1887
Volume 35, Issue 2
  • E-ISSN: 1365-2117

Abstract

[Abstract

Frequent and serious aeolian disasters occur in the upper and middle reaches of the Yarlung Zangbo River, which runs through the high‐elevation Tibet Plateau. Sediment geochemical characteristics can be used as a proxy to identify the sediment's provenance. To determine the provenance of aeolian sediments in the river's basin, we analysed major and trace element contents from surface samples and local clastic rocks throughout the basin. We found that the major and trace elements differed between the middle reaches, upper reaches and regions south of the river. Major element contents were similar in the upper and middle reaches, but trace elements differed. AlO, MgO and NaO concentrations increased from the upper reaches to the lower reaches, and in the lower reaches, MgO and NaO were enriched compared with the crustal average. The similarities between samples in the lower part of the upper reaches and those in the middle reaches indicated that sediment transported by fluvial systems from the upper reaches were first deposited in the wide valleys near Xigaze, where they formed a large area of shifting sand. These deposits were then transported by the wind to the river's middle reaches, where they formed a large area of shifting sand. When we compared aeolian sediment in the middle reaches with the local clastic rocks, they appeared to be unrelated. The difference between sediments south of the river and those in the middle reaches means that the southern sediments were not transported to the middle reaches. Therefore, the aeolian sediment in the middle reaches of the Yarlung Zangbo River mainly came from the lower part of the upper reaches, not from the local clastic rocks.

,

Model of sediment transporation.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12733
2023-03-20
2024-04-23
Loading full text...

Full text loading...

References

  1. Bagnold, R. A. (1941). The physics of blown sand and desert dunes. Methuen.
    [Google Scholar]
  2. Bhuiyan, M. A. H., Rahman, M. J. J., Dampare, S. B., & Suzuki, S. (2011). Provenance, tectonics and source weathering of modern fluvial sediments of the Brahmaputra–Jamuna River, Bangladesh: Inference from geochemistry. Journal of Geochemical Exploration, 111, 113–137.
    [Google Scholar]
  3. Bullard, J. E., & McTainsh, G. H. (2003). Aeolian–fluvial interactions in dryland environments: Examples, concepts, and Australia case study. Progress in Physical Geography, 27, 471–501.
    [Google Scholar]
  4. Collins, A. L., Blackwell, M., Boeckx, P., Chivers, C., Emelko, M., Evrard, O., Foster, I., Gellis, A., Gholami, H., Granger, S., Harris, P., Horowitz, A. J., Laceby, J. P., Martinez‐Carreras, N., Minella, J., Mol, L., Nosrati, K., Pulley, S., Silins, U., … Zhang, Y. S. (2020). Sediment source fingerprinting: Benchmarking recent outputs, remaining challenges and emerging themes. Journal of Soils and Sediments, 20, 4160–4193.
    [Google Scholar]
  5. Cox, R., Lowe, D. R., & Cullers, R. L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United‐States. Geochimica et Cosmochimica Acta, 59, 2919–2940.
    [Google Scholar]
  6. Dong, Z. B. (2017). Tibetan Plateau atlas of Aeolian geomorphology. Xi'an Map Press.
    [Google Scholar]
  7. Dong, Z. B., Hu, G. Y., Qian, G. Q., Lu, J. F., Zhang, Z. C., Luo, W. Y., & Lyu, P. (2017). High‐altitude Aeolian research on the Tibetan Plateau. Reviews of Geophysics, 55, 864–901.
    [Google Scholar]
  8. Du, S. S., Wu, Y. Q., Tan, L. H., Huang, W. M., & Hao, C. Z. (2018). Geochemical characteristics of fine and coarse fractions of sediments in the Yarlung Zangbo River basin (southern Tibet, China). Environment and Earth Science, 77, 337.
    [Google Scholar]
  9. Fryberger, S. G., & Dean, G. (1979). Dune forms and wind regime. In E. D.McKee (Ed.), A study of global sand seas. USGS Professional Paper.
    [Google Scholar]
  10. Garzanti, E., & Resentini, A. (2016). Provenance control on chemical indices of weathering (Taiwan river sands). Sedimentary Geology, 336, 81–95.
    [Google Scholar]
  11. Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820–829.
    [Google Scholar]
  12. Honda, M., & Shimizu, H. (1998). Geochemical, mineralogical and sedimentological studies on the Taklimakan Desert sands. Sedimentology, 45, 1125–1143.
    [Google Scholar]
  13. Hossain, H. M. Z. (2019). Major, trace, and REE geochemistry of the Meghna River sediments, Bangladesh: Constraints on weathering and provenance. Geological Journal, 55(5), 3321–3343.
    [Google Scholar]
  14. Huisink, M. (2000). Changing river styles in response to Weichselian climate changesin the Vecht valley, eastern Netherlands. Sedimentary Geology, 133, 115–134.
    [Google Scholar]
  15. Huyan, Y. Y., & Yao, W. S. (2022). Geochemical comparisons of weathering, provenance and tectonics in the fluvial sediments from Yarlung Zangbo to Brahmaputra River. Catena, 210, 105944.
    [Google Scholar]
  16. Jia, X. P., & Wang, H. B. (2014). Element geochemical analysis of the contribution of aeolian sand to suspended sediment in desert stream flash floods. Scientific World Journal, 2014, 620610.
    [Google Scholar]
  17. Kocurek, G., & Lancaster, N. (1999). Aeolian system sediment state: Theory and Mojave Desert Kelso dune field example. Sedimentology, 46, 505–515.
    [Google Scholar]
  18. Li, G., Chen, J., Chen, Y., Yang, J., Ji, J., & Liu, L. (2007). Dolomite as a tracer for the source regions of Asian dust. Journal of Geophysical Research‐Atmospheres, 112, D17201.
    [Google Scholar]
  19. Li, Q., Zhang, C. L., Shen, Y. P., Jia, W. R., & Li, J. (2016). Quantitative assessment of the relative roles of climate change and human activities in desertification processes on the Qinghai‐Tibet Plateau based on net primary productivity. Catena, 147, 789–796.
    [Google Scholar]
  20. Li, S., Dong, G., Shen, J., Yang, P., Liu, X., Wang, Y., & Wang, Q. (1999). Formation mechanism and development pattern of aeolian sand landform in Yarlung Zangbo River valley. Science in China Series D: Earth Sciences, 42(3), 272–284 (in Chinese with English abstract).
    [Google Scholar]
  21. Liang, A. M., Dong, Z. B., Su, Z. Z., Qu, J. J., Zhang, Z. C., Qian, G. Q., Wu, B., Gao, J. L., Yang, Z. L., & Zhang, C. X. (2020). Provenance and transport process for interdune sands in the Kumtagh Sand Sea, Northwest China. Geomorphology, 367, 107310.
    [Google Scholar]
  22. Ling, Z. Y., Li, J. S., Jin, J. H., Wang, J. P., Kong, F. C., & Chen, L. (2021). Geochemical characteristics and provenance of aeolian sediments in the Yarlung Tsangpo valley, Southern Tibetan Plateau. Environmental Earth Sciences, 80, 623.
    [Google Scholar]
  23. Lu, W. Y., Zhao, W. C., Balsam, W., Lu, H., Liu, P., Lu, Z. L., & Ji, J. F. (2017). Iron mineralogy and speciation in clay‐sized fractions of Chinese Desert sediments. Journal of Geophysical Research – Atmospheres, 122, 13458–13471.
    [Google Scholar]
  24. Ma, P. F., Lunzhu, Q. P., Zhang, Y., Ciren, N. M., Lu, J. F., Liang, A. M., & Zhang, Z. C. (2021). Sand supplement characteristics indicated by the area of river inland, flood plain in the riverbed of the Yarlung Zangbo River. Journal of Desert Research, 43, 92–100 (in Chinese with English abstract).
    [Google Scholar]
  25. Ma, P. F., Zhang, Z. C., Lunzhu, Q. P., Gao, J. J., Dai, R., Ci, W., & Pan, K. J. (2021). Analysis on the sand transport wind power conditions and suggestions on the sand disaster preventions in the middle reaches of Yarlung Zangbo River, China. Journal of Desert Research, 41, 10–18 (in Chinese with English abstract).
    [Google Scholar]
  26. Ma, P. F., Zhang, Z. C., Zhang, Y., Yixi, L. M., & Za, D.Effect of meteorological conditions on PM10 concentrations in the Yarlung Zangbo River, Tibet Plateau. Theoretical and Applied Climatology, Under Review.
    [Google Scholar]
  27. McLennan, S. M. (1989). Rare‐earth elements in sedimentary rocks—Influence of provenance and sedimentary processes. Reviews in Mineralogy, 21, 169–200.
    [Google Scholar]
  28. McLennan, S. M. (1993). Weathering and global denudation. Journal of Geology, 101, 295–303.
    [Google Scholar]
  29. Muhs, D. R. (2017). Evaluation of simple geochemical indicators of aeolian sand provenance: Late quaternary dune fields of North America revisited. Quaternary Science Reviews, 171, 260–296.
    [Google Scholar]
  30. Muhs, D. R., Reynolds, R. L., Been, J., & Skipp, G. (2003). Eolian sand transport pathways in the southwestern United States: Importance of the Colorado River and local sources. Quaternary International, 104, 3–18.
    [Google Scholar]
  31. Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.
    [Google Scholar]
  32. Nie, J. S., Stevens, T., Rittner, M., Stockli, D., Garzanti, E., Limonta, M., Bird, A., Andò, S., Vermeesch, P., Saylor, J., Breecker, D., Hu, X. F., Liu, S. P., Resentini, A., Vezzoli, G., Peng, W. B., Carter, A., Ji, S. C., & Pan, B. T. (2015). Loess Plateau storage of northeastern Tibetan Plateau‐derived Yellow River sediment. Nature Communications, 6, 8511. https://doi.org/10.1038/ncomms9511
    [Google Scholar]
  33. Pettijohn, F. J., Potter, P. E., & Siever, R. (1972). Sand and sandstone (p. 618). Springer‐Verlag.
    [Google Scholar]
  34. Pettijohn, F. J., Potter, P. E., & Siever, R. (1995). Sand and sandstones. In J.Quade, J. M. L.Cater, T. P.Ojha, J.Adam, & T. M.Harrison (Eds.), Late Miocene environmental change in Nepal and the northern Indian subcontinent: Stable isotopic evidence from paleosols. GSA Bulletin, 107 (pp. 1381–1397). Springer.
    [Google Scholar]
  35. Rittner, M., Vermeesch, P., Carter, A., Bird, A., Stevens, T., Garzanti, E., Andò, S., Vezzoli, G., Dutt, R., Xu, Z. W., & Lu, H. Y. (2016). The provenance of Taklamakan desert sand. Earth and Planetary Science Letters, 437, 127–137.
    [Google Scholar]
  36. Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone‐mudstone suites determined using discriminant function analysis of major‐element data. Chemical Geology, 67, 119–139.
    [Google Scholar]
  37. Shen, W., Li, H., Sun, M., & Jiang, J. (2012). Dynamics of aeolian sandy land in the Yarlung Zangbo River basin of Tibet, China from 1975 to 2008. Global and Planetary Change, 86(87), 37–44.
    [Google Scholar]
  38. Sun, J. M., Li, S. H., Muhs, D. R., & Li, B. (2007). Loess sedimentation in Tibet: Provenance, processes, and link with quaternary glaciations. Quaternary Science Reviews, 26, 2265–2280.
    [Google Scholar]
  39. Sweeney, M. R., Fischer, B., Wermers, K., & Cowman, T. (2019). Eolian and fluvial modification of Missouri River sandbars deposited by the 2011 flood, USA. Geomorphology, 327, 111–125.
    [Google Scholar]
  40. Sweeney, M. R., McDonald, E. V., & Etyemezian, V. (2011). Quantifying dust emissions from desert landforms, eastern Mojave Desert, USA. Geomorphology, 135(1–2), 21–34.
    [Google Scholar]
  41. Sweeney, M. R., McDonald, E. V., & Markley, C. E. (2013). Alluvial sediment or playas: What is the dominant source of sand and silt in desert soil vesicular a horizons, Southwest USA. Journal of Geophysical Research ‐ Earth Surface, 118, 257–275.
    [Google Scholar]
  42. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Blackwell.
    [Google Scholar]
  43. UNCCD . (1994). United Nations Convention to Combat Desertification, Intergovernmental Negotiating Committee For a Convention to Combat Desertification, Elaboration of an International Convention to Combat Desertification in Countries Experiencing Serious Drought and/or Desertification, Particularly in Africa. U.N. Doc. A/AC.241/27, 33 I.L.M. 1328.
  44. Wei, Y. Q., Zhao, Z. D., Niu, Y. L., Zhu, D. C., DePaolo, D. J., Jing, T. J., Liu, D., Guan, Q., & Sheikh, L. (2022). Geochemistry, detrital zircon geochronology and Hf isotope of the clastic rocks in southern Tibet: Implications for the Jurassic‐Cretaceous tectonic evolution of the Lhasa terrane. Gondwana Research, 78, 41–57.
    [Google Scholar]
  45. Wright, J. S. (2001). “Desert” loess versus “glacial” loess: Quartz silt formation, source areas and sediment pathways in the formation of loess deposits. Geomorphology, 36, 231–256.
    [Google Scholar]
  46. Yang, J. H., Xia, D. S., Gao, F. Y., Wang, S. Y., Li, D. X., Fan, Y. J., Chen, Z. X., Tian, W. D., Liu, X. Y., Sun, X. Y., Wang, Z. Q., & Wang, F. (2021). Holocene moisture evolution and its response to atmospheric circulation recorded by aeolian deposits in the southern Tibetan Plateau. Quaternary Science Reviews, 270, 107169.
    [Google Scholar]
  47. Yang, P., Li, S., Wei, X., & Dong, Y. (2013). Atlas of comprehensive nature and desertification of the Tibetan Plateau. Science Press (in Chinese).
    [Google Scholar]
  48. Yang, P., Wei, X. H., & Dong, Y. X. (2020). Progress on sandy desertification research and future combating idea in Tibet, China. Bulletin of the Chinese Academy of Sciences, 35(6), 699–708 (in Chinese with English abstract).
    [Google Scholar]
  49. Zhang, B. J., Xiong, D. H., Tang, Y. F., & Liu, L. (2022). Land surface roughness impacted by typical vegetation restoration projects on aeolian sandy lands in the Yarlung Zangbo River valley, southern Tibetan Plateau. International Soil and Water Conservation Research, 10(1), 109–118.
    [Google Scholar]
  50. Zhang, H. Z., Zhou, K. S., Duo, J. S. Z., Ge, S., & Guo, Y. N. (2018). Analysis of spatiotemporal variation characteristics of wind–sand days in the Yarlung Zangbo River basin during 1981–2016. Journal of Arid Land Resources and Environment, 32(12), 131–136.
    [Google Scholar]
  51. Zhang, W. F., Wu, J. L., Zhan, S. E., Pan, B. T., & Cai, Y. (2021). Environmental geochemical characteristics and the provenance of sediments in the catchment of lower reach of Yarlung Tsangpo River, southeast Tibetan Plateau. Catena, 200, 105150.
    [Google Scholar]
  52. Zhang, Y., Ma, P. F., Zeng, L., Liang, A. M., & Zhang, Z. C. (2021). Study on silt and clay provenance in the Yarlung Zangbo River middle reaches using sediment physicochemical characteristics. Journal of Desert Research, 43, 92–100 (in Chinese with English abstract).
    [Google Scholar]
  53. Zhang, Z. C., Dong, Z. B., & Li, C. X. (2015). Wind regime and sand transport in China's Badain Jaran Desert. Aeolian Research, 17, 1–13.
    [Google Scholar]
  54. Zhang, Z. C., Liang, A. M., Zhang, C. X., & Dong, Z. B. (2021). Gobi deposits play a significant role as sand sources for dunes in the Badain Jaran Desert, Northwest China. Catena, 2060, 105530.
    [Google Scholar]
  55. Zhang, Z. C., Pan, K. J., Zhang, C. X., & Liang, A. M. (2020). Geochemical characteristics and the provenance of aeolian material in the Hexi Corridor Desert, China. Catena, 190, 104483.
    [Google Scholar]
  56. Zhang, Z. C., Zhang, Y., Ma, P. F., & Za, D. (2022). Aeolian sediment transport rates in the middle reaches of the Yalung Zangbo River, Tibet Plateau. Science of the Total Environment, 826, 154238.
    [Google Scholar]
  57. Zhou, N., Li, Q., Zhang, C. L., Huang, C. H., Wu, Y. B., Zhu, B. Q., Cen, S. B., & Huang, X. Q. (2021). Grain size characteristics of aeolian sands and their implications for the aeolian dynamics of dunefields within a river valley on the southern Tibet Plateau: A case study from the Yarlung Zangbo River valley. Catena, 196, 104794.
    [Google Scholar]
  58. Zhou, N., Zhang, C. L., Wu, X. X., Wang, X. M., & Kang, L. Q. (2014). The geomorphology and evolution of aeolian landforms within a river valley in a semi‐humid environment: A case study from Mainling Valley, Qinghai‐Tibet Plateau. Geomorphology, 224, 27–38.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12733
Loading
/content/journals/10.1111/bre.12733
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error