1887
Volume 35, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

[

  • Integration of U‐Pb, Hf isotope and trace element analyses of detrital zircon and rutile decipher provenance.
  • Potential source areas of broadly coeval formation are discriminated by multi‐proxy analysis.
  • Integrated analysis of the detrital record after major geodynamic changes captures sedimentary reorganization.
  • Source‐to‐sink correlation implies an Early Cretaceous sediment routing system originating in central Australia.
  • Pre‐existing Gondwanan sediment pathways provided a template for Early Cretaceous drainage.

, Abstract

The duration and extent of sediment routing systems are intrinsically linked to crustal‐ to mantle‐scale processes. Therefore, distinct changes in the geodynamic regime may be captured in the detrital record. This study attempts to reconstruct the sediment routing system of the Canning Basin (Western Australia) during the Early Cretaceous to decipher its depositional response to Mesozoic‐Cenozoic supercontinent dispersal. Specifically, we reconstruct source‐to‐sink relationships for the Broome Sandstone (Dampier Peninsula) and proximal modern sediments through multi‐proxy analysis of detrital zircon (U–Pb, Lu–Hf and trace elements) and detrital rutile (U–Pb and trace elements). Multi‐proxy comparison of detrital signatures and potential sources reveals that the majority of the detrital zircon and rutile grains are ultimately sourced from crystalline basement in central Australia (Musgrave Province and Arunta region) and that proximal sediment supply (i.e., Kimberley region) is negligible. However, a significant proportion of detritus might be derived from intermediate sedimentary sources in central Australia (e.g., Amadeus Basin) rather than directly from erosion of crystalline basement. Broome Sandstone data are consistent with a large‐scale drainage system with headwaters in central Australia. Contextualization with other broadly coeval drainage systems suggests that central Australia acted as a major drainage divide during the Early Cretaceous. Importantly, reorganization after supercontinent dispersal is characterized by the continuation of a sediment pathway remnant of an earlier transcontinental routing system originating in Antarctica that provided a template for Early Cretaceous drainage. Review of older Canning Basin strata implies a prolonged denudation history of central Australian lithologies. These observations are consistent with the long‐lived intracontinental tectonic activity of central Australia governing punctuated sediment generation and dispersion more broadly across Australia and emphasize the impact of deep Earth processes on sediment routing systems.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12715
2023-01-17
2025-05-13
Loading full text...

Full text loading...

/deliver/fulltext/bre/35/1/bre12715.html?itemId=/content/journals/10.1111/bre.12715&mimeType=html&fmt=ahah

References

  1. Armitage, J. J., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4, 231–235.
    [Google Scholar]
  2. Aubrecht, R., Sýkora, M., Uher, P., Li, X.‐H., Yang, Y.‐H., Putiš, M., & Plašienka, D. (2017). Provenance of the Lunz Formation (Carnian) in the Western Carpathians, Slovakia: Heavy mineral study and in situ LA–ICP–MS U–Pb detrital zircon dating. Palaeogeography, Palaeoclimatology, Palaeoecology, 471, 233–253.
    [Google Scholar]
  3. Auchter, N. C., Romans, B. W., Hubbard, S. M., Daniels, B. G., Scher, H. D., & Buckley, W. (2020). Intrabasinal sediment recycling from detrital strontium isotope stratigraphy. Geology, 48, 992–996.
    [Google Scholar]
  4. Bagas, L. (2004). Proterozoic evolution and tectonic setting of the Northwest Paterson Orogen, Western Australia. Precambrian Research, 128, 475–496.
    [Google Scholar]
  5. Bagas, L., Anderson, J., & Bierlein, F. P. (2009). Palaeoproterozoic evolution of the Killi Formation and orogenic gold mineralization in the Granites–Tanami Orogen, Western Australia. Ore Geology Reviews, 35, 47–67.
    [Google Scholar]
  6. Barham, M., & Kirkland, C. L. (2020). Changing of the guards: Detrital zircon provenance tracking sedimentological reorganization of a post‐Gondwanan rift margin. Basin Research, 32, 854–874.
    [Google Scholar]
  7. Barham, M., Reynolds, S., Kirkland, C. L., O'Leary, M. J., Evans, N. J., Allen, H. J., Haines, P. W., Hocking, R. M., & McDonald, B. J. (2018). Sediment routing and basin evolution in Proterozoic to Mesozoic East Gondwana: A case study from southern Australia. Gondwana Research, 58, 122–140.
    [Google Scholar]
  8. Baudet, E., Tiddy, C., Giles, D., Hill, S., & Gordon, G. (2021). Diverse provenance of the lower cretaceous sediments of the Eromanga Basin, South Australia: Constraints on basin evolution. Australian Journal of Earth Sciences, 68, 316–342.
    [Google Scholar]
  9. Belousova, E., Griffin, W., O'Reilly, S. Y., & Fisher, N. (2002). Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143, 602–622.
    [Google Scholar]
  10. Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., Begg, G. C., O'Reilly, S. Y., & Pearson, N. J. (2010). The growth of the continental crust: Constraints from zircon Hf‐isotope data. Lithos, 119, 457–466.
    [Google Scholar]
  11. Blum, M., & Pecha, M. (2014). Mid‐cretaceous to Paleocene north American drainage reorganization from detrital zircons. Geology, 42, 607–610.
    [Google Scholar]
  12. Blum, M., Rogers, K., Gleason, J., Najman, Y., Cruz, J., & Fox, L. (2018). Allogenic and autogenic signals in the stratigraphic record of the Deep‐Sea Bengal fan. Scientific Reports, 8, 7973.
    [Google Scholar]
  13. Bodorkos, S., 2011, Geoscience Australia's Geochron delivery system (first release: September 2011). Geoscience Australia. http://pid.geoscience.gov.au/dataset/ga/72841.
    [Google Scholar]
  14. Bodorkos, S., Oliver, N. H. S., & Cawood, P. A. (1999). Thermal evolution of the central Halls Creek Orogen, northern Australia. Australian Journal of Earth Sciences, 46, 453–465.
    [Google Scholar]
  15. Bouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, 48–57.
    [Google Scholar]
  16. Boyd, D. M., & Teakle, M. G. (2016). Thunderbird heavy mineral sand deposit, Western Australia. Applied Earth Science, 125, 128–139.
    [Google Scholar]
  17. Bracciali, L. (2019). Coupled zircon‐rutile U‐Pb chronology: LA ICP‐MS dating, geological significance and applications to sediment provenance in the eastern Himalayan‐indo‐Burman region. Geosciences, 9, 467.
    [Google Scholar]
  18. Braz, C., Zahirovic, S., Salles, T., Flament, N., Harrington, L., & Müller, R. D. (2021). Modelling the role of dynamic topography and eustasy in the evolution of the great Artesian Basin. Basin Research, 33, 3378–3405. https://doi.org/10.1111/bre.12606
    [Google Scholar]
  19. Buick, I. S., Storkey, A., & Williams, I. S. (2008). Timing relationships between pegmatite emplacement, metamorphism and deformation during the intra‐plate Alice Springs Orogeny, Central Australia. Journal of Metamorphic Geology, 26, 915–936.
    [Google Scholar]
  20. Camacho, A., Hensen, B. J., & Armstrong, R. (2002). Isotopic test of a thermally driven intraplate orogenic model, Australia. Geology, 30, 887.
    [Google Scholar]
  21. Cao, W., Zahirovic, S., Flament, N., Williams, S., Golonka, J., & Müller, R. D. (2017). Improving global paleogeography since the late Paleozoic using paleobiology. Biogeosciences, 14, 5425–5439.
    [Google Scholar]
  22. Cassidy, K. F., Champion, D. C., Krapez, B., Barley, M. E., Brown, S. J., Blewett, R. S., Groenewald, P. B., & Tyler, I. M. (2006). A revised geological framework for the Yilgarn Craton, Western Australia. Geological Survey of Western Australia, Record, 8(8), 15.
    [Google Scholar]
  23. Castelltort, S., Goren, L., Willett, S. D., Champagnac, J.‐D., Herman, F., & Braun, J. (2012). River drainage patterns in the New Zealand Alps primarily controlled by plate tectonic strain. Nature Geoscience, 5, 744–748.
    [Google Scholar]
  24. Cawood, P. A., & Nemchin, A. A. (2000). Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia. Sedimentary Geology, 134, 209–234.
    [Google Scholar]
  25. Cawood, P. A., Nemchin, A. A., Freeman, M., & Sircombe, K. (2003). Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth and Planetary Science Letters, 210, 259–268.
    [Google Scholar]
  26. Cawood, P. A., & Tyler, I. M. (2004). Assembling and reactivating the Proterozoic Capricorn Orogen: Lithotectonic elements, orogenies, and significance. Precambrian Research, 128, 201–218.
    [Google Scholar]
  27. Champion, D. C., & Smithies, R. H. (2007). Chapter 4.3 geochemistry of Paleoarchean granites of the east Pilbara terrane, Pilbara Craton, Western Australia: Implications for early Archean crustal growth. In M. J.van Kranendonk, R. H.Smithies, & V. C.Bennett (Eds.), Developments in Precambrian geology Earth's oldest rocks (pp. 369–409). Elsevier.
    [Google Scholar]
  28. Chardon, D., Grimaud, J.‐L., Rouby, D., Beauvais, A., & Christophoul, F. (2016). Stabilization of large drainage basins over geological time scales: Cenozoic West Africa, hot spot swell growth, and The Niger River. Geochemistry, Geophysics, Geosystems, 17, 1164–1181.
    [Google Scholar]
  29. Cherniak, D. J. (2000). Pb diffusion in rutile. Contributions to Mineralogy and Petrology, 139(2), 198–207. https://doi.org/10.1007/pl00007671
    [Google Scholar]
  30. Cherniak, D., & Watson, E. (2001). Pb diffusion in zircon. Chemical Geology, 172, 5–24.
    [Google Scholar]
  31. Chew, D., O'Sullivan, G., Caracciolo, L., Mark, C., & Tyrrell, S. (2020). Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U‐Pb provenance analysis. Earth‐Science Reviews, 202, 103093.
    [Google Scholar]
  32. Clark, M. K., Schoenbohm, L. M., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., Tang, W., Wang, E., & Chen, L. (2004). Surface uplift, tectonics, and erosion of eastern Tibet from large‐scale drainage patterns. Tectonics, 23, TC1006. https://doi.org/10.1029/2002TC001402
    [Google Scholar]
  33. Collins, W. (1995). Geochronological constraints on orogenic events in the Arunta inlier: A review. Precambrian Research, 71, 315–346.
    [Google Scholar]
  34. Collins, W. J., Belousova, E. A., Kemp, A. I. S., & Murphy, J. B. (2011). Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nature Geoscience, 4, 333–337.
    [Google Scholar]
  35. Crossman, S., & Li, O. (2015). Surface hydrology lines (regional). Geoscience Australia. http://pid.geoscience.gov.au/dataset/ga/83107
  36. Davis, S. J., Dickinson, W. R., Gehrels, G. E., Spencer, J. E., Lawton, T. F., & Carroll, A. R. (2010). The Paleogene California River: evidence of Mojave‐Uinta paleodrainage from U‐Pb ages of detrital zircons. Geology, 38, 931–934.
    [Google Scholar]
  37. Direen, N. G. (2011). Comment on “Antarctica—Before and after Gondwana” by SD Boger Gondwana Research, Volume 19, Issue 2, March 2011, Pages 335–371. Gondwana Research, 21(1), 302–304.
    [Google Scholar]
  38. Dröllner, M., Barham, M., & Kirkland, C. L. (2022). Gaining from loss: Detrital zircon source‐normalized α‐dose discriminates first‐ versus multi‐cycle grain histories. Earth and Planetary Science Letters, 579, 117346.
    [Google Scholar]
  39. Dumitru, T. A. (2016). A new zircon concentrating table designed for geochronologists. In AGU Fall Meeting Abstracts (Vol. 2016, pp. V23A–V2956A). American Geophysical Union.
    [Google Scholar]
  40. Eriksson, K. A., Campbell, I. H., Palin, J. M., Allen, C. M., & Bock, B. (2004). Evidence for multiple recycling in Neoproterozoic through Pennsylvanian sedimentary rocks of the central Appalachian Basin. The Journal of Geology, 112, 261–276.
    [Google Scholar]
  41. Faccenna, C., Glišović, P., Forte, A., Becker, T. W., Garzanti, E., Sembroni, A., & Gvirtzman, Z. (2019). Role of dynamic topography in sustaining the Nile River over 30 million years. Nature Geoscience, 12, 1012–1017.
    [Google Scholar]
  42. Force, E. R. (1980). The provenance of rutile. Journal of Sedimentary Petrology, 50, 485–488.
    [Google Scholar]
  43. Forman, D. J., & Wales, D. W. (1981). Geological evolution of the Canning Basin, Western Australia. Canberra, Bureau of Mineral Resources, Geology, and Geophysics.
    [Google Scholar]
  44. Gardiner, N. J., Kirkland, C. L., & van Kranendonk, M. J. (2016). The juvenile hafnium isotope signal as a record of supercontinent cycles. Scientific Reports, 6, 38503.
    [Google Scholar]
  45. Gardiner, N. J., Maidment, D. W., Kirkland, C. L., Bodorkos, S., Smithies, R. H., & Jeon, H. (2018). Isotopic insight into the Proterozoic crustal evolution of the Rudall Province, Western Australia. Precambrian Research, 313, 31–50.
    [Google Scholar]
  46. Gibbons, A. D., Whittaker, J. M., & Müller, D. R. (2013). The breakup of East Gondwana: Assimilating constraints from cretaceous ocean basins around India into a best‐fit tectonic model: Journal of geophysical research. Solid Earth, 118, 808–822.
    [Google Scholar]
  47. Gillespie, J., Glorie, S., Khudoley, A., & Collins, A. S. (2018). Detrital apatite U‐Pb and trace element analysis as a provenance tool: Insights from the Yenisey ridge (Siberia). Lithos, 314‐315, 140–155.
    [Google Scholar]
  48. Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., van Achterbergh, E., O'Reilly, S. Y., & Shee, S. R. (2000). The Hf isotope composition of cratonic mantle: LAM‐MC‐ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64, 133–147.
    [Google Scholar]
  49. Grimes, C. B., John, B. E., Kelemen, P. B., Mazdab, F. K., Wooden, J. L., Cheadle, M. J., Hanghøj, K., & Schwartz, J. J. (2007). Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, v. 35, 643.
    [Google Scholar]
  50. Grimes, C. B., Wooden, J. L., Cheadle, M. J., & John, B. E. (2015). “Fingerprinting” tectono‐magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology, 170, 1–26.
    [Google Scholar]
  51. Haines, P. W., Kirkland, C. L., Wingate, M., Allen, H., Belousova, E. A., & Gréau, Y. (2016). Tracking sediment dispersal during orogenesis: A zircon age and Hf isotope study from the western Amadeus Basin, Australia. Gondwana Research, 37, 324–347.
    [Google Scholar]
  52. Haines, P. W., Turner, S. P., Kelley, S. P., Wartho, J.‐A., & Sherlock, S. C. (2004). 40Ar–39Ar dating of detrital muscovite in provenance investigations: A case study from the Adelaide rift complex, South Australia. Earth and Planetary Science Letters, 227, 297–311.
    [Google Scholar]
  53. Haines, P. W., & Wingate, M. T. D. (2007). Fingerprinting reservoir sandstone provenance in the Canning Basin using detrital zircons: Geological survey of Western Australia. Annual Review, 2005–2006. https://dmpbookshop.eruditetechnologies.com.au/product/fingerprinting‐reservoir‐sandstone‐provenance‐in‐the‐canning‐basin‐using‐detrital‐zircons.do
    [Google Scholar]
  54. Haines, P. W., Wingate, M. T. D., & Kirkland, C. L. (2013). Detrital zircon U‐Pb ages from the paleozoic of the canning and officer basins, Western Australia: Implications for provenance and interbasin connections. In West Australian basins symposium (p. 19). Petroleum Exploration Society of Australia.
    [Google Scholar]
  55. Haines, P. W., Wingate, M. T. D., Zhang, Y., & Maidment, D. W. (2018). Looking beneath the Canning Basin: New insights from geochronology, seismic and potential‐field data. GSWA Extended Abstracts, 2018, 4.
    [Google Scholar]
  56. Hand, M., & Sandiford, M. (1999). Intraplate deformation in Central Australia, the link between subsidence and fault reactivation. Tectonophysics, v. 305, 121–140.
    [Google Scholar]
  57. Hashimoto, T., Bailey, A., Chirinos, A., & Carr, L. K. (2018). Onshore basin inventory volume 2: The canning, Perth and Officer basins (p. 125). Geoscience Australia.
    [Google Scholar]
  58. Hickman, A. H., & van Kranendonk, M. J. (2012). Early earth evolution: Evidence from the 3.5–1.8 Ga geological history of the Pilbara region of Western Australia. Episodes, 35, 283–297.
    [Google Scholar]
  59. Hollis, J. A., Kemp, A. I. S., Tyler, I. M., Kirkland, C. L., Wingate, M. T. D., Phillips, C., Sheppard, S., Belousova, E., & Gréau, Y. (2014). Basin formation by orogenic collapse: Zircon U‐Pb and Lu‐Hf isotope evidence from the Kimberley and Speewah groups, northern Australia. Report, 137.
    [Google Scholar]
  60. Hollis, J. A., Kirkland, C. L., Spaggiari, C. V., Tyler, I. M., Haines, P. W., Wingate, M. T. D., Belousova, E. A., & Murphy, R. C. (2013). Zircon U–Pb–Hf isotope evidence for links between the Warumpi and aileron provinces, west Arunta region: GSWA. Record, 9.
    [Google Scholar]
  61. Hoskin, P. W., & Ireland, T. R. (2000). Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28, 627.
    [Google Scholar]
  62. Howard, H. M., Smithies, R. H., Kirkland, C. L., Kelsey, D. E., Aitken, A., Wingate, M., Quentin de Gromard, R., Spaggiari, C. V., & Maier, W. D. (2015). The burning heart—The Proterozoic geology and geological evolution of the west Musgrave Region, central Australia. Gondwana Research, 27, 64–94.
    [Google Scholar]
  63. Howard, K. E., Hand, M., Barovich, K. M., Reid, A., Wade, B. P., & Belousova, E. A. (2009). Detrital zircon ages: Improving interpretation via Nd and Hf isotopic data. Chemical Geology, 262, 277–292.
    [Google Scholar]
  64. Johnson, S. P., Korhonen, F. J., Kirkland, C. L., Cliff, J. B., Belousova, E. A., & Sheppard, S. (2017). An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization. Lithos, 268‐271, 76–86.
    [Google Scholar]
  65. Keeman, J., Turner, S., Haines, P. W., Belousova, E., Ireland, T., Brouwer, P., Foden, J., & Wörner, G. (2020). New U Pb, Hf and O isotope constraints on the provenance of sediments from the Adelaide rift complex – Documenting the key Neoproterozoic to early Cambrian succession. Gondwana Research, 83, 248–278.
    [Google Scholar]
  66. Kirkland, C. L., Barham, M., & Danišík, M. (2020). Find a match with triple‐dating: Antarctic sub‐ice zircon detritus on the modern shore of Western Australia. Earth and Planetary Science Letters, 531, 115953.
    [Google Scholar]
  67. Kirkland, C. L., Johnson, S. P., Smithies, R. H., Hollis, J. A., Wingate, M., Tyler, I. M., Hickman, A. H., Cliff, J. B., Tessalina, S., Belousova, E. A., & Murphy, R. C. (2013). Not‐so‐suspect terrane: Constraints on the crustal evolution of the Rudall Province. Precambrian Research, 235, 131–149.
    [Google Scholar]
  68. Kirkland, C. L., Smithies, R. H., Woodhouse, A. J., Howard, H. M., Wingate, M. T., Belousova, E. A., Cliff, J. B., Murphy, R. C., & Spaggiari, C. V. (2013). Constraints and deception in the isotopic record; the crustal evolution of the west Musgrave Province, central Australia. Gondwana Research, v. 23, 759–781.
    [Google Scholar]
  69. Kirkland, C. L., Spaggiari, C. V., Pawley, M. J., Wingate, M., Smithies, R. H., Howard, H. M., Tyler, I. M., Belousova, E. A., & Poujol, M. (2011). On the edge: U–Pb, Lu–Hf, and Sm–Nd data suggests reworking of the Yilgarn Craton margin during formation of the Albany‐Fraser Orogen. Precambrian Research, 187, 223–247.
    [Google Scholar]
  70. Kohn, M. J., Corrie, S. L., & Markley, C. (2015). The fall and rise of metamorphic zircon. American Mineralogist, 100, 897–908.
    [Google Scholar]
  71. Krippner, A., & Bahlburg, H. (2013). Provenance of Pleistocene Rhine River middle terrace sands between the Swiss–German border and Cologne based on U–Pb detrital zircon ages. International Journal of Earth Sciences, 102, 917–932.
    [Google Scholar]
  72. Lloyd, J., Collins, A. S., Payne, J. L., Glorie, S., Holford, S., & Reid, A. J. (2016). Tracking the cretaceous transcontinental Ceduna River through Australia: The hafnium isotope record of detrital zircons from offshore southern Australia. Geoscience Frontiers, 7, 237–244.
    [Google Scholar]
  73. Ludwig, K. R. (1998). On the treatment of concordant uranium‐Lead ages. Geochimica et Cosmochimica Acta, 62, 665–676.
    [Google Scholar]
  74. Maidment, D. W., Williams, I. S., & Hand, M. (2007). Testing long‐term patterns of basin sedimentation by detrital zircon geochronology, Centralian Superbasin, Australia. Basin Research, 19, 335–360.
    [Google Scholar]
  75. Malkowski, M. A., Sharman, G. R., Johnstone, S. A., Grove, M. J., Kimbrough, D. L., & Graham, S. A. (2019). Dilution and propagation of provenance trends in sand and mud: Geochemistry and detrital zircon geochronology of modern sediment from Central California (U.S.A.). American Journal of Science, 319, 846–902.
    [Google Scholar]
  76. Malusà, M. G., Resentini, A., & Garzanti, E. (2016). Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Research, 31, 1–19.
    [Google Scholar]
  77. Markwitz, V., & Kirkland, C. L. (2018). Source to sink zircon grain shape: Constraints on selective preservation and significance for Western Australian Proterozoic basin provenance. Geoscience Frontiers, 9(2), 415–430. https://doi.org/10.1016/j.gsf.2017.04.004
    [Google Scholar]
  78. Martin, E. L., Collins, W. J., & Kirkland, C. L. (2017). An Australian source for Pacific‐Gondwanan zircons: Implications for the assembly of northeastern Gondwana. Geology, 45, G39152.1.
    [Google Scholar]
  79. Martin, J. R., Redfern, J., Horstwood, M. S. A., Mory, A. J., & Williams, B. P. J. (2019). Detrital zircon age and provenance constraints on late Paleozoic ice‐sheet growth and dynamics in Western and Central Australia. Australian Journal of Earth Sciences, 66, 183–207.
    [Google Scholar]
  80. Maselli, V., Kroon, D., Iacopini, D., Wade, B. S., Pearson, P. N., & de Haas, H. (2020). Impact of the east African rift system on the routing of the deep‐water drainage network offshore Tanzania, western Indian Ocean. Basin Research, 32, 789–803.
    [Google Scholar]
  81. Meinhold, G., Anders, B., Kostopoulos, D., & Reischmann, T. (2008). Rutile chemistry and thermometry as provenance indicator: An example from Chios Island, Greece. Sedimentary Geology, 203, 98–111.
    [Google Scholar]
  82. Moecher, D. P., Kelly, E. A., Hietpas, J., & Samson, S. D. (2019). Proof of recycling in clastic sedimentary systems from textural analysis and geochronology of detrital monazite: Implications for detrital mineral provenance analysis. Bulletin, 131, 1115–1132.
    [Google Scholar]
  83. Moecher, D. P., & Samson, S. D. (2006). Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis. Earth and Planetary Science Letters, 247, 252–266.
    [Google Scholar]
  84. Mole, D. R., Kirkland, C. L., Fiorentini, M. L., Barnes, S. J., Cassidy, K. F., Isaac, C., Belousova, E. A., Hartnady, M., & Thebaud, N. (2019). Time‐space evolution of an Archean craton: A Hf‐isotope window into continent formation. Earth‐Science Reviews, 196, 102831.
    [Google Scholar]
  85. Morón, S., Cawood, P. A., Haines, P. W., Gallagher, S. J., Zahirovic, S., Lewis, C. J., & Moresi, L. (2019). Long‐lived transcontinental sediment transport pathways of East Gondwana. Geology, 47, 513–516.
    [Google Scholar]
  86. Morón, S., Kohn, B. P., Beucher, R., Mackintosh, V., Cawood, P. A., Moresi, L., & Gallagher, S. J. (2020). Denuding a craton: Thermochronology record of Phanerozoic unroofing from the Pilbara Craton, Australia. Tectonics, 39, e2019TC005988.
    [Google Scholar]
  87. Morton, A. C., & Hallsworth, C. R. (1999). Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124, 3–29.
    [Google Scholar]
  88. Mory, A. J., & Hocking, R. M. (2011). Permian, carboniferous and upper devonian geology of the Northern Canning Basin, Western Australia: A field guide. Geological Survey of Western Australia.
    [Google Scholar]
  89. Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S. H. J., & Zahirovic, S. (2018). GPlates: Building a virtual earth through deep time. Geochemistry, Geophysics, Geosystems, 19, 2243–2261.
    [Google Scholar]
  90. Nelson, D. R. (2004). 169034: biotite monzogranite, Ripon Hills Road ‐ Talga River crossing. Geochronology Record, 151.
    [Google Scholar]
  91. Olierook, H. K., Barham, M., Fitzsimons, I. C., Timms, N. E., Jiang, Q., Evans, N. J., & McDonald, B. J. (2019). Tectonic controls on sediment provenance evolution in rift basins: Detrital zircon U–Pb and Hf isotope analysis from the Perth Basin, Western Australia. Gondwana Research, 66, 126–142.
    [Google Scholar]
  92. Olierook, H. K., Jourdan, F., Merle, R. E., Timms, N. E., Kusznir, N., & Muhling, J. R. (2016). Bunbury basalt: Gondwana breakup products or earliest vestiges of the Kerguelen mantle plume?Earth and Planetary Science Letters, 440, 20–32.
    [Google Scholar]
  93. Olierook, H. K. H., Timms, N. E., Merle, R. E., Jourdan, F., & Wilkes, P. G. (2015). Paleodrainage and fault development in the southern Perth Basin, Western Australia during and after the breakup of Gondwana from 3D modelling of the Bunbury basalt. Australian Journal of Earth Sciences, 62, 1–17.
    [Google Scholar]
  94. O'Sullivan, G. J., Chew, D. M., & Samson, S. D. (2016). Detecting magma‐poor orogens in the detrital record. Geology, 44, 871–874.
    [Google Scholar]
  95. Parra Garcia, M., Sanchez, G., Dentith, M., & George, A. (2014). Regional structural and stratigraphic study of the Canning Basin, Western Australia. Department of Mines and Petroleum Government of Western Australia.
    [Google Scholar]
  96. Payne, J. L., Morrissey, L. J., Tucker, N. M., Roche, L. K., Szpunar, M. A., & Neroni, R. (2021). Granites and gabbros at the dawn of a coherent Australian continent. Precambrian Research, 359, 106189.
    [Google Scholar]
  97. Pepper, M., Gehrels, G., Pullen, A., Ibanez‐Mejia, M., Ward, K. M., & Kapp, P. (2016). Magmatic history and crustal genesis of western South America: Constraints from U‐Pb ages and Hf isotopes of detrital zircons in modern rivers. Geosphere, 12, 1532–1555.
    [Google Scholar]
  98. Prokopiev, A. V., Toro, J., Miller, E. L., & Gehrels, G. E. (2008). The paleo–Lena River—200 m.y. of transcontinental zircon transport in Siberia. Geology, 36, 699.
    [Google Scholar]
  99. Quentin de Gromard, R., Kirkland, C. L., Howard, H. M., Wingate, M. T., Jourdan, F., McInnes, B. I., Danišík, M., Evans, N. J., McDonald, B. J., & Smithies, R. H. (2019). When will it end? Long‐lived intracontinental reactivation in central Australia. Geoscience Frontiers, 10, 149–164.
    [Google Scholar]
  100. Rahl, J. M., Reiners, P. W., Campbell, I. H., Nicolescu, S., & Allen, C. M. (2003). Combined single‐grain (U‐Th)/he and U/Pb dating of detrital zircons from the Navajo sandstone, Utah. Geology, 31, 761–764.
    [Google Scholar]
  101. Raimondo, T., Hand, M., & Collins, W. J. (2014). Compressional intracontinental orogens: Ancient and modern perspectives. Earth‐Science Reviews, 130, 128–153.
    [Google Scholar]
  102. Ramsay, R. R., Eves, A. E., Denyszyn, S. W., Wingate, M., Fiorentini, M., Gwalani, L. G., & Rogers, K. A. (2019). Geology and geochronology of the Paleoproterozoic hart dolerite, Western Australia. Precambrian Research, 335, 105482.
    [Google Scholar]
  103. Rösel, D., Zack, T., & Boger, S. D. (2014). LA‐ICP‐MS U–Pb dating of detrital rutile and zircon from the Reynolds range: A window into the Palaeoproterozoic tectonosedimentary evolution of the north Australian craton. Precambrian Research, 255, 381–400.
    [Google Scholar]
  104. Salisbury, S. W., Romilio, A., Herne, M. C., Tucker, R. T., & Nair, J. P. (2016). The dinosaurian Ichnofauna of the lower cretaceous (Valanginian–Barremian) Broome Sandstone of the Walmadany area (James Price point), Dampier Peninsula, Western Australia. Journal of Vertebrate Paleontology, 36, 1–152.
    [Google Scholar]
  105. Sayers, J., Symonds, P. A., Direen, N. G., & Bernardel, G. (2001). Nature of the continent‐ocean transition on the non‐volcanic rifted margin of the central great Australian bight. Geological Society, London, Special Publications, 187, 51–76.
    [Google Scholar]
  106. Sircombe, K. N., & Freeman, M. J. (1999). Provenance of detrital zircons on the Western Australia coastline—Implications for the geologic history of the Perth basin and denudation of the Yilgarn Craton. Geology, 27, 879–882.
    [Google Scholar]
  107. Smith, J. (2001). Summary of results. Joint NTGS – AGSO age determination program 1999–2001. Northern Territory Geological Survey, Record 2001‐007. Northern Territory Geological Survey.
  108. Smith, T. E., Edwards, D. S., Kelman, A. P., Laurie, J. R., Le Poidevin, S. R., Nicoll, R. S., Mory, A. J., Haines, P. W., & Hocking, R. M. (2013). Canning Basin biozonation and stratigraphy, 2013, Chart 31. Geoscience Australia. http://pid.geoscience.gov.au/dataset/ga/76879
  109. Smithies, R. H., Kirkland, C. L., Korhonen, F. J., Aitken, A., Howard, H. M., Maier, W. D., Wingate, M., Quentin de Gromard, R., & Gessner, K. (2015). The Mesoproterozoic thermal evolution of the Musgrave Province in Central Australia — Plume vs. the geological record. Gondwana Research, 27, 1419–1429.
    [Google Scholar]
  110. Smye, A. J., Marsh, J. H., Vermeesch, P., Garber, J. M., & Stockli, D. F. (2018). Applications and limitations of U‐Pb thermochronology to middle and lower crustal thermal histories. Chemical Geology, 494, 1–18.
    [Google Scholar]
  111. Söderlund, U., Patchett, P., Vervoort, J. D., & Isachsen, C. E. (2004). The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219, 311–324.
    [Google Scholar]
  112. Song, Y., Ren, J., Liu, K., Lyu, D., Feng, X., Liu, Y., & Stepashko, A. (2022). Syn‐rift to post‐rift tectonic transition and drainage reorganization in continental rifting basins: Detrital zircon analysis from the songliao basin, China. Geoscience Frontiers, 13, 101377.
    [Google Scholar]
  113. Spaggiari, C. V., Kirkland, C. L., Smithies, R. H., Wingate, M., & Belousova, E. A. (2015). Transformation of an Archean craton margin during Proterozoic basin formation and magmatism: The Albany–Fraser Orogen, Western Australia. Precambrian Research, 266, 440–466.
    [Google Scholar]
  114. Spencer, C. J., Kirkland, C. L., & Roberts, N. M. W. (2018). Implications of erosion and bedrock composition on zircon fertility: Examples from South America and Western Australia. Terra Nova, 30, 289–295.
    [Google Scholar]
  115. Sundell, K., Saylor, J. E., & Pecha, M. (2019). Provenance and recycling of detrital zircons from Cenozoic Altiplano strata and the crustal evolution of western South America from combined U‐Pb and Lu‐Hf isotopic analysis. In B. K.Horton & A.Folguera (Eds.), Andean tectonics: Amsterdam (pp. 363–397). Elsevier.
    [Google Scholar]
  116. Sundell, K. E., & Saylor, J. E. (2021). Two‐dimensional quantitative comparison of density distributions in detrital geochronology and geochemistry. Geochemistry, Geophysics, Geosystems, 22, e2020GC009559.
    [Google Scholar]
  117. Thomas, M. C. (2012). Erskine sandstone formation: A provenance and geochronological study within the Fitzroy trough, Western Australia: BSc(honours) (p. 76). University of Adelaide.
    [Google Scholar]
  118. Tomkins, H. S., Powell, R., & Ellis, D. J. (2007). The pressure dependence of the zirconium‐in‐rutile thermometer. Journal of Metamorphic Geology, 25, 703–713.
    [Google Scholar]
  119. Totterdell, J.M., Cook, P.J., Bradshaw, M.T., Wilford, G.E., Yeates, A.N., Yeung, M., Truswell, E.M., Brakel, A.T., Isem, A.R., Olissoff, S., Strusz, D.L., Langford, R.P., Walley, A.M., Mulholland, S.M., and Beynon, R.M., 2001, Palaeogeographic Atlas of Australia. Geoscience Australia.
    [Google Scholar]
  120. Trail, D., Bruce Watson, E., & Tailby, N. D. (2012). Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta, 97, 70–87.
    [Google Scholar]
  121. Triebold, S., Luvizotto, G. L., Tolosana‐Delgado, R., Zack, T., & von Eynatten, H. (2011). Discrimination of TiO2 polymorphs in sedimentary and metamorphic rocks. Contributions to Mineralogy and Petrology, 161, 581–596.
    [Google Scholar]
  122. Triebold, S., von Eynatten, H., & Zack, T. (2012). A recipe for the use of rutile in sedimentary provenance analysis. Sedimentary Geology, 282, 268–275.
    [Google Scholar]
  123. Tucker, N. M., Morrissey, L. J., Payne, J. L., & Szpunar, M. (2018). Genesis of the Archean–Paleoproterozoic Tabletop domain, Rudall Province, and its endemic relationship to the West Australian Craton. Australian Journal of Earth Sciences, 65, 739–768.
    [Google Scholar]
  124. Tyler, I. M., Hocking, R. M., & Haines, P. W. (2012). Geological evolution of the Kimberley region of Western Australia. Episodes, 35, 298–306.
    [Google Scholar]
  125. Tyrrell, S., Haughton, P., & Daly, J. S. (2007). Drainage reorganization during breakup of Pangea revealed by in‐situ Pb isotopic analysis of detrital K‐feldspar. Geology, 35, 971.
    [Google Scholar]
  126. Tyrrell, S., Leleu, S., Souders, A. K., Haughton, P. D., & Daly, J. S. (2009). K‐feldspar sand‐grain provenance in the Triassic, west of Shetland: Distinguishing first‐cycle and recycled sediment sources?Geological Journal, 44, 692–710.
    [Google Scholar]
  127. Ustaömer, T., Ustaömer, P. A., Robertson, A. H. F., & Gerdes, A. (2016). Implications of U–Pb and Lu–Hf isotopic analysis of detrital zircons for the depositional age, provenance and tectonic setting of the Permian–Triassic Palaeotethyan Karakaya complex, NW Turkey. International Journal of Earth Sciences, 105, 7–38.
    [Google Scholar]
  128. Veevers, J. J. (2018). Gamburtsev Subglacial Mountains: Age and composition from morainal clasts and U–Pb and Hf‐isotopic analysis of detrital zircons in the Lambert rift, and potential provenance of east Gondwanaland sediments. Earth‐Science Reviews, 180, 206–257.
    [Google Scholar]
  129. Veevers, J. J., Saeed, A., Belousova, E. A., & Griffin, W. L. (2005). U–Pb ages and source composition by Hf‐isotope and trace‐element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton. Earth‐Science Reviews, 68, 245–279.
    [Google Scholar]
  130. Verdel, C., Campbell, M. J., & Allen, C. M. (2021). Detrital zircon petrochronology of Central Australia, and implications for the secular record of zircon trace element composition. Geosphere, 17, 538–560.
    [Google Scholar]
  131. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, v. 9, 1479–1493.
    [Google Scholar]
  132. Vermeesch, P. (2021). On the treatment of discordant detrital zircon U–Pb data. Geochronology, v. 3, 247–257.
    [Google Scholar]
  133. von Eynatten, H., & Dunkl, I. (2012). Assessing the sediment factory: The role of single grain analysis. Earth‐Science Reviews, 115, 97–120.
    [Google Scholar]
  134. Wade, B. P., Barovich, K. M., Hand, M., Scrimgeour, I. R., & Close, D. F. (2006). Evidence for early Mesoproterozoic arc magmatism in the Musgrave block, Central Australia: Implications for Proterozoic crustal growth and tectonic reconstructions of Australia. The Journal of Geology, 114, 43–63.
    [Google Scholar]
  135. Walsh, A. K., Raimondo, T., Kelsey, D. E., Hand, M., Pfitzner, H. L., & Clark, C. (2013). Duration of high‐pressure metamorphism and cooling during the intraplate Petermann orogeny. Gondwana Research, 24, 969–983.
    [Google Scholar]
  136. Watson, E. B., Wark, D. A., & Thomas, J. B. (2006). Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413–433.
    [Google Scholar]
  137. Wohl, E. E., Fuertsch, S. J., & Baker, V. R. (1994). Sedimentary records of late Holocene floods along the Fitzroy and Margaret Rivers, Western Australia. Australian Journal of Earth Sciences, 41, 273–280.
    [Google Scholar]
  138. Xu, J., Stockli, D. F., & Snedden, J. W. (2017). Enhanced provenance interpretation using combined U–Pb and (U–Th)/he double dating of detrital zircon grains from lower Miocene strata, proximal Gulf of Mexico Basin, North America. Earth and Planetary Science Letters, 475, 44–57.
    [Google Scholar]
  139. Zack, T., Stockli, D. F., Luvizotto, G. L., Barth, M. G., Belousova, E., Wolfe, M. R., & Hinton, R. W. (2011). In situ U–Pb rutile dating by LA‐ICP‐MS: 208Pb correction and prospects for geological applications. Contributions to Mineralogy and Petrology, 162, 515–530.
    [Google Scholar]
  140. Zhang, J. X., Mattinson, C. G., Yu, S. Y., & Li, Y. S. (2014). Combined rutile–zircon thermometry and U–Pb geochronology: New constraints on early Paleozoic HP/UHT granulite in the south Altyn Tagh, North Tibet, China. Lithos, 200‐201, 241–257.
    [Google Scholar]
  141. Zhang, P., Najman, Y., Mei, L., Millar, I., Sobel, E. R., Carter, A., Barfod, D., Dhuime, B., Garzanti, E., Govin, G., Vezzoli, G., & Hu, X. (2019). Palaeodrainage evolution of the large rivers of East Asia, and Himalayan‐Tibet tectonics. Earth‐Science Reviews, 192, 601–630.
    [Google Scholar]
  142. Zhang, Z., Tyrrell, S., Li, C., Daly, J. S., Sun, X., & Li, Q. (2014). Pb isotope compositions of detrital K‐feldspar grains in the upper‐middle Yangtze River system: Implications for sediment provenance and drainage evolution. Geochemistry, Geophysics, Geosystems, 15, 2765–2779.
    [Google Scholar]
  143. Zimmermann, S., Mark, C., Chew, D., & Voice, P. J. (2018). Maximising data and precision from detrital zircon U‐Pb analysis by LA‐ICPMS: The use of core‐rim ages and the single‐analysis concordia age. Sedimentary Geology, 375, 5–13.
    [Google Scholar]
  144. Zutterkirch, I. C., Kirkland, C. L., Barham, M., & Elders, C. (2021). Thin‐section detrital zircon geochronology mitigates bias in provenance investigations. Journal of the Geological Society, 179, jgs2021‐070.
    [Google Scholar]
/content/journals/10.1111/bre.12715
Loading
/content/journals/10.1111/bre.12715
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error