1887
Volume 35, Issue 3
  • E-ISSN: 1365-2117

Abstract

[Abstract

This contribution characterizes primary lithologic and depositional components of the Magallanes‐Austral basin and defines infill geometries and stacking patterns from seismic and well data. An integrated seismic model is proposed for recognition of rifting, thermal sag and foreland tectono‐stratigraphic phases based on depositional geometries and its relation with the evolving deformational and geodynamic framework. Above a Middle–Late Jurassic extensional phase, evidenced by synrift depositional geometries, follow marine successions representing the subsidence thermal sag phase (Tithonian–Early Cretaceous) characterized by concordant and laterally extensive seismic reflectors. The following foreland phase is described through the evolution and lateral migration history of the foredeep depocentre and concomitant forebulge development. The foreland phase is represented by different stages characterized by asymmetric sedimentary wedges bounded by basal surfaces and/or major unconformities recording transitions from underfilled to overfilled conditions. The accumulated thickness due to lithospheric flexure reflects different foreland subsidence profile patterns across the southern depocentre of the Magallanes‐Austral basin, producing asymmetrical westward and southward thickening wedges. The first Foreland I stage (Coniacian?–Maastrichtian) is recorded as an asymmetric wedge infill, that thins cratonward, with a NW‐trending foredeep axis. The erosive basal foreland surface (BF) at its base deepens towards the west and south along the active margin of the basin, where subsidence was maximum. On top of it, along the western portion of the basin and with a source area from the north, deep‐marine slope deposits and turbiditic complexes were deposited; while on the forebulge to the east, a clastic platform developed. The Foreland II stage (early‐to‐middle Palaeocene–middle Eocene) is characterized by renewed uplift and flexure, and increasing tectonic subsidence rates, building a new clastic wedge‐shaped foreland succession next to the orogenic belt, and a well‐represented forebulge to the east. Subsequently, an extensive diachronous G7 unconformity was generated, eroding locally the previous foreland deposits towards the eastern margin. A pronounced and continuous NW‐SE trending deflection is established subtly to the east. The following Foreland III stage (middle to late‐Eocene–Oligocene) is characterized by a reduction in thrust load along the western active margin, and progradational systems towards the NE, a time during which the subsidence rate decreased and accommodation space was reduced. Deposition occurred within a wide and continuous NW‐SE trending foredeep without a marked forebulge. The top of this stage is the A1 unconformity, marking the beginning of the Foreland IV stage (early Miocene–Neogene), regarded as an overfilled basinal stage without a marked foredeep and major variations in thickness across the extent of the basin. The depositional pattern in this stage is largely conformal and tabular. The proposal model represents an evolutionary example for the internal geometry of deep‐marine foreland basin system, including variables such as tectonic load and flexural subsidence, accommodation space, sediment supply variation, and relative sea‐level fluctuations.

,

The southwest depocentre of the Magallanes Basin records the change from a rifting, thermal sag and foreland development since the Middle Jurassic to Neogene, separated by boundaries surfaces and major unconformities. Its internal geometries and stacking patterns respond to variations such as tectonic load and flexural subsidence, accommodation space, sediment supply variation and relative sea‐level fluctuations.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12739
2023-05-19
2024-04-25
Loading full text...

Full text loading...

References

  1. Álvarez, P., Elgueta, S., Mpodozis, C., Briceño, M., Vieytes, H., Radic, J. P., & Mella, P. (2006). Proyecto Tranquilo‐Otway. Empresa Nacional de Petróleo (ENAP), unpublished technical report, 290.
    [Google Scholar]
  2. Álvarez‐Marrón, J., Mcclay, K. R., Harambour, S., Rojas, L., & Skarmeta, J. (1993). Geometry and evolution of the frontal part of the Magallanes foreland thrust and fold belt (vicuna‐area), Tierra del Fuego, southern Chile. AAPG Bulletin, 77, 1904–1921.
    [Google Scholar]
  3. Aramendía, I., Cuitiño, J. I., Ghiglione, M. C., & Bouza, P. J. (2022). Timing and stratigraphic evolution of a Miocene foreland unroofing sequence in the austral‐Magallanes Basin during southern Patagonian Andes uplift. Journal of the Geological Society, 180(1), jgs2022‐038.
    [Google Scholar]
  4. Arriagada, C., Cobbold, P. R., & Roperch, P. (2006). The Salar de Atacama basin: A record of cretaceous to Paleogene compressional tectonics in the Central Andes. Tectonics, 25, TC1008.
    [Google Scholar]
  5. Barbeau, D. L., Olivero, E., Swanson‐Hysell, N., Zahid, K., Murray, K., & Gehrels, G. (2009). Detrital‐zircon geochronology of the eastern Magallanes foreland basin: Implications for Eocene kinematics of the northern scotia arc and Drake Passage. Earth and Planetary Science Letters, 20, 23–45.
    [Google Scholar]
  6. Barberon, V., Ronda, G., Leal, P. R., Sue, C., & Ghiglione, M. C. (2015). Lower cretaceous provenance in the northern austral basin of Patagonia from sedimentary petrography. Journal of South American Earth Sciences, 64(2), 498–510.
    [Google Scholar]
  7. Baristeas, N., Anka, Z., Di Primio, R., Rodriguez, J. F., Marchal, D., & Dominguez, F. (2013). New insights into the tectono‐stratigraphic evolution of the Malvinas Basin, offshore of the southernmost Argentinean continental margin. Tectonophysics, 604, 280–295.
    [Google Scholar]
  8. Barker, P. F. (2001). Scotia Sea regional tectonic evolution: Implications for mantle flow and palaeocirculation. Earth Science Reviews, 55, 1–39.
    [Google Scholar]
  9. Bartolini, A., & Larson, R. L. (2001). Pacific microplate and the Pangea supercontinent in the early to middle Jurassic. Geology, 29(8), 735–738.
    [Google Scholar]
  10. Barwick, J. (1949). The tertiary stratigraphy and structure of North Tierra del Fuego. Corporación de Fomento de la Producción.
    [Google Scholar]
  11. Barwick, J. (1955). The surface stratigraphy of portions of Magallanes Province, Chile. Empresa Nacional de Petróleo (ENAP), unpublished technical report, 122.
    [Google Scholar]
  12. Barwick, J., García, F., & González, E. (1951). Geology of the Lago Blanco‐Lago Chico‐Lago lynch area, Tierra del Fuego. Empresa Nacional de Petróleo (ENAP), unpublished technical report, 62.
    [Google Scholar]
  13. Bastias, J., Spikings, R., Riley, T., Ulianov, A., Grunow, A., Chiaradia, M., & Hervé, F. (2021). A revised interpretation of the chon Aike magmatic province: Active margin origin and implications for the opening of the Weddell Sea. Lithos, 386, 106013.
    [Google Scholar]
  14. Bayona, G., Cortes, M., Jaramillo, C., Ojeda, G., Aristizabal, J., & Reyes‐Harker, A. (2008). An integrated analysis of an orogen–sedimentary basin pair: Latest cretaceous–Cenozoic evolution of the linked eastern cordillera orogen and the llanos foreland basin of Colombia. GSA Bulletin, 120, 1171–1197.
    [Google Scholar]
  15. Bayona, G., Jaramillo, C., Rueda, M., Harker, A. R., & Torres, V. (2007). Paleocene‐middle Miocene flexural‐margin migration of the non‐marine llanos foreland basin of Colombia. CT&F‐Ciencia, Tecnología y Futuro, 3(3), 51–70.
    [Google Scholar]
  16. Beaumont, C. (1978). The evolution of sedimentary basins on a viscoelastic lithosphere: Theory and examples. Geophysical Journal International, 55, 471–497.
    [Google Scholar]
  17. Beaumont, C. (1981). Foreland basins. Geophysical Journal International, 65(2), 291–329.
    [Google Scholar]
  18. Betka, P., Klepeis, K., & Mosher, S. (2015). Along‐strike variation in crustal shortening and kinematic evolution of the base of a retroarc fold‐and‐thrust belt: Magallanes, Chile 53°S–54°. Geological Society of America Bulletin, 127, 1108–1134.
    [Google Scholar]
  19. Biddle, K. T., Uliana, M. A., Mitchum, R. M., Jr., Fitzgerald, M. G., & Wright, R. C. (1986). The stratigraphic and structural evolution of the central and eastern Magallanes Basin, southern South America. In P. A.Allen & P.Homewood (Eds.), Foreland basins (Vol. 8, pp. 41–61). International Association of Sedimentologists.
    [Google Scholar]
  20. Blisniuk, P. M., Stern, L. A., Chamberlain, C. P., Zeitler, P. K., Ramos, V. A., Sobel, E. R., Haschke, M., Strecker, M. R., & Warkus, F. (2006). Links between mountain uplift, climate, and surface processes in the southern Patagonian Andes. The Andes (pp. 429–440). Springer.
    [Google Scholar]
  21. Braccaccini, O. (1948). La posición estratigráfica del conglomerado de Valdez en la región del seno de Ultima Esperanza. Revista de la Asociación Geológica Argentina, 3(1), 67–70.
    [Google Scholar]
  22. Breitsprecher, K., & Thorkelson, D. J. (2009). Neogene kinematic history of Nazca‐Antarctic‐Phoenix slab windows beneath Patagonia and the Antarctic peninsula. Tectonophysics, 464, 10–20.
    [Google Scholar]
  23. Bruhn, R., Stern, C. R., & Wit, M. J. (1978). Field and geochemical data bearing on the development of a Mesozoic volcano‐tectonic rift zone and back‐arc basin in southernmost South America. Earth and Planetary Science Letters, 41, 32–46.
    [Google Scholar]
  24. Calderón, M., Fildani, A., Hervé, F., Fanning, C. M., Weislogel, A., & Cordani, U. (2007). Late Jurassic bimodal magmatism in the northern sea‐floor remnant of the Rocas Verdes basin, southern Patagonian Andes. Journal of the Geological Society of London, 164, 1011–1022.
    [Google Scholar]
  25. Calderón, M., Hervé, F., Fuentes, F., Fosdick, J. C., Sepúlveda, F., & Galaz, G. (2016). Tectonic evolution of Paleozoic and Mesozoic Andean metamorphic complexes and the Rocas Verdes ophiolites in southern Patagonia. In M. C.Ghiglione (Ed.), Geodynamic evolution of the southernmost Andes (pp. 7–36). Springer Earth System Sciences.
    [Google Scholar]
  26. Castelli, J. C., Robertson, R., & Harambour, A. (1992). Evaluación Geológica y Petrolera, bloques Última Esperanza Sur e Isla Riesco. Empresa Nacional de Petróleo (ENAP), unpublished technical report, 106.
    [Google Scholar]
  27. Castelli, J. C., Rojas, L., & Robertson, R. (1993). Evaluación Geológica y Petrolera, Bloque Península Brunswick. Empresa Nacional de Petróleo (ENAP), unpublished technical report, 59.
    [Google Scholar]
  28. Catuneanu, O. (2004). Retroarc foreland systems—Evolution through time. Journal of African Earth Sciences, 38, 225–242.
    [Google Scholar]
  29. Céspedes, S. (1957). Estudio Geológico de la zona noroeste de Bahía Inútil, Tierra del Fuego. Empresa Nacional de Petróleo (ENAP), unpublished technical report, 86.
    [Google Scholar]
  30. Céspedes, S. (1960). Reconocimiento geológico en el área central Peninsula Brunswick. Empresa Nacional de Petróleo (ENAP), unpublished technical report, 97.
    [Google Scholar]
  31. Céspedes, S., & Cortés, E. (1956). Levantamiento Geológico del área Filaret—Rio Chico. Empresa Nacional de Petróleo (ENAP), unpublished technical report.
    [Google Scholar]
  32. Charrier, R., & Lahsen, A. (1969). Stratigraphy of late cretaceous‐early Eocene, Seno Skyring‐Strait of Magellan area, Magallanes province, Chile. AAPG Bulletin, 53(3), 568–590.
    [Google Scholar]
  33. Charrier, R., Pinto, L., & Rodríguez, M. P. (2007). Tectonostratigraphic evolution of the Andean Orogen in Chile. In W.Gibbons & T.Moreno (Eds.), The geology of Chile (pp. 21–114). The Geological Society, Special Publication.
    [Google Scholar]
  34. Cornejo, P., Matthews, S., & Pérez, C. (2003). The “K‐T” compressive deformation event in northern Chile (24°‐27°S). 10th Congreso Geológico Chileno, 13, Concepción.
  35. Cortés, R. (1964). Estratigrafía y un estudio de paleocorrientes del flysch cretáceo del Departamento de Última Esperanza (p. S117). Memoria para optar al título de Ingeniero Civil en Minas, Depto. Ingeniería Civil de Minas, Universidad Técnica de Estado.
    [Google Scholar]
  36. Covacevich, V. (1991). Estudio paleontológicos y biostratigráficos en la costa norte de Isla Riesco e interior de Seno Skyring, Región de Magallanes. Empresa Nacional de Petróleo (ENAP), unpublished technical report, 106.
    [Google Scholar]
  37. Crampton, S. L., & Allen, P. A. (1995). Recognition of flexural forebulge unconformities in the geologic record. AAPG Bulletin, 79, 1495–1514.
    [Google Scholar]
  38. Cuitiño, J. I., Pimentel, M. M., Ventura Santos, R., & Scasso, R. A. (2012). High resolution isotopic ages for the early Miocene “Patagoniense” transgression in Southwest Patagonia: Stratigraphic implications. Journal of South American Earth Sciences, 38, 110–122.
    [Google Scholar]
  39. Cuitiño, J. I., Ventura Santos, R., Alonso Muruaga, P. J., & Scasso, R. A. (2015). Sr‐stratigraphy and sedimentary evolution of early Miocene marine foreland deposits in the northern austral (Magallanes) basin, Argentina. Andean Geology, 42(3), 364–385.
    [Google Scholar]
  40. Dalziel, I. W. D. (1981). Back‐arc extension in the southern Andes: A review and critical reappraisal. Philosophical Transactions of the Royal Society B: Biological Sciences, 300, 319–335.
    [Google Scholar]
  41. Dalziel, I. W. D., de Wit, M. J., & Palmer, K. F. (1974). Fossil marginal basin in the southern Andes. Nature, 250, 291–294.
    [Google Scholar]
  42. Dávila, F. M., Ávila, P., & Martina, F. (2019). Relative contributions of tectonics and dynamic topography to the Mesozoic‐Cenozoic subsidence of southern Patagonia. Journal of South American Earth Sciences, 93, 412–423.
    [Google Scholar]
  43. Decat, J., & Pomeyrol, R. (1931). Informe Geológico sobre las posibilidades petrolíferas de la Región Magallánica (21‐VII‐1929). Boletín Minero, Sociedad Nacional de Minería, Santiago, año, 47(389), 763–772.
    [Google Scholar]
  44. Decelles, P. G. (2012). Foreland basin systems revisited: Variations in response to tectonic settings. In C.Busby & A.Azor (Eds.), Tectonics of sedimentary basins: Recent advances (pp. 405–426). Blackwell Publishing.
    [Google Scholar]
  45. Decelles, P. G., Carrapa, B., Horton, B. K., & Gehrels, G. E. (2011). Cenozoic foreland basin system in the Central Andes of northwestern Argentina: Implications for Andean geodynamics and modes of deformation. Tectonics, 30, TC6013.
    [Google Scholar]
  46. Decelles, P. G., & Decelles, P. C. (2001). Rates of shortening, propagation, underthrusting, and flexural wave migration in continental orogenic systems. Geology, 29(2), 135–138.
    [Google Scholar]
  47. Decelles, P. G., & Giles, K. N. (1996). Foreland basin systems. Basin Research, 8, 105–123.
    [Google Scholar]
  48. Decelles, P. G., & Horton, B. K. (2003). Early to middle tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geological Society of America Bulletin, 115(1), 58–77.
    [Google Scholar]
  49. Dickinson, W. R. (1974). Plate tectonics and sedimentation. SEPM Special Publications, 22, 1–27.
    [Google Scholar]
  50. Eagles, G. (2016). Tectonic reconstructions of the southernmost Andes and the Scotia Sea during the opening of the Drake Passage. In M. C.Ghiglione (Ed.), Geodynamic evolution of the southernmost Andes (pp. 75–108). Springer Earth System Sciences.
    [Google Scholar]
  51. Eagles, G., Livermore, R. A., Fairhead, J. D., & Morris, P. (2005). Tectonic evolution of the west Scotia Sea. Journal of Geophysical Research: Solid Earth, 110, 1–19.
    [Google Scholar]
  52. Elgueta, S. (1996). Análisis secuencial de Facies de la Formación Springhill en el pozo AMXE‐5, Magallanes. Empresa Nacional de Petróleo (ENAP), unpublished technical report, 37.
    [Google Scholar]
  53. Elgueta, S. (2007). Sistemas depositacionales de la Formación Springhill, bloque Lago Mercedes, Cuenca de Magallanes. Empresa Nacional de Petróleo (ENAP), unpublished technical report, 39.
    [Google Scholar]
  54. ENAP . (1991). Dataciones radiométricas Cuenca Gaviota. Empresa Nacional de Petróleo (ENAP), unpublished technical report, 5.
    [Google Scholar]
  55. Fildani, A., Cope, T. D., Graham, S. A., & Wooden, J. L. (2003). Initiation of the Magallanes foreland basin: Timing of the southernmost Patagonian Andes orogeny revised by detrital zircon provenance analysis. Geology, 31, 1081–1084.
    [Google Scholar]
  56. Fildani, A., & Hessler, A. M. (2005). Stratigraphic record across a retroarc basin inversion: Rocas Verdes‐Magallanes Basin, Patagonian Andes, Chile. Geological Society of America Bulletin, 117, 1596–1614.
    [Google Scholar]
  57. Flemings, P. B., & Jordan, T. E. (1989). A synthetic stratigraphic model of foreland basin development. Journal of Geophysical Research, 94, 3851–3866.
    [Google Scholar]
  58. Flemings, P. B., & Jordan, T. E. (1990). Stratigraphic modeling of foreland basins: Interpreting thrust deformation and lithosphere rheology. Geology, 18, 430–434.
    [Google Scholar]
  59. Fosdick, J. C., Graham, S. A., & Hilley, G. E. (2014). Influence of attenuated lithosphere and sediment loading on flexure of the deep‐water Magallanes retroarc foreland basin, southern Andes. Tectonics, 33, 1–21.
    [Google Scholar]
  60. Fosdick, J. C., Romans, B. W., Fildani, A., Bernhardt, A., Calderon, M., & Graham, S. A. (2011). Kinematic evolution of the Patagonian retroarc fold‐and‐thrust belt and Magallanes foreland basin, Chile and Argentina, 51°30´S. GSA Bulletin, 123, 1679–1698.
    [Google Scholar]
  61. Fosdick, J. C., Vanderleest, R. V., Bostelmann, J. E., Leonard, J. S., Ugalde, R., Oyarzún, J. L., & Griffin, M. (2020). Revised timing of Cenozoic Atlantic incursions and changing hinterland sediment sources during southern Patagonian orogenesis. Lithosphere, 2020, 8883099.
    [Google Scholar]
  62. Fuentes, F., & Horton, B. K. (2020). The Andean foreland evolution of the Neuquén Basin: A discussion. In D.Kietzmann, & A.Folguera (Eds.), Opening and closure of the Neuquén Basin in the southern Andes (pp. 341–370). Springer Earth System Sciences.
    [Google Scholar]
  63. Galeazzi, J. S. (1998). Structural and stratigraphic evolution of the Western Malvinas Basin, Argentina. AAPG Bulletin, 82, 596–636.
    [Google Scholar]
  64. Gallardo, R. E. (2014). Seismic sequence stratigraphy of a foreland unit in the Magallanes‐Austral Basin, dorado Riquelme block, Chile: Implications for deep‐marine reservoirs. Latin American Journal of Sedimentology and Basin Analysis, 21(1), 49–64.
    [Google Scholar]
  65. Gallardo, R. E., Ghiglione, M. C., & Rojas Galliani, L. (2019). Tectonic evolution of the southern austral‐Magallanes Basin in Tierra del Fuego. Latin American Journal of Sedimentology and Basin Analysis, 16, 57–74.
    [Google Scholar]
  66. Garcia‐Castellanos, D., Fernández, M., & Torne, M. (1997). Numerical modeling of foreland basin formation: A program relating thrusting, flexure, sediment geometry, and lithosphere rheology. Computers, 23, 993–1003.
    [Google Scholar]
  67. George, S. W., Davis, S. N., Fernández, R. A., Manríquez, L. M., Leppe, M. A., Horton, B. K., & Clarke, J. A. (2019). Chronology of deposition and unconformity development across the cretaceous–Paleogene boundary, Magallanes‐Austral Basin, Patagonian Andes. Journal of South American Earth Sciences, 95, 102237.
    [Google Scholar]
  68. Ghiglione, M. C., Likerman, J., Barberón, V., Beatriz Giambiagi, L., Aguirre‐Urreta, B., & Suarez, F. (2014). Geodynamic context for the deposition of coarse‐grained deep‐water axial channel systems in the Patagonian Andes. Basin Research, 26(6), 726–745.
    [Google Scholar]
  69. Ghiglione, M. C., Navarrete‐Rodríguez, A. T., González‐Guillot, M., & Bujaleski, G. (2013). The opening of the Magellan Strait and its geodynamic implications. Terra Nova, 25(1), 13–20.
    [Google Scholar]
  70. Ghiglione, M. C., Quinteros, J., Yagupsky, D., Bonillo‐Martínez, P., Hlebszevtich, J., Ramos, V. A., Vergani, G., Figueroa, D., Quesada, S., & Zapata, T. (2010). Structure and tectonic history of the foreland basins of southernmost South America. Journal of South American Earth Sciences, 29, 262–277.
    [Google Scholar]
  71. Ghiglione, M. C., & Ramos, V. A. (2005). Chronology of deformation in the southernmost Andes of Tierra del Fuego. Tectonophysics, 405, 25–46.
    [Google Scholar]
  72. Ghiglione, M. C., Rocha, E., Raggio, M. F., Ramos, M. E., Ronda, G., Moyano, P. D., Varela, A. N., & Valencia, V. (2021). Santonian‐Campanian littoral to continental depocenter of the austral‐Magallanes basin: Regional correlation, sediment sourcing and geodynamic setting. Cretaceous Research, 128, 104968.
    [Google Scholar]
  73. Ghiglione, M. C., Sue, C., Ramos, M. E., Tobal, J. E., & Gallardo, R. E. (2016). The relation between Neogene denudation of the southernmost Andes and sedimentation in the offshore argentine and Malvinas basins during the opening of the Drake Passage. In M. C.Ghiglione (Ed.), Geodynamic evolution of the southernmost Andes (pp. 109–135). Springer Earth System Sciences.
    [Google Scholar]
  74. Ghiglione, M. C., Yagupsky, D., Ghidella, M., & Ramos, V. A. (2008). Continental stretching preceding the opening of drake passage: Evidence from Tierra del Fuego. Geology, 36, 643–646.
    [Google Scholar]
  75. Gombosi, D. J., Barbeau, D. L., & Garver, J. I. (2009). New thermochronometric constraints on the rapid Paleogene exhumation of the cordillera Darwin complex and related thrust sheets in the Fueguian Andes. Terra Nova, 21, 507–515.
    [Google Scholar]
  76. González, D. L. (2013). Evaluación del Contenido de Metano en Carbones del Eoceno‐Oligoceno y Mioceno del Área Manzano‐Cruceros, Cuenca de Magallanes, Región de Magallanes, Chile (p. 225). Memoria para optar al título de Geólogo, Facultad de Ciencias Químicas, Depto. Ciencias de la Tierra, Universidad de Concepción.
    [Google Scholar]
  77. González, E. (1953). Estratigrafía y distribución de los grupos El Salto y Palomares en gran parte de la Cuenca de Magallanes. Empresa Nacional de Petróleo (ENAP), unpublished technical report.
    [Google Scholar]
  78. González, E. (1965). La Cuenca Petrolífera de Magallanes. Revista Minerales, Instituto de Ingenieros de Minas, Santiago. Rev Minerales, 91, 1–15.
    [Google Scholar]
  79. Gorring, M. L., Kay, S. M., Zeitler, P. K., Ramos, V. A., Rubiolo, D., Fernandez, M. I., & Panza, J. L. (1997). Neogene Patagonian plateau lavas: Continental magmas associated with ridge collision at the Chile triple junction. Tectonics, 16, 1–17.
    [Google Scholar]
  80. Guillaume, B., Martinod, J., Husson, L., Roddaz, M., & Riquelme, R. (2009). Neogene uplift of central eastern Patagonia: Dynamic response to active spreading ridge subduction?Tectonics, 28(2), 1–19.
    [Google Scholar]
  81. Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1166.
    [Google Scholar]
  82. Harambour, S., & Soffia, J. M. (1988). Evaluación Geológica y Petrolera del extremo Norte de Ultima Esperanza. Empresa Nacional de Petróleo (ENAP), unpublished technical report, 264.
    [Google Scholar]
  83. Hauser, A. (1964). La Zona Glauconítica en la Plataforma Springhill, Magallanes, Chile (p. 302). Tesis de Prueba para optar al título de Geólogo, Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Escuela de Geología.
    [Google Scholar]
  84. Heller, P. L., Angevine, C. L., Winslow, N. S., & Paola, C. (1988). Two‐phase stratigraphic model of foreland‐basin sequences. Geology, 16(6), 501–504.
    [Google Scholar]
  85. Hervé, F., Calderón, M., Fanning, C. M., Kraus, S., & Pankhurst, R. J. (2010). SHRIMP chronology of the Magallanes basin basement, Tierra del Fuego: Cambrian plutonism and Permian high‐grade metamorphism. Andean Geology, 37(2), 253–275.
    [Google Scholar]
  86. Hervé, F., Godoy, E., Mpodozis, C., & Fanning, M. (2004). Monitoring magmatism of the Patagonian batholith trough the U‐Pb SHRIMP dating of detrital zircons in sedimentary units of the Magallanes basin. In J.Carcione, F.Donda, & E.Lodolo (Eds.), International symposium on the geology and geophysics of the southernmost Andes, the scotia arc and Antartic peninsula (GEOSUR) (Vol. 45, pp. 113–117). Bollettino di Geofisica teorica ed applicata.
    [Google Scholar]
  87. Homewood, P., Allen, P. A., & Williams, G. D. (1986). Dynamics of the Molasse Basin of western Switzerland. In P. A.Allen & P.Homewood (Eds.), Foreland basins (Vol. 8, pp. 199–217). Blackwell Science.
    [Google Scholar]
  88. Horton, B. K. (2018). Sedimentary record of Andean mountain building. Earth‐Science Reviews, 78, 279–309.
    [Google Scholar]
  89. Horton, B. K. (2022). Unconformity development in retroarc foreland basins: Implications for the geodynamics of Andean‐type margins. Journal of the Geological Society, 179(3), jgs2020‐263.
    [Google Scholar]
  90. Horton, B. K., & Decelles, P. G. (1997). The modern foreland basin system adjacent to the Central Andes. Geology, 25, 895–898.
    [Google Scholar]
  91. Katz, H. R. (1963). Revision of cretaceous stratigraphy in the Patagonian cordillera of Última Esperanza, Magallanes Province, Chile. AAPG Bulletin, 47, 506–524.
    [Google Scholar]
  92. Keidel, I., & Hemmer, A. (1931). Informe preliminar sobre las investigaciones efectuadas en la región petrolífera de Magallanes en los meses de verano de 1928–1929 (12‐XII‐1929). Boletín minero, Soc Nacional de Minería, Santiago, 48, 706–717.
    [Google Scholar]
  93. Klepeis, K., Betka, P., Clarke, G., Fanning, M., Hervé, F., Rojas, L., Mpodozis, C., & Thomson, S. (2010). Continental underthrusting and obduction during the cretaceous closure of the Rocas Verdes rift basin, cordillera Darwin, Patagonian Andes. Tectonics, 29, 1–24.
    [Google Scholar]
  94. Kohn, M., Spear, F., & Dalziel, I. W. D. (1993). Metamorphic P‐T paths from cordillera Darwin, a Core complex in Tierra del Fuego, Chile. Journal of Petrology, 34(3), 519–542.
    [Google Scholar]
  95. Kohn, M. J., Spear, F. S., Harrison, T. M., & Dalziel, I. W. D. (1995). Ar‐40/Ar‐39 geochronology and P‐T‐T paths from the cordillera Darwin metamorphic complex, Tierra del Fuego, Chile. Journal of Metamorphic Geology, 13, 251–270.
    [Google Scholar]
  96. Kraemer, P. E. (2003). Orogenic shortening and the origin of the Patagonian orocline (56°S Lat). Journal of South American Earth Sciences, 15, 731–748.
    [Google Scholar]
  97. Kraemer, P. E., & Riccardi, A. C. (1997). Estratigrafía de la región comprendida entre los lagos Argentino y Viedma (49°40–50°10 lat.S), Provincia de Santa Cruz. Revista. Asociación Geologica Argentina, 52, 333–360.
    [Google Scholar]
  98. Leeder, M. R. (1993). Tectonic controls upon drainage basin development, river channel migration and alluvial architecture: Implications for hydrocarbon reservoir development and characterization. Geological Society ‐ Special Publications, 73(1), 7–22.
    [Google Scholar]
  99. Lonsdale, P. (2005). Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics, 404, 237–264.
    [Google Scholar]
  100. Malkowski, M. A., Schwartz, T. M., Sharman, G. R., Sickmann, Z. T., & Graham, S. A. (2016). Stratigraphic and provenance variations in the early evolution of the Magallanes‐austral foreland basin: Implications for the role of longitudinal versus transverse sediment dispersal during arc‐continent collision. GSA Bulletin, 129, 349–371.
    [Google Scholar]
  101. Malkowski, M. A., Sharman, G. R., Graham, S. A., & Fildani, A. (2015). Characterization and diachronous initiation of coarse clastic deposition in the Magallanes–austral foreland basin, Patagonian Andes. Basin Research, 29, 298–326.
    [Google Scholar]
  102. Malumián, N., Ardolino, A. A., Franchi, M., Remesal, M., & Salani, F. (1999). La sedimentación y el volcanismo terciarios en la Patagonia Extraandina. In R.Caminos (Ed.), Geología Argentina (Vol. 29, pp. 557–612). Instituto de Geología y Recursos Minerales. Anales.
    [Google Scholar]
  103. Malumián, N., Hromic, T., & Nañez, Y. (2013). El Paleógeno de la cuenca de Magallanes: bioestratigrafía y discontinuidades. Anales Instituto Patagonia (Chile), 41(1), 29–52.
    [Google Scholar]
  104. Malumián, N., & Nañez, Y. (2011). The late cretaceous‐Cenozoic transgressions in Patagonia and the Fueguian Andes: Foraminifera, palaeoecology, and palaeogeography. Biological Journal of the Linnean Society, 103, 269–288.
    [Google Scholar]
  105. Malumián, N., Panza, J. L., Parisi, C., Nañez, C., Caramés, A., & Torre, E. (2000). Hoja Geológica 5172‐III‐Yacimiento Río Turbio, provincia Santa Cruz, 1:250.000. Servicio Geológico Minero Argentino, Boletín 247, 108.
    [Google Scholar]
  106. Mcatamney, J., Klepeis, K., Mehrtens, C., Thomson, S., Betka, P., Rojas, L., & Snyder, S. (2011). Along‐strike variability of back‐arc basin collapse and the initiation of sedimentation in the Magallanes foreland basin, southernmost Andes (53–54.5°S). Tectonics, 30(5), 1–26.
    [Google Scholar]
  107. Mcclay, K. R. (1995). 2D and 3D analogue modelling of extensional fault structures; templates for seismic interpretation. Petroleum Geoscience, 1(2), 163–178.
    [Google Scholar]
  108. Mella, P. E. (2001). Control Tectónico en la Evolución de la Cuenca de Antepaís de Magallanes, XII Región, Chile (p. 149). Memoria para optar al título de Geólogo, Facultad de Ciencias Químicas, Departamento Ciencias de la Tierra, Universidad de Concepción.
    [Google Scholar]
  109. Moraga, J. (1996). Prospección de Hidrocarburos en Cuencas de Extensión Pre‐cretácicas, Magallanes, Chile (p. 117). Memoria para optar al Título de Geólogo, Facultad de Ciencias Físicas y Matemáticas, Departamento de Geología. Universidad de Chile.
    [Google Scholar]
  110. Mordojovich, C. (1951). Informe preliminar sobre los levantamientos geológicos de la costa Sur de Tierra del Fuego. Empresa Nacional de Petróleo (ENAP), unpublished technical report, 7.
    [Google Scholar]
  111. Morley, C. K., & Seusutthiya, G. K. (2007). Fault superimposition and linkage resulting from stress changes during rifting: Examples from 3D seismic data, Phitsanulok Basin, Thailand. Journal of Structural Geology, 29, 646–663.
    [Google Scholar]
  112. Mpodozis, C., Mella, P., & Pavda, D. (2011). Estratigrafía de Megasecuencias Sedimentarias en la Cuenca Austral‐Magallanes, Argentina y Chile. VIII Congreso de Exploración y Desarrollo de Hidrocarburos, Mar del Plata, 35.
  113. Muller, V., Calderón, M., Fosdick, J. C., Ghiglione, M., Cury, L. F., Massonne, H.‐J., Faning, C. M., Warren, C. J., Ramírez De Arellano, C., & Sternai, P. (2021). The closure of the Rocas Verdes Basin and early tectono‐metamorphic evolution of the Magallanes fold‐and‐Thrust Belt, southern Patagonian Andes (52–54°S). Tectonophysics, 798, 1–28.
    [Google Scholar]
  114. Natland, M. L., Eduardo, G. P., Cañon, A., & Ernst, M. (1974). A system of stages for correlation of Magallanes Basin sediments. Geological Society of America Memoirs, 139, 1–126.
    [Google Scholar]
  115. Navarrete‐Rodríguez, A. T. (2006). Análisis estructural del área de lago Mercedes, cuenca de Magallanes, Chile (p. 103). [Unpubl. MScThesis]. Universidad Nacional de Colombia.
    [Google Scholar]
  116. Noblet, C., Lavenu, A., & Marocco, R. (1996). Concept of continuum as opposed to periodic tectonism in the Andes. Tectonophysics, 255, 65–78.
    [Google Scholar]
  117. Nullo, F. E., Panza, J. L., & Blasco, G. (1999). Jurásico y Cretácico de la Cuenca Austral. In R.Caminos (Ed.), Geología Argentina, Instituto de Geología y Recursos Minerales (Vol. 29, pp. 528–535). Anales.
    [Google Scholar]
  118. Olivero, E. B., & Malumián, N. (1999). Eocene stratigraphy of southern Tierra del Fuego. AAPG Bulletin, 83, 295–313.
    [Google Scholar]
  119. Olivero, E. B., & Malumián, N. (2008). Mesozoic‐Cenozoic stratigraphy of the Fueguian Andes, Argentina. Geologica Acta, 6(1), 5–18.
    [Google Scholar]
  120. Olivero, E. B., Malumián, N., & Palamarczuk, S. (2003). Estratigrafía del Cretácico Superior‐Paleoceno del área de Bahía Thetis, Andes fueguinos, Argentina: acontecimientos tectónicos y paleobiológicos. Revista Geologica de Chile, 30, 245–263.
    [Google Scholar]
  121. Otero, R. A., Torres, T., Le Roux, J. P., Hervé, F., Fanning, C. M., Yury‐Yañez, R. E., & Rubilar‐Rogers, D. (2012). A late Eocene age proposal for the Loreto formation (Brunswick peninsula, southernmost Chile), based on fossil cartilaginous fishes, paleobotany and radiometric evidence. Andean Geology, 39(1), 180–200.
    [Google Scholar]
  122. Pankhurst, R. J., Rapela, C. W., Laske, W. P., Márquez, M., & Fanning, C. M. (2003). Chronological study of the pre‐Permian basement rocks of southern Patagonia. Journal of South American Earth Sciences, 16, 27–44.
    [Google Scholar]
  123. Pankhurst, R. J., Riley, T. R., Fanning, C. M., & Kelley, S. P. (2000). Episodic silicic volcanism in Patagonia and the Antarctic peninsula: Chronology of magmatism associated with the break‐up of Gondwana. Journal of Petrology, 41, 605–625.
    [Google Scholar]
  124. Pinto, J. A., González, D. L., Pérez, A. E., & Mella, P. E. (2018). Cronoestratigrafía y Potencial Petrolífero del Paleoceno de la Cuenca de Antepaís Magallanes, Sur de Chile. XV Congreso Geológico Chileno, Actas, 378, Concepción.
  125. Plint, A. G., Hart, B. S., & Donaldson, W. S. (1993). Lithospheric flexure as a control on stratal geometry and facies distribution in upper cretaceous rocks of the Alberta foreland basin. Basin Research, 5, 69–77.
    [Google Scholar]
  126. Ponce, J. J., Olivero, E. B., & Martinioni, D. R. (2008). Upper Oligocene–Miocene clinoforms of the foreland Austral Basin of Tierra del Fuego, Argentina: Stratigraphy, depositional sequences and architecture of the foredeep deposits. Journal of South American Earth Sciences, 26, 36–54.
    [Google Scholar]
  127. Price, R. A. (1973). Large‐scale gravitational flow of supra‐crustal rocks, southern Canadian Rockies. In K. A.De Jong & R. A.Scholten (Eds.), Gravity and tectonics (pp. 491–502).
    [Google Scholar]
  128. Prieto, X., & Moraga, J. (1990). Ambiente de sedimentación de la Formación Ballena (Eoceno superior a medio), Tierra del Fuego, Magallanes. II Simposium sobre el Terciario de Chile (Concepción). Actas (pp. 267–273). John Wiley.
    [Google Scholar]
  129. Quinlan, G. M., & Beaumont, C. (1984). Appalachian thrusting, lithospheric flexure, and the Paleozoic stratigraphy of the eastern interior of North America. Canadian Journal of Earth Sciences, 21, 973–996.
    [Google Scholar]
  130. Ramos, V. A. (2005). Seismic ridge subduction and topography: Foreland deformation in the Patagonian Andes. Tectonophysics, 399, 73–86.
    [Google Scholar]
  131. Ramos, V. A., & Kay, S. M. (1992). Southern Patagonian plateau basalts and deformation: Backarc testimony of ridge collisions. Tectonophysics, 205, 261–282.
    [Google Scholar]
  132. Richiano, S., Varela, A. N., Cereceda, A., & Poiré, D. G. (2012). Evolución paleoambiental de la Formación Río Mayer, Cretácico Inferior, Cuenca Austral, Provincia de Santa Cruz, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 19(1), 3–26.
    [Google Scholar]
  133. Richiano, S., Varela, A. N., Gómez‐Peral, L. E., Cereceda, A., & Poiré, D. G. (2015). Composition of the lower cretaceous source rock from the Austral Basin (Río Mayer formation, Patagonia, Argentina): Regional implication for unconventional reservoirs in the southern Andes. Marine and Petroleum Geology, 66, 764–790.
    [Google Scholar]
  134. Richiano, S., Varela, A. N., & Poiré, D. G. (2016). Heterogeneous distribution of trace fossils across initial transgressive deposits in rift basin: An example from the Springhill formation, Argentina. Lethaia, 49, 524–539.
    [Google Scholar]
  135. Rivera, H. A. (2017). Insights into the tectonostratigraphic evolution of the southern Magallanes Basin, southern Chile, during the Cenozoic (p. 149). [Master's Thesis]. Universidad de Chile.
    [Google Scholar]
  136. Rivera, H. A., Le Roux, J. P., Farías, M., Gutiérrez, N. M., Sánchez, A., & Palma‐Heldt, S. (2020). Tectonic controls on the Maastrichtian‐Danian transgression in the Magallanes‐austral foreland basin (Chile): Implications for the growth of the southern Patagonian Andes. Sedimentary Geology, 403, 1–23.
    [Google Scholar]
  137. Robbiano, J. A., Arbe, H., & Gangui, A. (1996). Cuenca Austral Marina. In V. A.Ramos & M. A.Turic (Eds.), (pp. 323–342). Geología y Recursos Naturales de la Plataforma Continental Argentina.
  138. Rojas, L., & Mpodozis, C. (2006). Geología estructural de la faja plegada y corrida de Tierra del Fuego, Andes Patagónicos Chilenos. XI Congreso Geológico Chileno (Antofagasta). Actas, 325–328.
  139. Romans, B. W., Fildani, A., Graham, S. A., Hubbard, S. M., & Covault, J. A. (2009). Importance of predecessor basin history on sedimentary fill of a retroarc foreland basin: Provenance analysis of the cretaceous Magallanes Basin, Chile (50°52°S). Basin Research, 22, 640–658.
    [Google Scholar]
  140. Romans, B. W., Fildani, A., Hubbard, S. M., Covault, J. A., Fosdick, J. C., & Graham, S. A. (2011). Evolution of deep‐water stratigraphic architecture, Magallanes Basin, Chile. Marine and Petroleum Geology, 28, 612–628.
    [Google Scholar]
  141. Ronda, G., Ghiglione, M. C., Barberón, V., Coutand, I., & Tobal, J. (2019). Mesozoic–Cenozoic evolution of the southern Patagonian Andes fold and thrust belt (47°–48°S): Influence of the Rocas Verdes basin inversion and onset of Patagonian glaciations. Tectonophysics, 765, 83–101.
    [Google Scholar]
  142. Sachse, V. F., Strozyk, F., Anka, Z., Rodriguez, J. F., & Di Primio, R. (2016). The tectonostratigraphic evolution of the austral basin and adjacent areas against the background of Andean tectonics, southern Argentina, South America. Basin Research, 28, 462–482.
    [Google Scholar]
  143. Sáez, M. E. (2017). Análisis sismoestratigráfico del Cenozoico en sector norte de isla grande de Tierra del Fuego, Cuenca de Magallanes: integración de datos de subsuelo y afloramientos (p. 156). Memoria para optar al título de Geólogo, Facultad de Ciencias Físicas y Matemáticas, Departamento de Geología, Universidad de Chile.
    [Google Scholar]
  144. Schwartz, T. M., Fosdick, J. C., & Graham, S. A. (2017). Using detrital zircon U‐Pb ages to calculate late cretaceous sedimentation rates in the Magallanes‐austral basin, Patagonia. Basin Research, 29, 725–746.
    [Google Scholar]
  145. Schwarz, E., Veiga, G. D., Spalletti, L. A., & Massaferro, J. L. (2011). The transgressive infill of an inherited‐valley system: The Springhill formation (lower cretaceous) in southern Austral Basin, Argentina. Marine and Petroleum Geology, 28, 1218–1241.
    [Google Scholar]
  146. Sickmann, Z. T., Schwartz, T. M., & Graham, S. A. (2018). Refining detrital zircon maximum depositional age: An example from the Cerro Fortaleza formation, Austral Basin, southern Patagonia. Basin Research, 30, 708–729.
    [Google Scholar]
  147. Sinclair, H. D. (1997). Tectonostratigraphic model for underfilled peripheral foreland basins: An alpine perspective. Geological Society of America Bulletin, 109(3), 324–346.
    [Google Scholar]
  148. Sinclair, H. D., Coakley, B. J., Allen, P. A., & Watts, A. B. (1991). Simulation of foreland basin stratigraphy using a diffusion model of mountain belt uplift and erosion: An example from the Central Alps, Switzerland. Tectonics, 10(3), 599–620.
    [Google Scholar]
  149. Sinclair, H. D., & Naylor, M. (2012). Foreland basin subsidence driven by topographic growth versus plate subduction. Geological Society of America Bulletin, 124(3–4), 368–379.
    [Google Scholar]
  150. Sohn, Y. K., Choe, M., & Jo, H. R. (2002). Transition from debris flow to hyperconcentrated flow in a submarine channel (the cretaceous Cerro Toro formation, southern Chile). Terra Nova, 14, 405–415.
    [Google Scholar]
  151. Söllner, F., Miller, H., & Hervé, M. (2000). An early Cambrian granodiorite age from the pre‐Andean basement of Tierra del Fuego (Chile): The missing link between South America and Antarctica?Journal of South American Earth Sciences, 13, 163–177.
    [Google Scholar]
  152. Somoza, R., & Ghidella, M. E. (2012). Late cretaceous to recent plate motions in western South America revisited. Earth and Planetary Science Letters, 331, 152–163.
    [Google Scholar]
  153. Somoza, R., & Zaffarana, C. B. (2008). Mid‐cretaceous polar standstill of South America, motion of the Atlantic hotspots and the birth of the Andean cordillera. Earth and Planetary Science Letters, 271, 267–277.
    [Google Scholar]
  154. Stern, C. R., & De Witt, M. J. (2003). Rocas Verdes ophiolites, southernmost South America: Remnants of progressive stages of development on oceanic‐type crust in a continental margin back‐arc basin. In Y.Dilek & P. T.Robinson (Eds.), Ophiolites in earth history (Vol. 218, pp. 1–19). Geological Society, London, Special Publications.
    [Google Scholar]
  155. Stockmal, G. S., Beaumont, C., & Boutilier, R. (1986). Geodynamic models of convergent margin tectonics: Transition from rifted margin to overthrust belt and consequences for foreland‐basin development. AAPG Bulletin, 70(2), 181–190.
    [Google Scholar]
  156. Stockmal, G. S., Waldron, J. W. F., & Quinlan, G. M. (1995). Flexural modeling of Paleozoic Foreland Basin subsidence, offshore Western Newfoundland: Evidence for substantial post‐Taconian thrust transport. Journal of Geology, 103(6), 653–671.
    [Google Scholar]
  157. Storey, B. C., & Alabaster, T. (1991). Tectonomagmatic controls on Gondwana break‐up models: Evidence from the proto‐Pacific margin of Antarctica. Tectonics, 10, 1274–1288.
    [Google Scholar]
  158. Tankard, A. J. (1986). Depositional response to foreland deformation in the carboniferous of eastern Kentucky. American Association of Petroleum Geologists Bulletin, 70(7), 853–868.
    [Google Scholar]
  159. Thomas, C. R. (1949a). Geology and petroleum exploration in Magallanes Province, Chile. AAPG Bulletin, 33, 1553–1578.
    [Google Scholar]
  160. Thomas, C. R. (1949b). Manantiales field, Magallanes province, Chile. AAPG Bulletin, 3, 1579–1589.
    [Google Scholar]
  161. Thomson, S. N., Hervé, F., & Stockhert, B. (2001). The Mesozoic‐Cenozoic denudation history of the Patagonian Andes (southern Chile) and its correlation to different subduction processes. Tectonics, 20, 693–711.
    [Google Scholar]
  162. Torres Carbonell, P. J., & Dimieri, L. V. (2013). Cenozoic contractional tectonics in the Fuegian Andes, southernmost South America: A model for the transference of orogenic shortening to the foreland. Geologica Acta, 11(3), 359–370.
    [Google Scholar]
  163. Torres Carbonell, P. J., Dimieri, L. V., Olivero, E. B., Bohoyo, F., & Galindo‐Zaldívar, J. (2014). Structure and tectonic evolution of the Fuegian Andes (southernmost South America) in the framework of the scotia arc development. Global Planet Change, 123(Pt B), 174–188.
    [Google Scholar]
  164. Uliana, V. M. A., Biddle, K. T., & Cerdan, J. (1989). Mesozoic extension and the formation of argentine sedimentary basins. In T.AJ & H. R.Balkwill (Eds.), Extensional tectonics and stratigraphy of the North Atlantic margins (Vol. 46, pp. 599–613). AAPG Bulletin, Memoirs.
    [Google Scholar]
  165. Varela, A. N. (2015). Changes in accommodation space and sediment supply controlled by tectonics: The Mata Amarilla formation (lower upper cretaceous) Patagonia, Argentina. Sedimentology, 62, 867–896.
    [Google Scholar]
  166. Varela, A. N., Poiré, D. G., Martin, T., Gerdes, A., Goin, F. J., Gelfo, J. N., & Hoffmann, S. (2012). U‐Pb zircon constraints on the age of the cretaceous Mata Amarilla formation, Southern Patagonia, Argentina: Its relationship with the evolution of the Austral Basin. Andean Geology, 39(3), 359–379.
    [Google Scholar]
  167. Varela, A. N., Richiano, S., D'elia, L., Moyano Paz, D., Tettamanti, C., & Poiré, D. G. (2019). Sedimentology and stratigraphy of the Puesto El Moro formation, Patagonia, Argentina: Implications for upper cretaceous paleogeographic reconstruction and compartmentalization of the austral‐Magallanes Basin. Journal of South American Earth Sciences, 92, 466–480.
    [Google Scholar]
  168. Velásquez, A. I. (2016). Condiciones depositacionales de la Formación Palomares, XII Región de Magallanes, p155. Memoria para optar al título de Geólogo, Facultad de Ciencias Físicas y Matemáticas, Departamento de Geología, Universidad de Chile.
    [Google Scholar]
  169. Von Goetsche, G., & Huca, J. R. (1953). Informe geológico del área Tres Morros‐Agua Fresca‐San Isidro. Empresa Nacional de Petróleo (ENAP), unpublished technical report, 305.
    [Google Scholar]
  170. Waschbusch, P. J., & Royden, L. H. (1992). Spatial and temporal evolution of foredeep basins: Lateral strength variations and inelastic yielding in continental lithosphere. Basin Research, 4, 179–196.
    [Google Scholar]
  171. Wilson, T. J. (1991). Transition from Back‐arc to Foreland Basin development in the southernmost Andes‐stratigraphic record from the Última‐Esperanza‐District, Chile. Geological Society of America Bulletin, 103, 98–111.
    [Google Scholar]
  172. Xiao, H., & Suppe, J. (1992). Origin of rollover. American Association of Petroleum Geologists Bulletin, 76, 509–529.
    [Google Scholar]
  173. Zerfass, H., Ramos, V. A., Ghiglione, M. C., Naipauer, M., Belotti, H. J., & Carmo, I. O. (2017). Folding, thrusting and development of push‐up structures during the Miocene tectonic inversion of the Austral Basin, southern Patagonian Andes (50S). Tectonophysics, 699, 102–120.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12739
Loading
/content/journals/10.1111/bre.12739
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error