1887
Volume 35, Issue 2
  • E-ISSN: 1365-2117

Abstract

[

Schematic diagram showing the formation and evolution steps of the fault‐controlled slope‐parallel submarine channel.

, Abstract

Submarine channels act as the main conduits for the transport of sediment to deep‐water basins by sediment gravity flows. The interplay between fault‐related deformation and the initiation and development of the channels is poorly known. Here, we present the identification, formation and evolution of the Miocene slope‐parallel channel by employing 3D seismic reflection, wireline‐log and core data in the eastern slope of Yinggehai Basin, South China Sea. Based on the lengths and plan‐view shapes, a total of three different types of fault‐associated slope‐parallel depressions have been identified. The depressions were formed in the fault zone and controlled by the reactivation of the underlying older faults. Among them, Type‐1 depressions are short (<20 km) oval or circle shaped possessing only one depocenter. Type‐2 depressions are elongated (25–70 km), and usually have multiple depocenters. Type‐3 depressions, which are usually connected by slope‐perpendicular channels in the head and middle, are longer (more than 190 km) and connect shallow and deep‐water basins. The analysis of morphology, erosivity and material transport shows that Type‐3 depressions are fully fledged channels. Type‐1 and Type‐2 depressions are channel precursors representing the initial stage of channel evolution. With this motive, a model for the initiation and evolution of slope‐parallel submarine channels controlled by strike‐slip‐extensional faults is presented. Unlike the previous investigations which suggest that erosion takes place at the inception of submarine channel formation, the fault‐controlled slope‐parallel channel is mainly controlled by faulting and has no initial erosive base and does not develop levees. The depressions are extended and elongated by the continuous fault activity. It was not until the slope‐parallel depression connected with large‐scale slope‐perpendicular channels transporting materials into the depression via erosive turbidity currents that it evolved into a channel‐levee system. This study is of global importance for understanding submarine channel generation and evolution since the fault‐controlled slope‐parallel channels have been found in tectonic active basins worldwide.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12724
2023-03-20
2024-04-19
Loading full text...

Full text loading...

References

  1. Andresen, K. J., Huuse, M., & Clausen, O. R. (2008). Morphology and distribution of Oligocene and Miocene pockmarks in the Danish North Sea—Implications for bottom current activity and fluid migration. Basin Research, 20, 445–466.
    [Google Scholar]
  2. Antobreh, A. A., & Krastel, S. (2006). Morphology, seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania: A newly discovered canyon preserved‐off a major arid climatic region. Marine and Petroleum Geology, 23, 37–59.
    [Google Scholar]
  3. Bouroullec, R., & Weimer, P. (2017). Geometry and kinematics of Neogene allochthonous salt systems in the Mississippi Canyon, Atwater Valley, western Lloyd Ridge, and western DeSoto Canyon protraction areas, northern deep‐water Gulf of Mexico. AAPG Bulletin, 101, 1003–1034.
    [Google Scholar]
  4. Cao, L. C., Jiang, T., Wang, Z. F., Zhang, Y. Z., & Sun, H. (2015). Provenance of Upper Miocene sediments in the Yinggehai and Qiongdongnan basins, northwestern South China Sea: Evidence from REE, heavy minerals and zircon U–Pb ages. Marine Geology, 361, 136–146.
    [Google Scholar]
  5. Chen, H., Xie, X., Van Rooij, D., Vandorpe, T., Su, M., & Wang, D. (2014). Depositional characteristics and processes of alongslope currents related to a seamount on the northwestern margin of the Northwest Sub‐Basin, South China Sea. Marine Geology, 355, 36–53.
    [Google Scholar]
  6. Clark, I. R., & Cartwright, J. A. (2011). Key controls on submarine channel development in structurally active settings. Marine and Petroleum Geology, 28, 1333–1349.
    [Google Scholar]
  7. Clark, J. D., & Pickering, K. T. (1996). Architectural elements and growth patterns of submarine channels: Application to hydrocarbon exploration. AAPG Bulletin, 80, 194–221.
    [Google Scholar]
  8. Covault, J. A., Kostic, S., Paull, C. K., Ryan, H. F., & Fildani, A. (2014). Submarine channel initiation, filling and maintenance from sea‐floor geomorphology and morphodynamic modelling of cyclic steps. Sedimentology, 61, 1031–1054.
    [Google Scholar]
  9. Crossey, L. J., Ficher, T. P., Jonathan Patchett, P., Karlstrom, K. E., Hilton, D. R., Newell, D. L., Huntoon, P., Reynolds, A. C., & Leeuw, G. A. M. (2006). Dissected hydrologic system at the Grand Canyon: Interaction between deeply derived fluids and plateau aquifer waters in modern springs and travertine. Geology, 34, 25–28.
    [Google Scholar]
  10. Deptuck, M. E., Sylvester, Z., Pirmez, C., & O'Byrne, C. (2007). Migration‐aggradation history and 3‐D seismic geomorphology of submarine channels in the Pleistocene Beninmajor Canyon, western Niger Delta slope. Marine and Petroleum Geology, 24, 406–433.
    [Google Scholar]
  11. Fan, C. W. (2018). Tectonic deformation features and petroleum geological significance in Yinggehai large strike‐slip basin, South China Sea. Petroleum Exploration and Development, 45, 190–199.
    [Google Scholar]
  12. Fildani, A., Hubbard, S. M., Covault, J. A., Maier, K. L., Romans, B. W., Traer, M., & Rowland, J. C. (2013). Erosion at inception of deep‐sea channels. Marine and Petroleum Geology, 41, 48–61.
    [Google Scholar]
  13. Fildani, A., Normark, W. R., Kostic, S., & Parker, G. (2006). Channel formation by flow stripping: Large‐scale scour features along the Monterey East Channel and their relation to sediment waves. Sedimentology, 53, 1265–1287.
    [Google Scholar]
  14. Fossen, H., & Rotevatn, A. (2016). Fault linkage and relay structures in extensional settings—A review. Earth‐Science Reviews, 154, 14–28.
    [Google Scholar]
  15. Gamberi, F., Rovere, M., & Marani, M. P. (2011). Mass‐transport complex evolution in a tectonically active margin (Gioia Basin, southeastern Tyrrhenian Sea). Marine Geology, 279, 98–110.
    [Google Scholar]
  16. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218.
    [Google Scholar]
  17. Ghiglione, M. C., Likeman, J., Barberón, V., Beatriz Giambiagi, L., Aguirre‐Urreta, B., & Suarez, F. (2014). Geodynamic context for the deposition of coarse‐grained deep‐water axial channel systems in the Patagonian Andes. Basin Research, 26, 726–745.
    [Google Scholar]
  18. Gong, C. L., Wang, Y. M., Xu, S., Pickering, K. T., Peng, X. C., Li, W. G., & Qiu, Y. (2015). The northeastern South China Sea margin created by the combined action of down‐slope and a‐long slope processes, products and implications for exploration and paleoceanography. Marine and Petroleum Geology, 64, 233–249.
    [Google Scholar]
  19. Gong, C. L., Wang, Y. M., Zhu, W. L., Li, W. G., Xu, Q., & Zhang, J. M. (2011). The Central Submarine Canyon in the Qiongdongnan basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes. Marine and Petroleum Geology, 28, 1690–1702.
    [Google Scholar]
  20. Guo, L. Z., Zhong, Z. H., Wang, L. S., Shi, Y. S., Li, H., & Liu, S. W. (2001). Regional tectonic evolution around Yinggehai Basin of South China Sea. Geological Journal of China Universities, 7, 1–12 (in Chinese with English abstract).
    [Google Scholar]
  21. Guo, X. X., Xu, X. D., Xiong, X. F., Hou, J. X., & Liu, H. Y. (2017). Gas accumulation characteristics and favorable exploration directions in mid‐deep strata of the Yinggehai Basin. Natural Gas Geoscience, 28, 1864–1872 (in Chinese with English abstract).
    [Google Scholar]
  22. Haq, B. L., Hardenbo, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.
    [Google Scholar]
  23. Harris, P. T., & Whiteway, T. (2011). Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Marine Geology, 285, 69–86.
    [Google Scholar]
  24. Hartley, A. J., & Prosser, D. J. (Eds.). (1995). Characterization of deep marine clastic systems. Geological Society Special Publication, 94, 115–135.
    [Google Scholar]
  25. He, J. X., Xia, B., Zhang, S. L., Yan, P., & Liu, H. L. (2006). Origin and distribution of mud diapirs in the Yinggehai Basin and their relation to the migration and accumulation of natural gas. Geology in China, 33, 1336–1344.
    [Google Scholar]
  26. He, X. H., Zhong, Z. H., Dong, G. N., Yao, Z., & Wu, X. D. (2015). Neogene ocean current in Ying‐Qiong Basin: Implication of deepwater oil and gas exploration. Natural Gas Exploration, Development, 38, 5–8+21.
    [Google Scholar]
  27. Hesse, R., & Rakofsky, A. (1992). Deep‐sea channel/submarine‐yazoo system of the labrador sea: A new deep‐water facies model. AAPG Bulletin, 76, 680–707.
    [Google Scholar]
  28. Hsü, K. J., Kelts, K., & Valentine, J. W. (1980). Resedimented facies in Ventura Basin, California, and model of longitudinal transport of turbidity currents. AAPG Bulletin, 64, 1034–1051.
    [Google Scholar]
  29. Huang, C. J., Chen, K. Y., & Li, S. T. (2002). Periodicities of diapiric rise in the Yinggehai basin. Petroleum Exploration and Development, 4, 44–46+71 (in Chinese with English abstract).
    [Google Scholar]
  30. Huang, Y. T., Tan, X. F., Liu, E. T., Wang, J., & Wang, J. P. (2021). Sedimentary processes of shallow‐marine turbidite fans: An example from the Huangliu Formation in the Yinggehai Basin, South China Sea. Marine and Petroleum Geology, 132, 105191. https://doi.org/10.1016/j.marpetgeo.2021.105191
    [Google Scholar]
  31. Hubbard, S. M., Covault, J. A., Fildani, A., & Romans, B. W. (2014). Sediment transfer and deposition in slope channels: Deciphering the record of enigmatic deep‐sea processes from outcrop. Geological Society of America Bulletin, 126, 857–871.
    [Google Scholar]
  32. Hubbard, S. M., de Ruig, M. J., & Graham, S. A. (2009). Confined channel‐levee complex development in an elongate depo‐center: Deep‐water Tertiary strata of the Austrian Molasse basin. Marine and Petroleum Geology, 26, 85–112.
    [Google Scholar]
  33. Hubbard, S. M., Romans, B. W., & Graham, S. A. (2008). Deep‐water foreland basin deposits of the Cerro Toro Formation, Magallanes basin, Chile: Architectural elements of a sinuous basin axial channel belt. Sedimentology, 55, 1333–1359.
    [Google Scholar]
  34. Iacono, C. L., Sulli, A., & Agate, M. (2014). Submarine canyons of north‐western Sicily (Southern Tyrrhenian Sea): Variability in morphology, sedimentary processes and evolution on a tectonically active margin. Deep Sea Research Part II: Topical Studies in Oceanography, 104, 93–105.
    [Google Scholar]
  35. Iglesias, J., Ercilla, G., García‐Gil, S., & Judd, A. G. (2010). Pockforms: An evaluation of pockmark‐like seabed features on the Landes Plateau, Bay of Biscay. Geo‐Marine Letters, 30, 207–219.
    [Google Scholar]
  36. Janocko, M., Nemec, W., Henriksen, S., & Warchol, M. (2013). The diversity of deep‐water sinuous channel belts and slope valley‐fill complexes. Marine and Petroleum Geology, 41, 7–34.
    [Google Scholar]
  37. Jiang, Z. X., Zhao, C. L., & Liu, M. H. (1988). Replaced deposition of gravity flows along moving a deep water dustpan thalweg. Petroleum Experimental Geology, 2, 106–116 (in Chinese with English abstract).
    [Google Scholar]
  38. Judd, A. G., & Hovland, M. (2007). Seabed fluid flow. Cambridge University Press.
    [Google Scholar]
  39. Kilhams, B., Mcarthur, A., Huuse, M., Ita, E., & Hartley, A. (2011). Enigmatic large‐scale furrows of miocene to pliocene age from the central north sea: Current‐scoured pockmarks?Geo‐Marine Letters, 31, 437–449.
    [Google Scholar]
  40. Lei, C., Ren, J. Y., Sternai, P., Fox, M., Willett, S., Xie, X. N., Clift, P. D., Liao, J. H., & Wang, Z. F. (2015). Structure and sediment budget of Yinggehai–Song Hong basin, South China Sea: Implications for Cenozoic tectonics and river basin reorganization in Southeast Asia. Tectonophysics, 655, 177–190.
    [Google Scholar]
  41. Leloup, P. H., Harrison, T. M., Ryerson, F. J., Chen, W., Qi, L., Tapponnier, P., & Lacassin, R. (1993). Structural, petrological and thermal evolution of a tertiary ductile strike‐slip shear zone, Diancang Shan, Yunnan. Journal of Geophysical Research: Solid Earth, 98, 6715–6743.
    [Google Scholar]
  42. Li, S. T., Lin, C. S., Zhang, Q. M., Yang, S. G., & Wu, P. K. (1998). Dynamic process of episodic rifting in continental margin basins in the northern South China Sea and tectonic events since 10 Ma. Chinese Science Bulletin, 43(8), 797–810 (in Chinese with English abstract).
    [Google Scholar]
  43. Li, X. S., Zhang, Y. C., Yang, X. B., Xu, X. F., Zhang, J. X., & Man, X. (2017). New understandings and achievements of natural gas exploration in Yinggehai‐Qiongdongnan basin, South China Sea. China Offshore Oil and Gas, 29, 1–11 (in Chinese with English abstract).
    [Google Scholar]
  44. Liang, C., Xie, X., He, Y., Chen, H., Yu, X., Zhang, W., Mi, H., Lu, B., Tian, D., Zhang, H., Li, M., & Zhou, Z. (2020). Multiple sediment sources and topographic changes controlled the depositional architecture of a palaeoslope‐parallel canyon in the Qiongdongnan Basin, South China Sea. Marine and Petroleum Geology, 113, 104161. https://doi.org/10.1016/j.marpetgeo.2019.104161
    [Google Scholar]
  45. Liu, W., Yang, X. B., Zhang, X. P., Duan, L., Shao, Y., & Hao, D. F. (2019). Characteristics and controlling factors of gravity flow deposits of Huangliu Formation in eastern Yinggehai Basin. Lithologic Reservoirs, 31, 75–82 (in Chinese with English abstract).
    [Google Scholar]
  46. Mayall, M., Jones, E., & Casey, M. (2006). Turbidite channel reservoirs—Key elements in facies prediction and effective development. Marine and Petroleum Geology, 23, 821–841.
    [Google Scholar]
  47. McArthur, A. D., & Tek, D. E. (2021). Controls on the origin and evolution of deep‐ocean trench‐axial channels. Geology, 49, 883–888.
    [Google Scholar]
  48. Mulder, T., Syvitski, J. P., Migeon, S., Faugères, J. C., & Savoye, B. (2003). Marine hyperpycnal flows: Initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20(6–8), 861–882.
    [Google Scholar]
  49. Mutti, E., & Normark, W. R. (1987). Comparing examples of modern and ancient turbidite systems: Problems and concepts. In J. K.Leggett & G. G.Zuffa (Eds.), Marine clastic sedimentology: Concepts and case studies (p. 1e38). Graham and Trotman.
    [Google Scholar]
  50. Mutti, E., & Normark, W. R. (1991). An integrated approach to the study of turbidite systems. In P.Weimer & M. H.Link (Eds.), Seismic facies and sedimentary processes of submarine fans and turbidite systems (pp. 75–106). Springer.
    [Google Scholar]
  51. Normark, W. R. (1970). Growth patterns of deep sea fans. AAPG Bulletin, 54, 2170–2195.
    [Google Scholar]
  52. Passega, R. (1957). Texture as characteristic of clastic deposition. AAPG Bulletin, 41, 1952–1984.
    [Google Scholar]
  53. Peakall, J., & Sumner, E. J. (2015). Submarine channel flow processes and deposits: A process‐product perspective. Geomorphology, 244, 95–120.
    [Google Scholar]
  54. Piper, D. J. W., Pirmez, C., Manley, P. L., Long, D., Flood, R. D., Normark, W. R., & Showers, W. (1997). Mass transport deposits of Amazon Fan. In Proceedings‐ocean drilling program scientific results (pp. 109–146). National Science Foundation.
    [Google Scholar]
  55. Popescua, I., Lericolais, G., Paninc, N., Normand, A., Dinu, C., & Drezen, E. L. (2004). The Danube submarine canyon (Black Sea): Morphology and sedimentary processes. Marine Geology, 206, 249–265.
    [Google Scholar]
  56. Posamentier, H. W. (2003). Depositional elements associated with a basin floor channel‐levee system: Case study from the Gulf of Mexico. Marine and Petroleum Geology, 20, 677–690.
    [Google Scholar]
  57. Posamentier, H. W., Jervey, M. T., & Vail, P. R. (1988). Eustatic controls on clastic deposition I—Conceptual framework. In C. K.Wilgus, B. S.Hastings, C. G.Kendall, H. W.Posamentier, C. A.Ross, & J. C.Van Wagoner (Eds.), Sea level changes—An integrated approach (pp. 110–124). SEPM Special Publication 42.
    [Google Scholar]
  58. Pratson, L. F., & Coakley, B. J. (1996). A model for the headward erosion of submarine canyons induced by downslope‐eroding sediment flows. Geological Society of America Bulletin, 108, 225–234.
    [Google Scholar]
  59. Pratson, L. F., Ryan, W. B. F., Mountain, G. S., & Twichell, D. C. (1994). Submarine canyon initiation by downslope‐eroding sediment flows: Evidence in late Cenozoic strata on the New Jersey continental slope. Geological Society of America Bulletin, 106, 395–412.
    [Google Scholar]
  60. Scharer, U., Tapponnier, P., Lacassin, R., Leloup, P. H., Zhong, D. L., & Ji, S. C. (1990). Intraplate tectonics in Asia: A precise age for large‐scale Miocene movement along the Ailao Shan‐Red River shear zone, China. Earth and Planetary Science Letters, 97, 65–77.
    [Google Scholar]
  61. Schlager, W. (1993). Accommodation and supply: A dual control on stratigraphic sequences. Sedimentary Geology, 86, 111–136.
    [Google Scholar]
  62. Shanmugam, G. (2000). 50 years of the turbidite paradigm (1950s–1990s): Deep‐water processes and facies models—A critical perspective. Marine and Petroleum Geology, 17, 285–342.
    [Google Scholar]
  63. Shao, L., Li, X. J., Geng, J. H., Pang, X., Lei, Y. C., Qiao, P. J., Wang, L. L., & Wang, H. B. (2007). Deepwater bottom current deposition in the Northern South China Sea. Science in China Series D: Earth Sciencs, 50, 1060–1066.
    [Google Scholar]
  64. Sheehan, C. E., & Ward, D. J. (2020). Migrating transverse escarpments in strike valleys on the Colorado plateau. Journal of Geophysical Research: Earth Surface, 125, e2019JF005260. https://doi.org/10.1029/2019JF005260
    [Google Scholar]
  65. Shepard, F. P. (1981). Submarine canyons: Multiple causes and long‐time persistence. AAPG Bulletin, 65, 1062–1077.
    [Google Scholar]
  66. Su, M., Li, J. L., Jiang, T., Tian, S. S., Zhang, C., & Xie, X. N. (2009). Morphological features and formation mechanism of central canyon in the Qiongdongnan Basin. Marine Geology and Quaternary Geology, 29, 85–93 (in Chinese with English abstract).
    [Google Scholar]
  67. Sun, Z., Zhong, Z. H., & Zhou, D. (2007). The analysis and analogue modeling of the tectonic evolution and strong subsidence in the Yinggehai Basin. Journal of Earth Science, 32, 347–356 (in Chinese with English abstract).
    [Google Scholar]
  68. Symons, W. O., Sumner, E. J., Talling, P. J., Cartigny, M. J. B., & Clare, M. A. (2016). Large‐scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flow. Marine Geology, 371, 130–148.
    [Google Scholar]
  69. Tapponnier, P., Lacassin, R., Leloup, P. H., Schärer, U., Zhong, D. L., Wu, H. W., Liu, X. H., Ji, S. C., Zhang, L. S., & Zhong, J. Y. (1990). The Ailao Shan‐Red River metamorphic belt: Tertiary left‐lateral shear between Indochina and South China. Nature, 343, 431–437.
    [Google Scholar]
  70. Tapponnier, P., Peltzer, G., Dain, A. Y. L., Armijo, R., & Cobbold, P. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10, 611–616.
    [Google Scholar]
  71. Thornburg, T. M., & Kulm, L. D. (1987). Sedimentation in the Chile Trench: Depositional morphologies, lithologies, and stratigraphy. Geological Society of America Bulletin, 98, 33–52.
    [Google Scholar]
  72. Tian, D. M., Jiang, T., Zhang, D. J., Zuo, Q. M., Sun, H., & He, X. H. (2017). Genesis mechanism and characteristics of submarine channel: A case study of the first member of Yinggehai Formation in Ledong Area of Yinggehai Basin. Journal of Earth Science, 42, 130–141 (in Chinese with English abstract).
    [Google Scholar]
  73. Tubau, X., Paull, C. K., Lastras, G., Caress, D. W., Canals, M., Lundsten, E., Anderson, K., Gwiazda, R., & Amblas, D. (2015). Submarine canyons of Santa Monica Bay, Southern California: Variability in morphology and sedimentary processes. Marine Geology, 365, 61–79.
    [Google Scholar]
  74. Vail, P. R. (1987). Seismic stratigraphy interpretation procedure. In A. W.Bally (Ed.), Atlas of seismic stratigraphy (pp. 1–10). American Association of Petroleum Geologists Studies in Geology.
    [Google Scholar]
  75. Vail, P. R., Mitchum, R. M., Jr., & Thompson, S. (1977). Seismic stratigraphy and global changes of sea level, part four: Global cycles of relative changes of sea level. American Association of Petroleum Geologists Memoir, 26, 83–98.
    [Google Scholar]
  76. Wang, H., Chen, S., Gan, H. J., Liao, J. H., & Sun, M. (2015). Accumulation mechanism of large shallow marine turbidite deposits: A case study of gravity flow deposits of the Huangliu Formation in Yinggehai Basin. Earth Science Frontiers, 22, 21–34 (in Chinese with English abstract).
    [Google Scholar]
  77. Wang, Z., Xian, B. Z., Liu, J. Y., Fan, C. W., Li, H., Wang, J. H., Zhang, X. M., Huang, H. D., Tan, J. C., Chen, P., & Liu, J. P. (2021). Large‐scale turbidite systems of a semi‐enclosed shelf sea: The upper Miocene of Eastern Yinggehai Basin, South China Sea. Sedimentary Geology, 425, 106006. https://doi.org/10.1016/j.sedgeo.2021.106006
    [Google Scholar]
  78. Xian, B. Z., Wang, J. H., Gong, C. L., Yin, Y., Chao, C. Z., Liu, J. P., Zhang, G. D., & Yan, Q. (2018). Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, central China. Sedimentary Geology, 368, 68–82.
    [Google Scholar]
  79. Xie, J. Y., Zhu, Y. H., Li, X. S., Mai, W., & Zhao, P. X. (2012). The Cenozoic sea‐level changes in Yinggehai‐Qiongdongnan Basin, Northern South China Sea. Marine Origin Petroleum Geology, 17, 49–58 (in Chinese with English abstract).
    [Google Scholar]
  80. Xie, X. N., Muller, R. D., Ren, J. Y., Jiang, T., & Zhang, C. (2008). Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea. Marine Geology, 247, 129–144.
    [Google Scholar]
  81. Xie, Y. H. (2022). Tectonic setting analysis of the channel formation and its petroleum geology significance in Ledong10 area, Yinggehai Basin. Oil and Gas Geology Under review (in Chinese with English abstract).
    [Google Scholar]
  82. Xie, Y. H., Wang, Z. F., Xie, X. N., Ren, J. Y., & Jiang, T. (2004). Patterns of slope‐break zone and their depositional models in the Yinggehai Basin. Journal of Earth Science, 29, 569–574 (in Chinese with English abstract).
    [Google Scholar]
  83. Young, M. J., Gawthorpe, R. L., & Hardy, S. (2001). Growth and linkage of a segmented normal fault zone; the Late Jurassic Murchison–Statfjord North Fault, northern North Sea. Journal of Structural Geology, 23, 1933–1952.
    [Google Scholar]
  84. Yu, K., Miramontes, E., Alves, T. M., Li, W., Liang, L., Li, S., Zhan, W., & Wu, S. (2021). Incision of submarine channels over pockmark trains in the South China Sea. Geophysical Research Letters, 48, e2021GL092861.
    [Google Scholar]
  85. Zhang, J. X., Dang, Y. Y., He, X. H., Li, Y. L., & Yuan, C. (2015). Origin and sedimentary characteristics of canyon channels in Ledong area of Yinggehai basin. Marine Geology and Quaternary Geology, 35, 29–36 (in Chinese with English abstract).
    [Google Scholar]
  86. Zhang, J. X., Fan, C. W., Tan, J. C., Chen, Y., Huang, C., & Luo, W. (2019). Evolution characteristics of sedimentary system in Yinggehai Basin in Miocene and its exploration significance. Geological Science and Technology Information, 189, 57–65 (in Chinese with English abstract).
    [Google Scholar]
  87. Zhang, X., & Scholz, C. A. (2015). Turbidite systems of lacustrine rift basins: Examples from the Lake Kivu and Lake Albert rifts, East Africa. Sedimentary Geology, 325, 177–191.
    [Google Scholar]
  88. Zhang, Y., Hou, J. G., Shen, A. J., & Zheng, X. P. (2013). The remaining oil distribution in complex fault‐trough gravity flow channel sedimenrary reservoirs. Journal of Oil and Gas Technology, 35, 10–14 (in Chinese with English abstract).
    [Google Scholar]
  89. Zhong, G. F., Cartigny, M. J. B., Kuang, Z., & Wang, L. (2015). Cyclic steps along the south Taiwan shoal and west Penghu submarine canyons on the northeastern continental slope of the South China Sea. Geological Society of America Bulletin, 127, 804–824.
    [Google Scholar]
  90. Zhong, Z. H., Wang, L. S., Xia, B., Dong, W. L., Sun, Z., & Shi, Y. S. (2004). The dynamics of Yinggehai Basin formation and its tectonic significance. Acta Geologica Sinica, 78, 302–309 (in Chinese with English abstract).
    [Google Scholar]
  91. Zhou, S. K., & Xu, C. G. (2006). One kind of important deep water reservoir: The longitudinal gravity currents sediments—A case study in Mingyuefeng Formation in Lishui Sag, East China Sea Basin. Geological Science and Technology Information, 25, 57–62 (in Chinese with English abstract).
    [Google Scholar]
  92. Zhu, X. M., Xiong, J. H., Liu, Z. R., & Xin, Q. L. (1991). Axial gravity flow deposit in Dongpu depression. Journal of the University of Petroleum, 15, 1–10 (in Chinese with English abstract).
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12724
Loading
/content/journals/10.1111/bre.12724
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error