miocene) of the Pohang area, Korea. Journal of the Seoul National University, Science and Technology Series, 15, 32–121.
    [Google Scholar]
  37. Kim, I.‐S. (1992). Origin and tectonic evolution of the East Sea (sea of Japan) and the Yangsan fault system: A new synthetic interpretation. Journal of the Geological Society of Korea, 28, 84–109. (in Korean with English abstract)
    [Google Scholar]
  38. Kim, J.‐M. (1999). Early Neogene biochemostratigraphy of Pohang Basin: A paleoceanographic response to the early opening of the sea of Japan (East Sea). Marine Micropaleontology, 36(4), 269–290. https://doi.org/10.1016/S0377‐8398(99)00006‐7
    [Google Scholar]
  39. Kim, K. H., Won, J. K., Matsuda, J., Nagao, K., & Lee, M. W. (1986). Paleomagnetism and K‐Ar age of volcanic rocks from Guryongpo area, Korea. Journal of the Korean Institute of Mining Geology, 19(3), 231–237.
    [Google Scholar]
  40. Kim, O. J., Yoon, S., & Gil, Y. J. (1968). Geological map of Cheongha Sheet (1: 50,000). Geological Survey of Korea 16 p.
    [Google Scholar]
  41. Kim, W. H. (1990). Significance of early to middle Miocene planktonic foraminiferal biostratigraphy of the E‐core in the Pohang Basin, Korea. Journal of the Paleontological Society of Korea, 6(2), 144–164.
    [Google Scholar]
  42. Kimura, G., Hashimoto, Y., Kitamura, Y., Yamaguchi, A., & Koge, H. (2014). Middle Miocene swift migration of the TTT triple junction and rapid crustal growth in Southwest Japan: A review. Tectonics, 33(7), 1219–1238. https://doi.org/10.1002/2014TC003531
    [Google Scholar]
  43. Lee, C., Kim, T.‐K., & Park, D.‐W. (2009). Geology and geochemistry of volcanic and sedimentary rocks from deep borehole in the Heunghae area, north Kyungsang Province. The Journal of Engineering Geology, 19(4), 459–474. (in Korean with English abstract)
    [Google Scholar]
  44. Lee, S. H., & Choi, G. J. (2009). Petrological characteristics and deterioration aspect of the Pohang Chilpori and Sinheungri petroglyphs. Journal of Conservation Science, 25(4), 347–361. (in Korean with English abstract)
    [Google Scholar]
  45. Lee, Y. G., You, H. S., & Koh, Y. K. (1991). Biostratigraphy and paleoenvironments of Yeonil Group in Pohang area. Journal of the Paleontological Society of Korea, 7(1), 32–62.
    [Google Scholar]
  46. Lee, Y. S., Ishikawa, N., & Kim, W. K. (1999). Paleomagnetism of tertiary rocks on the Korean Peninsula: Tectonic implications for the opening of the East Sea (sea of Japan). Tectonophysics, 304(1–2), 131–149. https://doi.org/10.1016/S0040‐1951(98)00270‐4
    [Google Scholar]
  47. Leeder, M. R., & Gawthorpe, R. L. (1987). Sedimentary models for extensional tilt‐block/half‐graben basins. In M. P.Coward, J. F.Dewey, & P. L.Hancock (Eds.), Continental extensional tectonics (pp. 139–152). Geological Society Special Publication 28, Blackwell. https://doi.org/10.1144/GSL.SP.1987.028.01.11
    [Google Scholar]
  48. Liu, S., Ma, P., Zhang, B., & Gurnis, M. (2021). The horizontal slab beneath East Asia and its subdued surface dynamic response. Journal of Geophysical Research: Solid Earth, 126(3), e2020JB021156. https://doi.org/10.1029/2020JB021156
    [Google Scholar]
  49. Lowe, D. R. (1982). Sediment gravity flows: II. Depositional models with special reference to the deposits of high‐density turbidity currents. Journal of Sedimentary Petrology, 52(1), 279–297. https://doi.org/10.1306/212F7F31‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  50. Lucchitta, I., & Suneson, N. H. (1993). Dips and extension. Geological Society of America Bulletin, 105(10), 1346–1356. https://doi.org/10.1130/0016‐7606(1993)105<1346:DAE>2.3.CO;2
    [Google Scholar]
  51. Ma, P., Liu, S., Gurnis, M., & Zhang, B. (2019). Slab horizontal subduction and slab tearing beneath East Asia. Geophysical Research Letters, 46(10), 5161–5169. https://doi.org/10.1029/2018GL081703
    [Google Scholar]
  52. McCann, T., & Saintot, A. (2003). Tracing tectonic deformation using the sedimentary record: An overview. In T.McCann & A.Saintot (Eds.), Tracing tectonic deformation using the sedimentary record (pp. 1–28). Geological Society Special Publication 208, Blackwell. https://doi.org/10.1144/GSL.SP.2003.208.01.01
    [Google Scholar]
  53. Mulder, T., & Alexander, J. (2001). The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48(2), 269–299. https://doi.org/10.1046/j.1365‐3091.2001.00360.x
    [Google Scholar]
  54. Muravchik, M., Bilmes, A., D'Elia, L., & Franzese, J. R. (2014). Alluvial fan deposition along a rift depocenter border from the Neuquén Basin, Argentina. Sedimentary Geology, 301, 70–89. https://doi.org/10.1016/j.sedgeo.2013.12.007
    [Google Scholar]
  55. Nemec, W., & Steel, R. J. (1984). Alluvial and coastal conglomerates: Their significant features and some comments on gravelly mass‐flow deposits. In E. H.Koster & R. J.Steel (Eds.), Sedimentology of gravels and conglomerates (pp. 1–31). Canadian Society of Petroleum Geologists, Memoir 10.
    [Google Scholar]
  56. Nemec, W., & Steel, R. J. (1988). What is a fan delta and how do we recognize it? In W.Nemec & R. J.Steel (Eds.), Fan deltas; sedimentology and tectonic settings (pp. 3–13). Blackie and Son.
    [Google Scholar]
  57. Nilson, T. H., & Sylvester, A. G. (1999). Strike‐slip basins: Part 1. The Leading Edge, 18(10), 1146–1152. https://doi.org/10.1190/1.1438170
    [Google Scholar]
  58. Noh, J. H. (1994). Stratigraphy, lithology and diagenetic mineral facies of the tertiary Yeonil group. Korean Journal of Petroleum Geology, 2(2), 91–99. (in Korean with English abstract)
    [Google Scholar]
  59. Otofuji, Y.‐I. (1996). Large tectonic movement of the Japan Arc in late Cenozoic times inferred from paleomagnetism: Review and synthesis. Island Arc, 5(3), 229–249. https://doi.org/10.1111/j.1440‐1738.1996.tb00029.x
    [Google Scholar]
  60. Otofuji, Y.‐I., Enami, R., Yokoyama, M., Kamiya, K., Kuma, S., & Saito, H. (1999). Miocene clockwise rotation of Southwest Japan and formation of curvature of the median tectonic line: Paleomagnetic implications. Journal of Geophysical Research, 104(B6), 12895–12907. https://doi.org/10.1029/1999JB900086
    [Google Scholar]
  61. Pierson, T. C. (2005). Hyperconcentrated flow—Transitional process between water flow and debris flow. In M.Jakob & O.Hungr (Eds.), Debris‐flow hazards and related phenomena (pp. 159–202). Springer.
    [Google Scholar]
  62. Potter, P. E., Maynard, J. B., & Depetris, P. J. (2005). Mud and mudstones: Introduction and review. Springer 297 p.
    [Google Scholar]
  63. Ravnås, R., & Steel, R. J. (1998). Architecture of marine rift‐basin successions. AAPG Bulletin, 82(1), 110–146. https://doi.org/10.1306/1D9BC3A9‐172D‐11D7‐8645000102C1865D
    [Google Scholar]
  64. Ree, J.‐H., King, K.‐H., Lim, H., Seo, W., Kim, S., An, X., & Kim, Y. H. (2021). Fault reactivation and propagation during the 2017 Pohang earthquake sequence. Geothermics, 92, 102048. https://doi.org/10.1016/j.geothermics.2021.102048
    [Google Scholar]
  65. Schlische, R. W. (1991). Half‐graben basin filling models: New constraints on continental extensional basin development. Basin Research, 3(3), 123–141. https://doi.org/10.1111/j.1365‐2117.1991.tb00123.x
    [Google Scholar]
  66. Shin, S.‐C. (2013). Revised fission‐track ages and chronostratigraphies of the Miocene basin‐fill volcanics and basements, SE Korea. Journal of the Petrological Society of Korea, 22(2), 83–115. (in Korean with English abstract). https://doi.org/10.7854/JPSK.2013.22.2.083
    [Google Scholar]
  67. Sohn, Y. K., Rhee, C. W., & Shon, H. (2001). Revised stratigraphy and reinterpretation of the Miocene Pohang basinfill, SE Korea: Sequence development in response to tectonism and eustasy in a back‐arc basin margin. Sedimentary Geology, 143(3–4), 265–285. https://doi.org/10.1016/S0037‐0738(01)00100‐2
    [Google Scholar]
  68. Sohn, Y. K., & Son, M. (2004). Synrift stratigraphic geometry in a transfer zone coarse‐grained delta complex, Miocene Pohang Basin, SE Korea. Sedimentology, 51(6), 1387–1408. https://doi.org/10.1111/j.1365‐3091.2004.00679.x
    [Google Scholar]
  69. Son, B. K., Lee, H. Y., Hwang, I. G., Kim, H. T., Heo, D. G., & Kim, H. J. (2006). Geological correlation and petroleum system on Tertiary sedimentary basins in Korea and Japan. Korea Institute of Geoscience and Mineral Resources, Project Report, 62 p. (in Korean with English summary)
  70. Son, M., Kim, J.‐S., Chong, H.‐Y., Lee, Y. H., & Kim, I.‐S. (2007). Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications. The Korean Journal of Petroleum Geology, 13(1), 1–16. (in Korean with English abstract)
    [Google Scholar]
  71. Son, M., Song, C. W., Kim, M.‐C., Ceon, Y., Cho, H., & Sohn, Y. K. (2015). Miocene tectonic evolution of the basins and fault systems, SE Korea: Dextral, simple shear during the East Sea (sea of Japan) opening. Journal of the Geological Society, 172(5), 664–680. https://doi.org/10.1144/jgs2014‐079
    [Google Scholar]
  72. Son, M., Song, W. S., Kim, M.‐C., Cheon, Y., Jung, S., Cho, H., Kim, H.‐G., Kim, J. S., & Sohn, Y. K. (2013). Miocene crustal deformation, basin development, and tectonic implication in the southeastern Korean Peninsula. Journal of the Geological Society of Korea, 49(1), 93–118. (in Korean with English abstract)
    [Google Scholar]
  73. Song, C. W., Son, M., Sohn, Y. K., Han, R., Shinn, Y. J., & Kim, J.‐C. (2015). A study on potential geologic facility sites for carbon dioxide storage in the Miocene Pohang Basin, SE Korea. Journal of the Geological Society of Korea, 51(1), 53–66. (in Korean with English abstract)
    [Google Scholar]
  74. Sundvoll, B., Larsen, B. T., & Wandaas, B. (1992). Early magmatic phase in the Oslo Rift and its related stress regime. Tectonophysics, 208(1–3), 37–54. https://doi.org/10.1016/0040‐1951(92)90335‐4
    [Google Scholar]
  75. Talling, P. J., Masson, D. G., Sumner, E. J., & Malgesini, G. (2012). Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59(7), 1937–2003. https://doi.org/10.1111/j.1365‐3091.2012.01353.x
    [Google Scholar]
  76. Tateiwa, I. (1924). Geologic atlas of Chosen, No. 2: Ennichi‐Kyuryuho and Choyo sheets. Geological Survey Government‐General of Chosen, Seoul, 12 p.
  77. Todd, S. P. (1989). Stream‐driven, high‐density gravelly traction carpets: Possible deposits in the Trabeg Conglomerate Formation, SW Ireland and some theoretical considerations of their origin. Sedimentology, 36(4), 513–530. https://doi.org/10.1111/j.1365‐3091.1989.tb02083.x
    [Google Scholar]
  78. Um, S. H., Lee, D. W., & Bak, B. S. (1964). Geological map of Pohang Sheet (1: 50,000). Geological Survey of Korea 21 p.
    [Google Scholar]
  79. Withjack, M. O., Schlische, R. W., & Olsen, P. E. (2002). Rift‐basin structure and its influence on sedimentary systems. SEPM Special Publication, 73, 57–81.
    [Google Scholar]
  80. Woo, K. S., & Khim, B.‐K. (2006). Stable oxygen and carbon isotopes of carbonate concretions of the Miocene Yeonil Group in the Pohang Basin, Korea: Types of concretions and formation condition. Sedimentary Geology, 183(1–2), 15–30. https://doi.org/10.1016/j.sedgeo.2005.09.005
    [Google Scholar]
  81. Yi, S., & Yun, H. (1995). Miocene calcareous nannoplankton from the Pohang Basin, Korea. Palaeontographica (B), 237, 113–158.
    [Google Scholar]
  82. Yoon, S. (1975). Geology and paleontology of the tertiary Pohang Basin, Pohang District, Korea: Part I. Geology. Journal of the Geological Society of Korea, 11(4), 187–214.
    [Google Scholar]
  83. Yoon, S. (1982). Tertiary stratigraphy of the northern part of the Pohang Basin, Korea. Research Report, Busan National University, TRKO200200008653, 13 p. (in Korean with English abstract)
  84. Yoon, S. (2010). Tectonic history of the tertiary Yangnam and Pohang Basins, Korea. Journal of the Geological Society of Korea, 46(2), 95–110. (in Korean with English abstract)
    [Google Scholar]
  85. Yoon, S. H., & Chough, S. K. (1993). Evolution of Neogene sedimentary basins in the eastern continental margin of Korea. The Korean Journal of Petroleum Geology, 1(1), 15–27.
    [Google Scholar]
  86. Yoon, S. H., & Chough, S. K. (1995). Regional strike slip in the eastern continental margin of Korea and its tectonic implications for the evolution of Ulleung Basin, East Sea (sea of Japan). Geological Society of America Bulletin, 107(1), 83–97. https://doi.org/10.1130/0016‐7606(1995)107<0083:RSSITE>2.3.CO;2
    [Google Scholar]
  87. Yoon, S. H., Sohn, Y. K., & Chough, S. K. (2014). Tectonic, sedimentary, and volcanic evolution of a back‐arc basin in the East Sea (sea of Japan). Marine Geology, 352, 70–88. https://doi.org/10.1016/j.margeo.2014.03.004
    [Google Scholar]
  88. You, H. S., Koh, Y. K., & Kim, J. Y. (1986). A study on the nannoplankton from the Neogene formation, Pohang, Korea. Journal of the Paleontological Society of Korea, 2(2), 137–154.
    [Google Scholar]
  89. Yun, H. (1986). Emended stratigraphy of the Miocene formations in the Pohang Basin, Part I. Journal of the Paleontological Society of Korea, 2(1), 54–69.
    [Google Scholar]
  90. Yun, H. (1994). Emended stratigraphy of the Miocene formations in the Pohang Basin, Part II: South of the Hyongsan fault. Journal of the Paleontological Society of Korea, 10(1), 99–116.
    [Google Scholar]
  91. Yun, H., & Kim, B. K. (1983). Stratigraphy of east margin of the Pohang Tertiary Basin near Chilpo. Journal of the Geological Society of Korea, 19(4), 252–257. (in Korean with English abstract)
    [Google Scholar]
  92. Yun, H., Kim, K. D., Moon, H.‐S., Lee, H. K., & Yi, S. S. (1991). Biostratigraphic, chemostratigraphic, paleomagnetostratigraphic, and tephrochronological study for the correlation of tertiary formations in southern part of Korea: Regional tectonics and its stratigraphical implication in the Pohang Basin, Korea. Journal of the Paleontological Society of Korea, 1(1), 1–12.
    [Google Scholar]
  93. Yun, S. H. (1988). Stratigraphy and petrology of the volcanic mass in the Chilpo‐Weolpo area, the north of Pohang basin, Korea. Journal of the Korean Institute of Mining Geology, 21(2), 117–129.
    [Google Scholar]
  94. Zavala, C. (2020). Hyperpycnal (over density) flows and deposits. Journal of Palaeogeography, 9(17), 267–298. https://doi.org/10.1186/s42501‐020‐00065‐x
    [Google Scholar]
  95. Zhu, Y., Liu, S., Zhang, B., Gurnis, M., & Ma, P. (2021). Reconstruction of the Cenozoic deformation of the Bohai Bay Basin, North China. Basin Research, 33(1), 364–381. https://doi.org/10.1111/bre.12470
    [Google Scholar]
  96. Ziegler, P. A., & Cloetingh, S. (2004). Dynamic processes controlling evolution of rifted basins. Earth‐Science Reviews, 64(1–2), 1–50. https://doi.org/10.1016/S0012‐8252(03)00041‐2
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12699
Loading
/content/journals/10.1111/bre.12699
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error