1887
Volume 34, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

We applied field structural data and isotope geochemical (δ13C, δ18O and 87Sr/86Sr) analyses to understand the relationship among calcite veins, fault damage zones and carbonate host rocks in a thrust fault damage zone in the Achado quarry, Irecê Basin in the São Francisco Craton, NE Brazil. Our results reveal three hydrological packages with different rheological behaviours in a stratified carbonate succession. The upper package includes the Achado fault damage zone that is characterised by interlayered dolomitised grainstones and mudstones. These rocks display high positive δ13C values (10‰–13‰), negative δ18O values (mean −6.34‰) and radiogenic (87Sr/86Sr) isotope values (0.70885–0.71519). A second package is marked by a cataclastic brittle shear zone lateral parallel to dolograinstones bedding. These rocks show low to positive δ13C values (−3.41‰ to +8.85‰), more positive δ18O values (mean −3.73‰) and radiogenic (87Sr/86Sr) isotope values (0.71039–0.71373). The lower package is characterised by well‐preserved pristine limestone succession that shows δ13C values ranging between −0.46‰ and +3.17‰, mean δ18O = −5.41‰ and less radiogenic 87Sr/86Sr values (0.70762–0.70818). In contrast to the upper and intermediate packages, rocks from the lower one exhibit very low permeability and behaved as a seal for fluid migration. Fluid flow occurred several times during basin evolution, for example along syn‐rift fault damage zones, bedding‐parallel carbonate breccia, thrust faults, cataclastic shear zones, synorogenic conjugate shear fractures or joints and opening mode I fracture‐fill calcite veins. These fractures allowed pervasive fluid flow in the porous intermediate cataclastic shear zone where fluids flowed and formed veins, as diffuse fluid flow in randomly oriented fracture swarms, or channelised fluid flow in aligned fracture corridors. They record significant centimetre‐scale to km‐scale hydrological behaviour within carbonate layers. Most carbonates that are associated with veins, fault damage zones and hydraulic breccia were formed by fluids of the same origin with low δ13C (−6.0 to −2.0‰) and δ18O (−6.0 to −8.5‰) values, and more radiogenic 87Sr/86Sr values compared to the carbonate host rocks.

,

Block diagram showing fault zone fluid patwhays along conjugate shear fractures, joints, opening mode‐I fractures, stylolite, and veins. Both principal stresses (σ > σ > σ) and strains (X > Y > Z) are shown.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12701
2022-11-18
2024-03-28
Loading full text...

Full text loading...

References

  1. Agar, S. M., & Geiger, S. (2014). Fundamental controls on fluid flow in carbonates: Current workflows to emerging technologies. Geological Society, London, Special Publication, 406, 1–59.
    [Google Scholar]
  2. Agosta, F., Alessandroni, M., Antonellini, M., Tondi, E., & Giorgioni, M. (2010). From fractures to flow: A field‐based quantitative analysis of an outcropping carbonate reservoir. Tectonophysics, 490, 197–213. https://doi.org/10.1016/j.tecto.2010.05.005
    [Google Scholar]
  3. Agosta, F., Mulch, A., Chamberlain, P., & Aydin, A. (2008). Geochemical traces of CO2‐rich fluid flow along normal faults in Central Italy. Geophysical Journal International, 174, 758–770.
    [Google Scholar]
  4. Allmendinger . (2019). FaultKin 8. http://www.geo.cornell.edu/geology/faculty/RWA/programs/faultkin.html
  5. Alvarenga, C. J. S., Santos, R. V., Vieira, L. C., Lima, B. A. F., & Mancini, L. H. (2014). Meso‐neoproterozoic isotope stratigraphy on carbonate platforms in the Brasília Belt of Brazil. Precambrian Research, 251, 164–180.
    [Google Scholar]
  6. Angevine, C. L., Turcotte, D. L., & Furnish, M. (1982). Pressure solution lithification as a mechanism for the stick‐slip behavior of faults. Tectonics, 1, 151–160.
    [Google Scholar]
  7. Antonellini, M., Cilona, A., Tondi, E., Zambrano, M., & Agosta, F. (2014). Fluid flow numerical experiments of faulted porous carbonates, Northwest Sicily (Italy). Marine and Petroleum Geology, 55, 186–201. https://doi.org/10.1016/j.marpetgeo.2013.12.003
    [Google Scholar]
  8. Araújo, R. E. B., La Bruna, V., Rustichelli, A., Bezerra, F. H. R., Xavier, M. M., Audra, P., Barbosa, J. A., & Antonino, A. C. D. (2021). Structural and sedimentary discontinuities control the generation of karst dissolution cavities in a carbonate sequence, Potiguar Basin, Brazil. Marine and Petroleum Geology, 123, 104753.
    [Google Scholar]
  9. Balsamo, F., Bezerra, F. H. R., Klimchouk, A. B., Cazarin, C. L., Auler, A. S., Nogueira, F. C., & Pontes, C. (2020). Influence of fracture stratigraphy on hypogene cave development and fluid flow anisotropy in layered carbonates, NE Brazil. Marine and Petroleum Geology, 114, 104207.
    [Google Scholar]
  10. Banner, J. L., & Hanson, G. N. (1990). Calculation of simultaneous isotopic and trace element variations during water‐rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54, 3123–3137.
    [Google Scholar]
  11. Beaudoin, N., Hamilton, A., Koehn, D., Shipton, Z. K., & Kelka, U. (2018). Reaction‐induced porosity fingering: Replacement dynamic and porosity evolution in the KBr‐KCl system. Geochimica et Cosmochimica Acta, 232, 163–180.
    [Google Scholar]
  12. Bellahsen, N., Fiore, P. E., & Pollard, D. D. (2006). From spatial variation of fracture patterns to fold kinematics: A geomechanical approach. Geophysical Research Letters, 33, L02301. https://doi.org/10.1029/2005GL024189
    [Google Scholar]
  13. Bertotti, G., de Graaf, S., Bisdom, K., Oskam, B., Vonhof, H. B., Bezerra, F. H. R., Reijmer, J. J. G., & Cazarin, C. L. (2017). Fracturing and fluid‐flow during post‐rift subsidence in carbonates of the Jandaíra Formation, Potiguar Basin, NE Brazil. Basin Research, 29, 836–853. https://doi.org/10.1111/bre.12246
    [Google Scholar]
  14. Billi, A. (2010). Microtectonics of low‐P low‐T carbonate fault rocks. Journal of Structural Geology, 32, 1392–1402.
    [Google Scholar]
  15. Bisdom, K., Bertotti, G., & Bezerra, H. F. (2017). Inter‐well scale natural fracture geometry and permeability variations in low‐deformation carbonate rocks. Journal of Structural Geology, 97, 23–36. https://doi.org/10.1016/j.jsg.2017.02.011
    [Google Scholar]
  16. Blenkinsop, T. G. (1991). Cataclasis and processes of particle size reduction. Pure and Applied Geophysics, 136, 59–86.
    [Google Scholar]
  17. Bomfim, L. F. C., Pedreira, A. J., de Morais Filho, J. C., Guimarães, J. T., & Tesch, N. A. (1985). Projeto Bacia de Irecê: Relatório Final. CPRM 3v.
    [Google Scholar]
  18. Boyer, S. E., & Elliott, D. (1982). Thrust systems. AAPG Bulletin, 66, 1196–1230.
    [Google Scholar]
  19. Branner, J. C. (1911). Aggraded limestones plains of the interior of Bahia and the climatic changes suggested by them. Bulletin of the Geological Society of America, 22, 187–206.
    [Google Scholar]
  20. Brito‐Neves, B. B. (1967). Geologia das folhas Upamirim e Morro do Chapéu—BA. Recife. CONESP. 53p. (CONESP Rel. 17).
  21. Brito‐Neves, B. B. (1975). Regionalização Geotectônica do Pré‐Cambriano Nordestino. Tese de Doutoramento, Instituto de Geociências, USP.
    [Google Scholar]
  22. Brito‐Neves, B. B., dos Santos, R. A., & Campanha, G. A. C. (2012). The erosional and angular unconformity between the Chapada Diamantina and Bambuí (Una) groups at the Mirangaba sheet—Bahia. Geologia USP, 12, 99–114.
    [Google Scholar]
  23. Burne, R. V., & Moore, L. S. (1987). Microbialites: Organosedimentary deposits of benthic microbial communities. PALAIOS, 2, 241–254.
    [Google Scholar]
  24. Butler, R. W. H. (1982). The terminology of structures in thrust belts. Journal of Structural Geology, 4, 239–245.
    [Google Scholar]
  25. Caetano‐Filho, S., Sansjofre, P., Ader, M., Paula‐Santos, G. M., Guacaneme, C., Babinski, M., Bedoya‐Rueda, C., Kuchenbecker, M., Reis, H. L. S., & Trindade, R. I. F. (2020). A large epeiric methanogenic Bambuí Sea in the core of Gondwana supercontinent?Geoscience Frontiers.
    [Google Scholar]
  26. Caird, R. A., Pufahl, P. K., Hiatt, E. E., Abram, M. B., Rocha, A. J. D., & Kyser, T. K. (2017). Ediacaran stromatolites and intertidal phosphorite of the Salitre Formation, Brazil: Phosphogenesis during the Neoproterozoic oxygenation event. Sedimentary Geology, 350, 55–71.
    [Google Scholar]
  27. Carlini, M., Viola, G., Mattila, J., & Castellucci, L. (2019). The role of mechanical stratigraphy on the refraction of strike‐slip faults. Solid Earth, 10, 343–356.
    [Google Scholar]
  28. Cazarin, C. L., Bezerra, F. H. R., Borghi, L., Santos, R. V., Favoreto, J., Brod, J. A., Auler, A. S., & Srivastava, N. K. (2019). The conduit‐seal system of hypogene karst in Neoproterozoic carbonates in northeastern Brazil. Marine and Petroleum Geology, 101, 90–107.
    [Google Scholar]
  29. Cazarin, C. L., van der Velde, R., Santos, R. V., Reijmer, J. J. G., Bezerra, F. H. R., Bertotti, G., La Bruna, V., Silva, D. C. C., Castro, D. L., Srivastava, N. K., & Barbosa, P. F. (2021). Hydrothermal activity along a strike‐slip fault zone and host units in the São Francisco Craton, Brazil—Implications for fluid flow in sedimentary basins. Precambrian Research, 365, 106365.
    [Google Scholar]
  30. Chemale, F., Jr., Alkmim, F. F., & Emdo, I. (1993). Late Proterozoic tectonism in the interior of the São Francisco craton. In R. H.Findlay, R.Unrug, M. R.Banks, & J. J.Veevers (Eds.), Godwana Eight. Assembly, evolution and dispersal (pp. 29–41). Balkema.
    [Google Scholar]
  31. Chester, F. M., & Higgs, N. G. (1992). Multimechanism friction constitutive model for ultrafine quartz gouge at hypocentral conditions. Journal of Geophysical Research, 97, 1859–1870.
    [Google Scholar]
  32. Chester, F. M., & Logan, J. M. (1986). Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone California. Pure and Applied Geophysics, 124, 79–106.
    [Google Scholar]
  33. Choquette, P. W., & Pray, L. C. (1970). Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bulletin, 54(2), 207–250.
    [Google Scholar]
  34. Cilona, A., Baud, P., Tondi, E., Agosta, F., Vinciguerra, S., Rustichelli, A., & Spiers, C. J. (2012). Deformation bands in porous carbonate grainstones: Field and laboratory observations. Journal of Structural Geology, 45, 137–157.
    [Google Scholar]
  35. Coney, P. J. (1973). Plate tectonics of marginal foreland thrust‐fold belts. Geology, 1, 131–134.
    [Google Scholar]
  36. Conti, I. M. M., Castro, D. L., Bezerra, F. H. R., & Cazarin, C. L. (2018). Porosity estimation and geometric characterization of fractured and karstified carbonate rocks using GPR data in the Salitre Formation, Brazil. Pure and Applied Geophysics, 176, 1673–1689. https://doi.org/10.1007/s00024‐018‐2032‐5
    [Google Scholar]
  37. Cooke, M. L., Simo, J. A., Underwood, C. A., & Rijken, P. (2006). Mechanical stratigraphic controls on fracture patterns within carbonates and implications for groundwater flow. Sedimentary Geology, 184, 225–239.
    [Google Scholar]
  38. Corbella, M., Gomez‐Rivas, E., Martín‐Martín, J. D., Stafford, S. L., Teixell, A., Griera, A., Travé, A., Cardellach, E., & Salas, R. (2014). Insights to controls on dolomitization by means of reactive transport models applied to the Benicàssim case study (Maestrat Basin, eastern Spain). Petroleum Geoscience, 20, 41–54. https://doi.org/10.1144/petgeo2012‐095
    [Google Scholar]
  39. Couto, D. C. C., Barbosa, P. F., Santos, R. V., Vieira, L. C., Dantas, E. L., Bezerra, F. H. R., Taveira, I. A. P., & Gomes, C. P., Jr. (2021). Mineralogy composition and texture indicative of fluid‐assisted remobilization in carbonate units of the Irecê Basin, Brazil. Journal of South American Earth Sciences, 110, 103346.
    [Google Scholar]
  40. Cruz, S. C., & Alkmim, F. F. (2006). The tectonic interaction between the Paramirim Aulacogen and the Araçuaí belt, São Francisco craton region, eastern Brazil. Anais da Academia Brasileira de Ciências, 78, 151–173.
    [Google Scholar]
  41. Cruz, S. C. P., & Alkmim, F. F. (2017). The Paramirim Aulacogen. In M.Heilbron, U. G.Cordani, & F. F.Alkmim (Eds.), São Francisco Craton, Eastern Brazil (pp. 97–115). Springer.
    [Google Scholar]
  42. Davis, D., Suppe, J., & Dahlen, F. A. (1983). Mechanics of fold‐and‐thrust belts and accretionary wedges. Journal of Geophysical Research, 88, 1153–1172.
    [Google Scholar]
  43. de Souza, S. L., Brito, P. C. R., & Silva, R. W. S. (1993). Estratigrafia, sedimentologia e recursos minerais da formação Salitre na bacia de Irecê, Bahia: integração e síntese. CBPM, 1993, 24 p.: il. (Série Arquivos Abertos; 2).
  44. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8, 105–123.
    [Google Scholar]
  45. Deines, P., Langmuir, D., & Harmon, R. S. (1974). Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochimica et Cosmochimica Acta, 38, 1147–1164.
    [Google Scholar]
  46. Del Sole, L., Antonellini, M., Soliva, R., Ballas, G., Balsamo, F., & Viola, G. (2020). Structural control on fluid flow and shallow diagenesis: Insights from calcite cementation along deformation bands in porous sandstones. Solid Earth, 11, 2169–2195.
    [Google Scholar]
  47. Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth‐Science Reviews, 96, 141–162.
    [Google Scholar]
  48. Eliassen, A., & Talbot, M. R. (2005). Sollution‐collapse breccias of the Minkinfjellet and Wordiekammen Formations, Central Spitsbergen, Svalbard: A large gypsum palaeokarst system. Sedimentology, 52, 775–794.
    [Google Scholar]
  49. Ennes‐Silva, R. A., Bezerra, F. H. R., Nogueira, F. C. C., Balsamo, F., Klimchouk, A., Cazarin, C. L., & Auler, A. S. (2016). Superposed folding and associated fracturing influence hypogene karst development in Neoproterozoic carbonates, São Francisco Craton, Brazil. Tectonophysics, 666, 244–259.
    [Google Scholar]
  50. Ferrill, D. A., & Morris, A. P. (2008). Fault zone deformation controlled by carbonate mechanical stratigraphy, Balcones fault system, Texas. AAPG Bulletin, 92(3), 359–380.
    [Google Scholar]
  51. Ferrill, D. A., Morris, A. P., Mcginnis, R. N., Smart, K. J., & Ward, W. C. (2011). Fault zone deformation and displacement partitioning in mechanically layered carbonates: The Hidden Valley fault, Central Texas. AAPG Bulletin, 95, 1383–1397. https://doi.org/10.1306/12031010065
    [Google Scholar]
  52. Ferrill, D. A., Morris, A. P., Mcginnis, R. N., Smart, K. J., & Wigginton, S. S. (2017). Mechanical stratigraphy and normal faulting. Journal of Structural Geology, 94, 275–302.
    [Google Scholar]
  53. Fitz‐Dias, E., Hudleston, P., & Tolson, G. (2011). Comparison of tectonic styles in the Mexican and Canadian Rocky Mountain Fold‐Thrust Belt. In J.Poblet & R. J.Lisle (Eds.), Kinematic Evolution and Structural Styles of Fold‐and‐Thrust Belts (Vol. 349, pp. 149–167). Geological Society, London, Special Publications. https://doi.org/10.1144/SP349.8
    [Google Scholar]
  54. Fragoso, D. G. C., Reis, H. L. S., & Kuchenbecker, M. (2008). Mapeamento Geológico da região de Irecê‐Lapão (BA): Registros de uma rampa carbonática neoproterozóica. Trabalho de Graduação, Universidade Federal de Minas Gerais 109 p.
    [Google Scholar]
  55. Gibbs, A. D. (1984). Structural evolution of extensional basin margins. Journal of Geological Society, 141, 609–620. https://doi.org/10.1144/gsjgs.141.4.0609
    [Google Scholar]
  56. Gomez‐Rivas, E., Corbella, M., Martín‐Martín, J. D., Stafford, S. L., Teixell, A., Bons, P. D., Griera, A., & Cardellach, E. (2014). Reactivity of dolomitizing fluids and Mg source evaluation of fault‐controlled dolomitization at the Benicàssim outcrop analogue (Maestrat Basin, E Spain). Marine and Petroleum Geology, 55, 26–42. https://doi.org/10.1016/j.marpetgeo.2013.12.015
    [Google Scholar]
  57. Guimarães, J. T. (1996). A formação Bebedouro no Estado da Bahia: Faciologia, estratigrafia e ambientes de sedimentação (Master thesis). Federal University of Bahia.
    [Google Scholar]
  58. Healy, D., Neilson, J. E., Haines, T. J., Michie, E. A. H., Timms, N. E., & Wilson, M. E. J. (2014). An investigation of porosity—velocity relationships in faulted carbonates using outcrop analogues. Geological Society, London, Special Publications, 406, 261–280. https://doi.org/10.1144/SP406.13
    [Google Scholar]
  59. Jacquemyn, C., Swennen, R., & Ronchi, P. (2012). Mechanical stratigraphy and (palaeo‐) karstification of the Murge area (Apulia, Southern Italy). Geological Society Special Publications, 370, 169–186.
    [Google Scholar]
  60. Kaminskaite, I., Fisher, Q. J., & Michie, E. A. H. (2019). Microstructure and petrophysical properties of deformation bands in high porosity carbonates. Journal of Sructural Geology, 119, 61–80.
    [Google Scholar]
  61. Kennedy, L. A., & Logan, J. M. (1997). The role of veining and dissolution in the evolution of fine‐grained mylonites—The McConnell thrust Alberta. Journal of Structural Geology, 19, 785–797.
    [Google Scholar]
  62. Kirschner, D. L., & Kennedy, L. A. (2001). Limited syntectonic fluid flow in carbonate‐hosted thrust faults of the Front Ranges, Canadian Rockies, inferred from stable isotope data and structures. Journal of Geophysical Research, 106(B5), 8827–8840.
    [Google Scholar]
  63. Klimchouk, A., Auler, A. S., Bezerra, F. H. R., Cazarin, C. L., Balsamo, F., & Dublyansky, Y. (2016). Hypogenic origin, geologic controls and functional organization of a giant cave system in Precambrian carbonates, Brazil. Geomorphology, 253, 385–405.
    [Google Scholar]
  64. Kuchenbecker, M., Reis, H. L. S., & Fragoso, D. G. C. (2011). Caracterização estrutural e considerações sobre a evolução tectônica da Formação Salitre na porção central da Bacia de Irecê, norte do Cráton do São Francisco (BA). Geonomos, 19, 42–49.
    [Google Scholar]
  65. Kyle, J. R., & Misi, A. (1997). Origin of Zn‐Pb‐Ag sulfide mineralization within upper Proterozoic phosphate‐rich carbonate strata, Irecê Basin, Bahia, Brazil. International Geology Review, 39, 383–399.
    [Google Scholar]
  66. Lagoeiro, L. E. (1990). Estudo da deformação nas sequências carbonáticas do Grupo Una, na região de Irecê, Bahia. Dissertação de Mestrado, Escola de Minas, Universidade Federal de Ouro Preto, 105pp.
  67. Laubach, S. E., Eichhubl, P., Hilgers, C., & Lander, R. H. (2010). Structural diagenesis. Journal of Structural Geology, 32, 1866–1872.
    [Google Scholar]
  68. Laubach, S. E., Olson, J. E., & Gross, M. R. (2009). Mechanical and fracture stratigraphy. AAPG Bulletin, 93, 1413–1426.
    [Google Scholar]
  69. Lézin, C., Odonne, F., Massonnat, G. J., & Escadeillas, G. (2009). Dependence of joint spacing on rock properties in carbonate strata. AAPG Bulletin, 93(2), 271–290.
    [Google Scholar]
  70. Lucia, F. J. (1995). Rock‐fabric/petrophysical classification of carbonate pore space for reservoir characterization. AAPG Bulletin, 79(9), 1275–1300.
    [Google Scholar]
  71. Marrett, R., & Allmendinger, R. W. (1990). Kinematic analysis of fault‐slip data. Journal of Structural Geology, 12, 973–986.
    [Google Scholar]
  72. Marrett, R., & Peacock, D. C. P. (1999). Strain and stress. Journal of Structural Geology, 21, 1057–1063.
    [Google Scholar]
  73. Masaferro, J., Bourne, R., & Jauffred, J. C. (2004). Three‐dimensional seismic visualization of carbonate reservoirs and structures. In G. P.Eberli, J. L.Masaferro, & J. F.Sarg (Eds.), Seismic imaging of carbonate reservoirs and systems (Vol. 81, pp. 11–42). AAPG Memoir.
    [Google Scholar]
  74. McClay, K. R. (1992). Glossary of thrust tectonics terms. In K. R.McClay (Ed.), Thrust tectonics (pp. 419–433). Chapman & Hall.
    [Google Scholar]
  75. Melville, P., Jeelani, O. A., Menhali, S. A., & Grötsch, J. (2004). Three‐dimensional seismic analysis in the characterization of a giant carbonate field, onshore Abu Dhabi, United Arab Emirates. In G. P.Eberli, J. L.Masaferro, & J. F.Sarg (Eds.), Seismic imaging of carbonate reservoirs and systems (Vol. 81, pp. 123–148). AAPG Memoir.
    [Google Scholar]
  76. Michie, E. A. H., Haines, T. J., Healy, D., Neilson, J. E., Timms, N. E., & Wibberley, C. A. J. (2014). Influence of carbonate facies on fault zone architecture. Journal of Structural Geology, 65, 82–99.
    [Google Scholar]
  77. Misi, A. (1979). O Grupo Bambuí no estado da Bahia. In H. A. V.Inda (Ed.), Geologia e Recursos Minerais do estado da Bahia; textos básicos (Vol. 1, pp. 119–154). SME/CPM.
    [Google Scholar]
  78. Misi, A., Iyer, S. S. S., Tassinari, C. C. G., Franca‐Rocha, W. J. S., Coelho, C. E. S., de Cunha, I. A., & Gomes, A. S. R. (2004). Dados isotópicos de chumbo em sulfetos e a evolução metalogenética dos depósitos de zinco e chumbo das coberturas neoproterozóicas do cráton do São Francisco. Revista Brasileira de Geociencias, 34, 263–274.
    [Google Scholar]
  79. Misi, A., Kaufman, A. J., Veizer, J., Powis, K., Azmy, K., Boggiani, P. C., Gaucher, C., Teixeira, J. B. G., Sanches, A. L., & Iyer, S. S. (2007). Chemostratigraphic correlation of Neoproterozoic successions in South America. Chemical Geology, 237, 22–45.
    [Google Scholar]
  80. Misi, A., & Kyle, R. (1994). Upper Proterozoic carbonate stratigraphy, diagenesis, and stromatolitic phosphorite formation, Irecê basin, Bahia, Brazil. Journal of Sedimentary Research, 64, 299–310.
    [Google Scholar]
  81. Misi, A., & Souto, P. G. (1975). Controle estratigráfico das mineralizações de Pb‐Zn‐F‐Ba no Grupo Bambuí, parte leste da Chapada de Irecê. BA. Revista Brasileira de Geociências., 5, 30–45.
    [Google Scholar]
  82. Misi, A., & Veizer, J. (1998). Neoproterozoic carbonate sequences of the Una Group, Irecê Basin, Brazil: Chemostratigraphy, age and correlations. Precambrian Research, 89, 87–100.
    [Google Scholar]
  83. Paula‐Santos, G. M., Babinski, M., Kuchenbecker, M., Caetano‐Filho, S., Trindade, R. I., & Pedrosa‐Soares, A. C. (2015). New evidence of an Ediacaran age for the Bambuí group in southern São Francisco craton (eastern Brazil) from zircon U–Pb data and isotope chemostratigraphy. Gondwana Research, 28, 702–720.
    [Google Scholar]
  84. Paula‐Santos, G. M., Caetano‐Filho, S., Babinski, M., Trindade, R. I., & Guacaneme, C. (2017). Tracking connection and restriction of West Gondwana São Francisco Basin through isotope chemostratigraphy. Gondwana Research, 42, 280–305.
    [Google Scholar]
  85. Peacock, D. C. P. (2002). Propagation, interaction and linkage in normal fault systems. Earth‐Science Reviews, 58, 121–142.
    [Google Scholar]
  86. Peacock, D. C. P., Dimmen, V., Rotevatn, A., & Sanderson, D. J. (2017). A broader classification of damage zones. Journal of Structural Geology, 102, 179–192.
    [Google Scholar]
  87. Peacock, D. C. P., Nixon, C. W., Rotevatn, A., Sanderson, D. J., & Zuluaga, L. F. (2016). Glossary of fault and other fracture networks. Journal of Structural Geology, 92, 12–29.
    [Google Scholar]
  88. Peacock, D. C. P., & Sanderson, D. J. (2018). Structural analyses and fracture network characterization: Seven pillars of wisdom. Earth‐Science Reviews, 184, 13–28.
    [Google Scholar]
  89. Pedreira, A. J., Orhca, A. J. D., da Costa, I. V., & de Morais Filho, J. C. (1987). Projeto Bacia de Irecê: Relatório final. CPRM 2v.
    [Google Scholar]
  90. Petracchini, L., Antonellini, M., Billi, A., & Scrocca, D. (2012). Fault development through fractured pelagic carbonates of the Cingoli anticline, Italy: Possible analog for subsurface fluid‐conductive fractures. Journal of Structural Geology, 45, 21–37. https://doi.org/10.1016/j.jsg.2012.05.007
    [Google Scholar]
  91. Pili, E., Poitrasson, F., & Gratier, J.‐P. (2002). Carbon–oxygen isotope and trace element constraints on how fluids percolate faulted limestones from the San Andreas fault system: Partitioning of fluid sources and pathways. Chemical Geology, 190, 231–250.
    [Google Scholar]
  92. Pollard, D. D., & Aydin, A. (1988). Progress in understanding jointing over the past century. GSA Bulletin, 100, 1181–1204.
    [Google Scholar]
  93. Pollard, D. D., & Segall, P. (1987). Theoretical displacements and stresses near fractures in rock: With applications to faults, joints, veins, dikes, and solution surfaces. In B. K.Atkinson (Ed.), Fracture mechanics of rock (pp. 277–349). Academic Press.
    [Google Scholar]
  94. Redivo, H. V., Mizusaki, A. M. P., & Santana, A. V. A. (2019). REE patterns and trustworthiness of stable carbon isotopes of Salitre Formation, Irecê Basin (Neoproterozoic), São Francisco Craton. Journal of South American Earth Sciences, 90, 255–264.
    [Google Scholar]
  95. Riding, R. (1991). Calcareous algae and stromatolites. Springer 571 p.
    [Google Scholar]
  96. Rosendahl, B. R., Reynolds, D. J., Lorber, P. M., Burgess, C. F., Mcgill, J., Scott, D., Lambiase, J. J., & Derksen, S. J. (1986). Structural expressions of rifting: Lessons from Lake Tanganyika, Africa. Sedimentation in the African rifts. Geological Society Special Publications, 25, 29–43.
    [Google Scholar]
  97. Santos, R. V., Alvarenga, C. J. S., Dardenne, M. A., Sial, A. N., & Ferreira, V. P. (2000). Carbon and oxygen isotope profiles across MesoNeoproterozoic limestones from Central Brazil: Bambuí and Paranoá groups. Precambrian Research, 104, 107–122.
    [Google Scholar]
  98. Sibson, R. H. (1977). Fault rocks and fault mechanisms. Journal of Geological Society of London, 133, 191–213.
    [Google Scholar]
  99. Sibson, R. H. (1990). Rupture nucleation of unfavorably oriented faults. Bulletin of Seismological Society of America, 80, 1580–1604.
    [Google Scholar]
  100. Sibson, R. H. (1992). Implications of fault valve behavior for rupture nucleation and recurrence. Tectonophysics, 211, 283–293.
    [Google Scholar]
  101. Spratt, D. A., Dixon, J. M., & Beattie, E. T. (2004). Changes in structural style controlled by lithofacies contrast across transverse carbonate bank margins—Canadian Rocky Mountains and scaled physical models. In K. R.McClay (Ed.), Thrust tectonics and hydrocarbon systems (Vol. 82, pp. 259–275). AAPG Memoir.
    [Google Scholar]
  102. Storti, F., Balsamo, F., & Salvini, F. (2007). Particle shape evolution in natural carbonate granular wear material. Terra Nova, 19, 344–352.
    [Google Scholar]
  103. Taveira, I. A. P. (2020). Faciologia, quimioestratigrafia e interação fluido‐rocha em carbonatos neoproterozóicos da Formação Salitre na região de Irecê, Bahia. Master Thesis, Institute of Geosciences, University of Brasilia.
  104. Taveira, I. A. P., Vieira, L. C., Santos, R. V., Gomes, C. P., Jr., Couto, D. C., Barbosa, P. F., & Bezerra, F. H. R. (2021). Isotope signatures as fingerprints for facies and fluid‐rock interactions: Implications for carbonate reservoir fluid migration. Submitted to Marine and Petroleum Geology, under review.
  105. Twiss, R. J., & Unruh, J. R. (1998). Analysis of fault slip inversions: Do they constrain stress or strain rate?Journal of Geophysical Research, 103, 205–212 222.
    [Google Scholar]
  106. Uhlein, G. J., Uhlein, A., Pereira, E., Caxito, F. A., Okubo, J., Warren, L. V., & Sail, A. N. (2019). Ediacaran paleoenvironmental changes recorded in the mixed carbonate‐siliciclastic Bambuí Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 517, 39–51.
    [Google Scholar]
  107. Vieira, L. C., Trindade, R. I., Nogueira, A. C., & Ader, M. (2007). Identification of a Sturtian cap carbonate in the Neoproterozoic Sete Lagoas carbonate platform, Bambuí group, Brazil. Comptes Rendus Geoscience, 339, 240–258.
    [Google Scholar]
  108. Warren, J. (2000). Dolomite: Occurrence, evolution and economically important associations. Earth‐Science Reviews, 52, 1–81.
    [Google Scholar]
  109. Zaarur, S., Affek, H. P., & Brandon, M. T. (2013). A revised calibration of the clumped isotope thermometer. Earth and Planetary Science Letters, 382, 47–57. https://doi.org/10.1016/j.epsl.2013.07.026
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12701
Loading
/content/journals/10.1111/bre.12701
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error