1887
Volume 35, Issue 2
  • E-ISSN: 1365-2117
PDF

Abstract

[

Litho‐ and magnetostratigraphy of the early Eocene Xining Basin strata.

, Abstract

The Cenozoic strata of the Xining Basin, NE Tibet, have provided crucial records for understanding the tectonic and palaeo‐environmental evolution of the region. Yet, the age of the lower part of the sedimentary stratigraphy and, consequently, the early tectonic evolution of the basin remain debated. Here, we present the litho‐ and magnetostratigraphy of various early Eocene sections throughout the Xining Basin independently constrained by the U–Pb radiometric age of a carbonate bed. Our study extends the dated stratigraphy down to 53.0 Ma (C24n.1r) and reveals highly variable accumulation rates during the early Eocene ranging from 0.5 to 8 cm/ka. This is in stark contrast to the low but stable accumulation rates (2–3 cm/ka) observed throughout the overlying Palaeogene and Neogene strata. Such a pattern of basin infill is not characteristic of flexural subsidence as previously proposed, but rather supports an extensional origin of the Xining Basin with multiple depocentres, which subsequently coalesced into a more stable and slowly subsiding basin. Whether this extension was related to the far‐field effects of the subducting Pacific Plate or the India–Asia collision remains to be confirmed by future studies.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12720
2023-03-20
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bre/35/2/bre12720.html?itemId=/content/journals/10.1111/bre.12720&mimeType=html&fmt=ahah

References

  1. Abels, H. A., Dupont‐Nivet, G., Xiao, G., Bosboom, R., & Krijgsman, W. (2011). Step‐wise change of Asian interior climate preceding the Eocene–Oligocene Transition (EOT). Palaeogeography, Palaeoclimatology, Palaeoecology, 299(3), 399–412. https://doi.org/10.1016/j.palaeo.2010.11.028
    [Google Scholar]
  2. Ahmed, I. A., & Maher, B. A. (2018). Identification and paleoclimatic significance of magnetite nanoparticles in soils. Proceedings of the National Academy of Sciences of the United States of America, 115(8), 1736–1741. https://doi.org/10.1073/pnas.1719186115
    [Google Scholar]
  3. Bosboom, R. E., Abels, H. A., Hoorn, C., van den Berg, B. C., Guo, Z., & Dupont‐Nivet, G. (2014). Aridification in continental Asia after the middle Eocene climatic optimum (MECO). Earth and Planetary Science Letters, 389, 34–42. https://doi.org/10.1016/j.epsl.2013.12.014
    [Google Scholar]
  4. Bureau of Geological and Mineral Resources of Qinghai Province (BGMRQP) . (1965). Regional geological survey reports of Ledu sheet (1:200000), Qinghai Province, P.R. China (in Chinese).
    [Google Scholar]
  5. Chen, X., Dong, S., Shi, W., Zuza, A. V., Li, Z., Chen, P., Liu, J., Hu, J., & Han, B. (2021). Magnetostratigraphic ages of the Cenozoic Weihe and Shanxi grabens in North China and their tectonic implications. Tectonophysics, 813, 228914. https://doi.org/10.1016/j.tecto.2021.228914
    [Google Scholar]
  6. Cheng, F., Jolivet, M., Guo, Z., Wang, L., Zhang, C., & Li, X. (2021). Cenozoic evolution of the Qaidam basin and implications for the growth of the northern Tibetan plateau: A review. Earth‐Science Reviews, 220, 103730. https://doi.org/10.1016/j.earscirev.2021.103730
    [Google Scholar]
  7. Clark, M. K., Farley, K. A., Zheng, D., Wang, Z., & Duvall, A. R. (2010). Early Cenozoic faulting of the northern Tibetan plateau margin from apatite (U–Th)/He ages. Earth and Planetary Science Letters, 296(1), 78–88. https://doi.org/10.1016/j.epsl.2010.04.051
    [Google Scholar]
  8. Cong, F., Tian, J., Hao, F., Licht, A., Liu, Y., Cao, Z., & Eiler, J. M. (2021). A thermal pulse induced by a Permian mantle plume in the Tarim Basin, Northwest China: Constraints from clumped isotope thermometry and In situ calcite U‐Pb dating. Journal of Geophysical Research: Solid Earth, 126(4), e2020JB020636. https://doi.org/10.1029/2020JB020636
    [Google Scholar]
  9. Craddock, W., Kirby, E., & Zhang, H. (2011). Late Miocene–Pliocene range growth in the interior of the northeastern Tibetan Plateau. Lithosphere, 3(6), 420–438. https://doi.org/10.1130/L159.1
    [Google Scholar]
  10. Dai, S., Fang, X., Dupont‐Nivet, G., Song, C., Gao, J., Krijgsman, W., Langereis, C., & Zhang, W. (2006). Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan plateau. Journal of Geophysical Research: Solid Earth, 111(B11). https://doi.org/10.1029/2005JB004187
    [Google Scholar]
  11. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8(2), 105–123. https://doi.org/10.1046/j.1365‐2117.1996.01491.x
    [Google Scholar]
  12. Deng, C., Zhu, R., Verosub, K. L., Singer, M. J., & Vidic, N. J. (2004). Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. Journal of Geophysical Research: Solid Earth, 109(B1). https://doi.org/10.1029/2003JB002532
    [Google Scholar]
  13. Dupont‐Nivet, G., Horton, B. K., Butler, R. F., Wang, J., Zhou, J., & Waanders, G. L. (2004). Paleogene clockwise tectonic rotation of the Xining‐Lanzhou region, northeastern Tibetan plateau. Journal of Geophysical Research: Solid Earth, 109(B4). https://doi.org/10.1029/2003JB002620
    [Google Scholar]
  14. Dupont‐Nivet, G., Krijgsman, W., Langereis, C. G., Abels, H. A., Dai, S., & Fang, X. (2007). Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature, 445(7128), 635–638.
    [Google Scholar]
  15. Dupont‐Nivet, G., Hoorn, C., & Konert, M. (2008). Tibetan uplift prior to the Eocene‐Oligocene climate transition: Evidence from pollen analysis of the Xining Basin. Geology, 36(12), 987–990. https://doi.org/10.1130/G25063A.1
    [Google Scholar]
  16. Dupont‐Nivet, G., Dai, S., Fang, X., Krijgsman, W., Erens, V., Reitsma, M., & Langereis, C. (2008). Timing and distribution of tectonic rotations in the northeastern Tibetan plateau. Investigations into the Tectonics of the Tibetan Plateau, 444, 73–87.
    [Google Scholar]
  17. Duvall, A. R., Clark, M. K., van der Pluijm, B. A., & Li, C. (2011). Direct dating of Eocene reverse faulting in northeastern Tibet using Ar‐dating of fault clays and low‐temperature thermochronometry. Earth and Planetary Science Letters, 304(3–4), 520–526. https://doi.org/10.1016/j.epsl.2011.02.028
    [Google Scholar]
  18. Fan, L. G., Meng, Q. R., Wu, G. L., Wei, H. H., Du, Z. M., & Wang, E. (2019). Paleogene crustal extension in the eastern segment of the NE Tibetan plateau. Earth and Planetary Science Letters, 514, 62–74. https://doi.org/10.1016/j.epsl.2019.02.036
    [Google Scholar]
  19. Fang, X., Garzione, C., Van der Voo, R., Li, J., & Fan, M. (2003). Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth and Planetary Science Letters, 210(3–4), 545–560. https://doi.org/10.1016/S0012‐821X(03)00142‐0
    [Google Scholar]
  20. Fang, X., Zan, J., Appel, E., Lu, Y., Song, C., Dai, S., & Tuo, S. (2015). An Eocene–Miocene continuous rock magnetic record from the sediments in the Xining Basin, NW China: Indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift. Geophysical Journal International, 201(1), 78–89. https://doi.org/10.1093/gji/ggv002
    [Google Scholar]
  21. Fang, X., Wang, J., Zhang, W., Zan, J., Song, C., Yan, M., Appel, E., Zhang, T., Wu, F., Yang, Y., & Lu, Y. (2016). Tectonosedimentary evolution model of an intracontinental flexural (foreland) basin for paleoclimatic research. Global and Planetary Change, 145, 78–97. https://doi.org/10.1016/j.gloplacha.2016.08.015
    [Google Scholar]
  22. Fang, X., Fang, Y., Zan, J., Zhang, W., Song, C., Appel, E., Meng, Q., Miao, Y., Dai, S., Lu, Y., & Zhang, T. (2019). Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution. Earth‐Science Reviews, 190, 460–485. https://doi.org/10.1016/j.earscirev.2019.01.021
    [Google Scholar]
  23. Fang, X., Galy, A., Yang, Y., Zhang, W., Ye, C., & Song, C. (2019). Paleogene global cooling–induced temperature feedback on chemical weathering, as recorded in the northern Tibetan plateau. Geology, 47(10), 992–996.
    [Google Scholar]
  24. Feng, Z., Zhang, W., Zhang, T., Fang, X., Zan, J., Yan, M., Song, C., Li, T., Ning, W., & Wang, H. (2021). Early‐middle Eocene hydroclimate variations recorded by environmental magnetism in the Linxia Basin, NE Tibetan plateau. Paleoceanography and Paleoclimatology, 36(11), e2021PA004338. https://doi.org/10.1029/2021PA004338
    [Google Scholar]
  25. Feng, Z., Zhang, W., Fang, X., Zan, J., Zhang, T., Song, C., & Yan, M. (2022). Eocene deformation of the NE Tibetan plateau: Indications from magnetostratigraphic constraints on the oldest sedimentary sequence in the Linxia Basin. Gondwana Research, 101, 77–93. https://doi.org/10.1016/j.gr.2021.07.027
    [Google Scholar]
  26. Fisher, R. (1953). Dispersion on a sphere. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 217(1130), 295–305. https://doi.org/10.1098/rspa.1953.0064
    [Google Scholar]
  27. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12(3–4), 195–218. https://doi.org/10.1111/j.1365‐2117.2000.00121.x
    [Google Scholar]
  28. Gilder, S. A., Keller, G. R., Luo, M., & Goodell, P. C. (1991). Eastern Asia and the western Pacific timing and spatial distribution of rifting in China. Tectonophysics, 197(2–4), 225–243. https://doi.org/10.1016/0040‐1951(91)90043‐RGet
    [Google Scholar]
  29. He, C. C., Zhang, Y. Q., Li, S. K., Wang, K., & Ji, J. Q. (2021). Magnetostratigraphic study of a late cretaceous−Paleogene succession in the eastern Xining basin, NE Tibet: Constraint on the timing of major tectonic events in response to the India‐Eurasia collision. GSA Bulletin, 133, 2457–2484. https://doi.org/10.1130/B35874.1
    [Google Scholar]
  30. He, P., Song, C., Wang, Y., Chen, L., Chang, P., Wang, Q., & Ren, B. (2017). Cenozoic exhumation in the Qilian Shan, northeastern Tibetan plateau: Evidence from detrital fission track thermochronology in the Jiuquan Basin. Journal of Geophysical Research ‐ Solid Earth, 122, 6910–6927. https://doi.org/10.1002/2017JB014216
    [Google Scholar]
  31. He, P., Song, C., Wang, Y., Meng, Q., Chen, L., Yao, L., Huang, R., Feng, W., & Chen, S. (2018). Cenozoic deformation history of the Qilian Shan (northeastern Tibetan plateau) constrained by detrital apatite fission‐track thermochronology in the northeastern Qaidam Basin. Tectonophysics, 749, 1–11. https://doi.org/10.1016/j.tecto.2018.10.017
    [Google Scholar]
  32. He, P., Song, C., Wang, Y., Meng, Q., Wang, D., Feng, Y., Chen, L., & Feng, W. (2020). Early Cenozoic exhumation in the Qilian Shan, northeastern margin of the Tibetan plateau: Insights from detrital apatite fission track thermochronology. Terra Nova, 32(6), 415–424. https://doi.org/10.1111/ter.12478
    [Google Scholar]
  33. Hoorn, C., Straathof, J., Abels, H. A., Xu, Y., Utescher, T., & Dupont‐Nivet, G. (2012). A late Eocene palynological record of climate change and Tibetan plateau uplift (Xining Basin, China). Palaeogeography, Palaeoclimatology, Palaeoecology, 344, 16–38. https://doi.org/10.1016/j.palaeo.2012.05.011
    [Google Scholar]
  34. Horton, B. K., Dupont‐Nivet, G., Zhou, J., Waanders, G. L., Butler, R. F., & Wang, J. (2004). Mesozoic‐Cenozoic evolution of the Xining‐Minhe and Dangchang basins, northeastern Tibetan plateau: Magnetostratigraphic and biostratigraphic results. Journal of Geophysical Research: Solid Earth, 109(B4). https://doi.org/10.1029/2003JB002913
    [Google Scholar]
  35. Hough, B. G., Garzione, C. N., Wang, Z., Lease, R. O., Nie, J., Horton, B. K., & Hoke, G. D. (2014). Timing and spatial patterns of basin segmentation and climate change in northeastern Tibet. Toward an improved understanding of uplift mechanisms and the elevation history of the Tibetan Plateau. Geological Society of America Special Paper, 507, 129–153.
    [Google Scholar]
  36. Hu, X., Garzanti, E., Wang, J., Huang, W., An, W., & Webb, A. (2016). The timing of India‐Asia collision onset–facts, theories, controversies. Earth‐Science Reviews, 160, 264–299. https://doi.org/10.1016/j.earscirev.2016.07.014
    [Google Scholar]
  37. Ji, J., Zhang, K., Clift, P. D., Zhuang, G., Song, B., Ke, X., & Xu, Y. (2017). High‐resolution magnetostratigraphic study of the Paleogene‐Neogene strata in the northern Qaidam Basin: Implications for the growth of the northeastern Tibetan plateau. Gondwana Research, 46, 141–155. https://doi.org/10.1016/j.gr.2017.02.015
    [Google Scholar]
  38. Jolivet, M., Brunel, M., Seward, D., Xu, Z., Yang, J., Roger, F., Tapponnier, P., Malavieille, J., Arnaud, N., & Wu, C. (2001). Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission‐track constraints. Tectonophysics, 343(1–2), 111–134. https://doi.org/10.1016/S0040‐1951(01)00196‐2
    [Google Scholar]
  39. Kapp, P., & DeCelles, P. G. (2019). Mesozoic–Cenozoic geological evolution of the Himalayan‐Tibetan orogen and working tectonic hypotheses. American Journal of Science, 319(3), 159–254. https://doi.org/10.2475/03.2019.01
    [Google Scholar]
  40. Kirschvink, J. L. (1980). The least‐squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal International, 62(3), 699–718. https://doi.org/10.1111/j.1365‐246X.1980.tb02601.x
    [Google Scholar]
  41. Lease, R. O., Burbank, D. W., Clark, M. K., Farley, K. A., Zheng, D., & Zhang, H. (2011). Middle Miocene reorganization of deformation along the northeastern Tibetan plateau. Geology, 39(4), 359–362. https://doi.org/10.1130/G31356.1
    [Google Scholar]
  42. Lease, R. O., Burbank, D. W., Hough, B., Wang, Z., & Yuan, D. (2012). Pulsed Miocene range growth in northeastern Tibet: Insights from Xunhua Basin magnetostratigraphy and provenance. Bulletin, 124(5–6), 657–677. https://doi.org/10.1130/B30524.1
    [Google Scholar]
  43. Li, J. X., Yue, L. P., Roberts, A. P., Hirt, A. M., Pan, F., Guo, L., Xu, Y., Xi, R. G., Guo, L., Qiang, X. K., Gai, C. C., Jiang, Z. X., Sun, Z. M., & Liu, Q. S. (2018). Global cooling and enhanced Eocene Asian mid‐latitude interior aridity. Nature Communications, 9(1), 3026. https://doi.org/10.1038/s41467‐018‐05415‐x
    [Google Scholar]
  44. Li, B., Zuza, A. V., Chen, X., Hu, D., Shao, Z., Qi, B., Wang, Z., Levy, D. A., & Xiong, X. (2020). Cenozoic multi‐phase deformation in the Qilian Shan and out‐of‐sequence development of the northern Tibetan plateau. Tectonophysics, 782, 228423. https://doi.org/10.1016/j.tecto.2020.228423
    [Google Scholar]
  45. Licht, A., Van Cappelle, M., Abels, H. A., Ladant, J. B., Trabucho‐Alexandre, J., France‐Lanord, C., Donnadieu, Y., Vandenberghe, J., Rigaudier, T., Lécuyer, C., Terry, D., Jr., Adriaens, R., Boura, A., Guo, Z., Soe, A. N., Quade, J., Dupont‐Nivet, G., & Jaeger, J.‐J. (2014). Asian monsoons in a late Eocene greenhouse world. Nature, 513(7519), 501–506. https://doi.org/10.1038/nature13704
    [Google Scholar]
  46. Licht, A., Dupont‐Nivet, G., Pullen, A., Kapp, P., Abels, H. A., Lai, Z., Guo, Z., Abell, J., & Giesler, D. (2016). Resilience of the Asian atmospheric circulation shown by Paleogene dust provenance. Nature Communications, 7, 12390. https://doi.org/10.1038/ncomms12390
    [Google Scholar]
  47. Licht, A., Dupont‐Nivet, G., Meijer, N., Rugenstein, J. C., Schauer, A., Fiebig, J., Mulch, A., Hoorn, C., & Guo, Z. (2020). Decline of soil respiration in northeastern Tibet through the transition into the Oligocene icehouse. Palaeogeography, Palaeoclimatology, Palaeoecology, 560, 110016. https://doi.org/10.1016/j.palaeo.2020.110016
    [Google Scholar]
  48. Licht, A., Win, Z., Westerweel, J., Cogné, N., Morley, C. K., Chantraprasert, S., Poblete, F., Ugrai, T., Nelson, B., Aung, D. W., & Dupont‐Nivet, G. (2020). Magmatic history of Central Myanmar and implications for the evolution of the Burma terrane. Gondwana Research, 87, 303–319. https://doi.org/10.1016/j.gr.2020.06.016
    [Google Scholar]
  49. Liu, J., Zhang, P., Lease, R. O., Zheng, D., Wan, J., Wang, W., & Zhang, H. (2013). Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range–Weihe graben: Insights from apatite fission track thermochronology. Tectonophysics, 584, 281–296. https://doi.org/10.1016/j.tecto.2012.01.025
    [Google Scholar]
  50. Liu, S., Zhang, G., Pan, F., Zhang, H., Wang, P., Wang, K., & Wang, Y. (2013). Timing of Xunhua and guide basin development and growth of the northeastern Tibetan plateau, China. Basin Research, 25(1), 74–96. https://doi.org/10.1111/j.1365‐2117.2012.00548.x
    [Google Scholar]
  51. Maher, B. A., & Taylor, R. M. (1988). Formation of ultrafine‐grained magnetite in soils. Nature, 336(6197), 368–370. https://doi.org/10.1038/336368a0
    [Google Scholar]
  52. McFadden, P. L., & McElhinny, M. W. (1990). Classification of the reversal test in palaeomagnetism. Geophysical Journal International, 103(3), 725–729. https://doi.org/10.1111/j.1365‐246X.1990.tb05683.x
    [Google Scholar]
  53. Meijer, N., Dupont‐Nivet, G., Abels, H. A., Kaya, M. Y., Licht, A., Xiao, M., Zhang, Y., Roperch, P., Poujol, M., Lai, Z., & Guo, Z. (2019). Central Asian moisture modulated by proto‐Paratethys Sea incursions since the early Eocene. Earth and Planetary Science Letters, 510, 73–84. https://doi.org/10.1016/j.epsl.2018.12.031
    [Google Scholar]
  54. Meijer, N., Dupont‐Nivet, G., Barbolini, N., Woutersen, A., Rohrmann, A., Zhang, Y., Liu, X. J., Licht, A., Abels, H. A., Hoorn, C., Tjallingii, R., Andermann, C., Dietze, M., & Nowaczyk, N. (2021). Loess‐like dust appearance at 40 Ma in Central China. Paleoceanography and Paleoclimatology, 36(3), e2020PA003993. https://doi.org/10.1029/2020PA003993
    [Google Scholar]
  55. Mercier, J. L., Vergely, P., Zhang, Y. Q., Hou, M. J., Bellier, O., & Wang, Y. M. (2013). Structural records of the late Cretaceous–Cenozoic extension in Eastern China and the kinematics of the Southern Tan‐Lu and Qinling fault zone (Anhui and Shaanxi provinces, PR China). Tectonophysics, 582, 50–75. https://doi.org/10.1016/j.tecto.2012.09.015
    [Google Scholar]
  56. Nie, J., Ren, X., Saylor, J. E., Su, Q., Horton, B. K., Bush, M. A., Chen, W., & Pfaff, K. (2020). Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam Basin, NE Tibetan Plateau. GSA Bulletin, 132(1–2), 310–320. https://doi.org/10.1130/B35175.1
    [Google Scholar]
  57. North, C. P., & Davidson, S. K. (2012). Unconfined alluvial flow processes: Recognition and interpretation of their deposits, and the significance for palaeogeographic reconstruction. Earth‐Science Reviews, 111(1), 199–223. https://doi.org/10.1016/j.earscirev.2011.11.008
    [Google Scholar]
  58. Northrup, C. J., Royden, L. H., & Burchfiel, B. C. (1995). Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology, 23(8), 719–722. https://doi.org/10.1130/0091‐7613(1995)023<0719:MOTPPR>2.3.CO;2
    [Google Scholar]
  59. Page, M., Licht, A., Dupont‐Nivet, G., Meijer, N., Barbolini, N., Hoorn, C., Schauer, A., Huntington, K., Bajnai, D., Fiebig, J., & Mulch, A. (2019). Synchronous cooling and decline in monsoonal rainfall in northeastern Tibet during the fall into the Oligocene icehouse. Geology, 47(3), 203–206. https://doi.org/10.1130/G45480.1
    [Google Scholar]
  60. Qinghai Bureau of Geology and Mineral Resources (QBGMR) . (1985). Geologic maps of the Duoba, Gaodian, Tianjiazai, and Xining regions (4 sheets), with regional geologic report (1:50,000 scale) (p. 199).
    [Google Scholar]
  61. Ratschbacher, L., Hacker, B. R., Calvert, A., Webb, L. E., Grimmer, J. C., McWilliams, M. O., Ireland, T., Dong, S., & Hu, J. (2003). Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 366(1–2), 1–53. https://doi.org/10.1016/S0040‐1951(03)00053‐2
    [Google Scholar]
  62. Ren, J., Tamaki, K., Li, S., & Junxia, Z. (2002). Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas. Tectonophysics, 344(3–4), 175–205. https://doi.org/10.1016/S0040‐1951(01)00271‐2
    [Google Scholar]
  63. Roberts, A. P., Cui, Y., & Verosub, K. L. (1995). Wasp‐waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems. Journal of Geophysical Research: Solid Earth, 100(B9), 17909–17924. https://doi.org/10.1029/95JB00672
    [Google Scholar]
  64. Ruan, X., Yang, Y., Galy, A., Fang, X., Jin, Z., Zhang, F., Yang, R., Deng, L., Meng, Q., Ye, C., & Zhang, W. (2019). Evidence for early (≥12.7 Ma) eolian dust impact on river chemistry in the northeastern Tibetan plateau. Earth and Planetary Science Letters, 515, 79–89. https://doi.org/10.1016/j.epsl.2019.03.022
    [Google Scholar]
  65. Ryan, W. B. F., Carbotte, S. M., Coplan, J., O'Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global multi‐resolution topography (GMRT) synthesis data set. Geochemistry, Geophysics, Geosystems, 10, Q03014. https://doi.org/10.1029/2008GC002332
    [Google Scholar]
  66. Smoot, J. P., & Lowenstein, T. K. (1991). Depositional environments of non‐marine evaporites. Developments in Sedimentology, 50, 189–347. https://doi.org/10.1016/S0070‐4571(08)70261‐9
    [Google Scholar]
  67. Speijer, R. P., Pälike, H., Hollis, C. J., Hooker, J. J., & Ogg, J. G. (2020). The paleogene period. In F. M.Gradstein, J. G.Ogg, M. D.Schmitz, G. M.Ogg, Geologic Time Scale 2020 (Eds.), Geologic time scale 2020 (pp. 1087–1140). Elsevier.
    [Google Scholar]
  68. Staisch, L. M., Niemi, N. A., Clark, M. K., & Chang, H. (2020). The Cenozoic evolution of crustal shortening and left‐lateral shear in the central east Kunlun Shan: Implications for the uplift history of the Tibetan plateau. Tectonics, 39, e2020TC006065. https://doi.org/10.1029/2020TC006065
    [Google Scholar]
  69. Talbot, M. R., Holm, K., & Williams, M. A. J. (1994). Sedimentation in low‐gradient desert margin systems: A comparison of the late Triassic of Northwest Somerset (England) and the late quaternary of east‐Central Australia. Geological Society of America Special Papers, 289, 97–117.
    [Google Scholar]
  70. Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., & Jingsui, Y. (2001). Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547), 1671–1677. https://doi.org/10.1126/science.105978
    [Google Scholar]
  71. Wang, W., Kirby, E., Peizhen, Z., Dewen, Z., Guangliang, Z., Huiping, Z., Wenjun, Z., & Chizhang, C. (2013). Tertiary basin evolution along the northeastern margin of the Tibetan plateau: Evidence for basin formation during Oligocene transtension. Bulletin, 125(3–4), 377–400. https://doi.org/10.1130/B30611.1
    [Google Scholar]
  72. Wang, W., Zhang, P., Liu, C., Zheng, D., Yu, J., Zheng, W., Wang, Y., Zhang, H., & Chen, X. (2016). Pulsed growth of the west Qinling at ~30 Ma in northeastern Tibet: Evidence from Lanzhou Basin magnetostratigraphy and provenance. Journal of Geophysical Research: Solid Earth, 121(11), 7754–7774. https://doi.org/10.1002/2016JB013279
    [Google Scholar]
  73. Wang, L., Cheng, F., Zuza, A. V., Jolivet, M., Liu, Y., Guo, Z., Li, X., & Zhang, C. (2021). Diachronous growth of the northern Tibetan plateau derived from flexural modeling. Geophysical Research Letters, 48(8), e2020GL092346. https://doi.org/10.1029/2020GL092346
    [Google Scholar]
  74. Wang, W., Zheng, W., Zhang, P., Li, Q., Kirby, E., Yuan, D., Zheng, D., Liu, C., Zhang, H., & Pang, J. (2017). Expansion of the Tibetan Plateau during the Neogene. Nature Communications, 8(1), 1–12. https://doi.org/10.1038/ncomms15887
    [Google Scholar]
  75. Weilin, Z., Tao, Z., Chunhui, S., Appel, E., Ziqiang, M., Yahui, F., Yin, L., Qingquan, M., Rongsheng, Y., Dawen, Z., Bingshuai, L., & Jiao, L. (2017). Termination of fluvial‐alluvial sedimentation in the Xining Basin, NE Tibetan Plateau, and its subsequent geomorphic evolution. Geomorphology, 297, 86–99. https://doi.org/10.1016/j.geomorph.2017.09.008
    [Google Scholar]
  76. Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., … Zachos, J. C. (2020). An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science, 369(6509), 1383–1387. https://doi.org/10.1126/science.aba6853
    [Google Scholar]
  77. Xiao, G., Guo, Z., Dupont‐Nivet, G., Lu, H., Wu, N., Ge, J., Hao, Q., Peng, S., Li, F., Abels, H. A., & Zhang, K. (2012). Evidence for northeastern Tibetan plateau uplift between 25 and 20 Ma in the sedimentary archive of the Xining Basin, northwestern China. Earth and Planetary Science Letters, 317, 185–195. https://doi.org/10.1016/j.epsl.2011.11.008
    [Google Scholar]
  78. Yang, R., Fang, X., Meng, Q., Zan, J., Zhang, W., Deng, T., Yang, Y., Ruan, X., Yang, L., & Li, B. (2017). Paleomagnetic constraints on the middle Miocene‐early Pliocene stratigraphy in the Xining Basin, NE Tibetan plateau, and the geologic implications. Geochemistry, Geophysics, Geosystems, 18(11), 3741–3757. https://doi.org/10.1002/2017GC006945
    [Google Scholar]
  79. Yang, R., Yang, Y., Fang, X., Ruan, X., Galy, A., Ye, C., Meng, Q., & Han, W. (2019). Late miocene intensified tectonic uplift and climatic aridification on the northeastern Tibetan plateau: Evidence from clay mineralogical and geochemical records in the Xining Basin. Geochemistry, Geophysics, Geosystems, 20(2), 829–851.
    [Google Scholar]
  80. Yang, F., Guo, Z., Zhang, C., Abu Sadat Md, S., He, Z., & Deng, C. (2019). High‐resolution Eocene magnetostratigraphy of the Xijigou section: Implications for the infilling process of Xining Basin, northeastern Tibetan plateau. Journal of Geophysical Research: Solid Earth, 124(8), 7588–7603. https://doi.org/10.1029/2019JB017624
    [Google Scholar]
  81. Yin, A., Dang, Y. Q., Wang, L. C., Jiang, W. M., Zhou, S. P., Chen, X. H., Gehrels, G. E., & McRivette, M. W. (2008). Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (part 1): The southern Qilian Shan‐Nan Shan thrust belt and northern Qaidam basin. Geological Society of America Bulletin, 120(7–8), 813–846. https://doi.org/10.1130/B26180.1
    [Google Scholar]
  82. Yuan, D. Y., Ge, W. P., Chen, Z. W., Li, C. Y., Wang, Z. C., Zhang, H. P., Zhang, P. Z., Zheng, D. W., Zheng, W. J., Craddock, W. H., Dayem, K. E., Duvall, A. R., Hough, B. G., Lease, R. O., Champagnac, J. D., Burbank, D. W., Clark, M. K., Farley, K. A., Garzione, C. N., … Roe, G. H. (2013). The growth of northeastern Tibet and its relevance to large‐scale continental geodynamics: A review of recent studies. Tectonics, 32(5), 1358–1370. https://doi.org/10.1002/tect.20081
    [Google Scholar]
  83. Zhang, Y. Q., Ma, Y., Yang, N., Shi, W., & Dong, S. (2003). Cenozoic extensional stress evolution in North China. Journal of Geodynamics, 36(5), 591–613. https://doi.org/10.1016/j.jog.2003.08.001
    [Google Scholar]
  84. Zhang, H. P., Craddock, W. H., Lease, R. O., Wang, W. T., Yuan, D. Y., Zhang, P. Z., Molnar, P., Zheng, D. W., & Zheng, W. J. (2012). Magnetostratigraphy of the Neogene Chaka basin and its implications for mountain building processes in the north‐eastern Tibetan plateau. Basin Research, 24(1), 31–50. https://doi.org/10.1111/j.1365‐2117.2011.00512.x
    [Google Scholar]
  85. Zhang, J., & Cunningham, D. (2013). Polyphase transpressional development of a NNE‐striking basement‐cored anticline in the Xining Basin, northeastern Qinghai–Tibetan Plateau. Geological Magazine, 150(4), 626–638. https://doi.org/10.1017/S0016756812000866
    [Google Scholar]
  86. Zhang, J., Wang, Y., Zhang, B., & Zhang, Y. (2016). Tectonics of the Xining Basin in NW China and its implications for the evolution of the NE Qinghai‐Tibetan plateau. Basin Research, 28(2), 159–182. https://doi.org/10.1111/bre.12104
    [Google Scholar]
  87. Zhang, Y., Dong, S., & Li, J. (2019). Late Paleogene sinistral strike‐slip system along east Qinling and in southern North China: Implications for interaction between collision‐related block trans‐rotation and subduction‐related back‐arc extension in East China. Tectonophysics, 769, 228181. https://doi.org/10.1016/j.tecto.2019.228181
    [Google Scholar]
  88. Zhuang, G., Johnstone, S. A., Hourigan, J., Ritts, B., Robinson, A., & Sobel, E. R. (2018). Understanding the geologic evolution of northern Tibetan plateau with multiple thermochronometers. Gondwana Research, 58, 195–210. https://doi.org/10.1016/j.gr.2018.02.014
    [Google Scholar]
  89. Zuza, A. V., & Yin, A. (2016). Continental deformation accommodated by non‐rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet. Tectonophysics, 677, 227–240. https://doi.org/10.1016/j.tecto.2016.04.007
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12720
Loading
/content/journals/10.1111/bre.12720
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Eocene; geochronology; northeast Tibet; palaeomagnetism; stratigraphy; Xining Basin

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error