1887
Volume 35, Issue 3
  • E-ISSN: 1365-2117
PDF

Abstract

[

We show that the timing of the long‐term retrograding mega‐sequence driven by lithosphere thinning depends on the deformation style and magma production. Along oblique margins of the Equatorial Segment, deepening is initiated during syn‐rift because their narrow crustal thinning style favours rapid tectonic subsidence surpassing sediment supply. Along wide margins of the Central Segment, deepening is initiated at the end of the transition phase because of depth‐dependent thinning favours slow tectonic subsidence and late break‐up. Along magma‐rich margins of the South Segment, deepening is initiated during the transition phase, after volcanics stopped filling accommodation created by subsidence.

, Abstract

Models of the formation of rifted margins have significantly evolved over the last decades by identifying new styles of crustal thinning and magmatic production. However, the expression of these different processes in the depositional environments of the overlying basins remains to be determined. Using only published data, we integrated the sedimentary evolution of 21 basins of the Equatorial, Central and South segments of the South Atlantic that record various styles of crustal thinning and magmatic production. To compare these basins that underwent rifting at different times, we developed a new type of analysis allowing to evaluate statistically the (dis)similarities in depositional environment trends by normalizing them to the tectonic phases of the basin (syn‐rift, transition and post‐rift) rather than the stratigraphic or absolute ages: The GeoDyNamical Analysis. We show that the timing of the long‐term retrograding mega‐sequence driven by lithosphere thinning depends on the deformation style and magma production. Along oblique margins of the Equatorial Segment, deepening initiated during syn‐rift because their narrow crustal thinning style favours rapid tectonic subsidence surpassing sediment supply. Along wide margins of the Central Segment, deepening is initiated later, at the end of the transition phase, because depth‐dependent thinning favours slow tectonic subsidence and late break‐up. Along magma‐rich margins of the South Segment, deepening is initiated during the transition phase, after volcanics stopped filling accommodation created by subsidence. In the Central Segment, evaporites accumulated during the second half of the transition phase, when crustal thinning ceased in the proximal margin and migrated to its distal part. Immediately before and during evaporites accumulation, sediments recorded continental and coastal depositional environments resulting from the limited thermal subsidence in the proximal margin domain. Evaporite deposition lasted until the initiation of retrograding mega‐sequence, at the onset of the post‐rift phase and the end of crustal thinning in the distal margin.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12740
2023-05-19
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/bre/35/3/bre12740.html?itemId=/content/journals/10.1111/bre.12740&mimeType=html&fmt=ahah

References

  1. Al‐Hajri, Y., White, N., & Fishwick, S. (2009). Scales of transient convective support beneath Africa. Geology, 37, 883–886. https://doi.org/10.1130/G25703A.1
    [Google Scholar]
  2. Alvarenga, R. S., Iacopini, D., Kuchle, J., Scherer, C. M. S., & Goldberg, K. (2016). Seismic characteristics and distribution of hydrothermal vent complexes in the cretaceous offshore rift section of the Campos Basin, offshore Brazil. Marine and Petroleum Geology, 74, 12–25.
    [Google Scholar]
  3. Alves, T. M., Fetter, M., Lima, C., Cartwright, J. A., Cosgrove, J., Gangá, A., Queiroz, C. L., & Strugale, M. (2017). An incomplete correlation between pre‐salt topography, top reservoir erosion, and salt deformation in deep‐water Santos Basin (SE Brazil). Marine and Petroleum Geology, 79, 300–320. https://doi.org/10.1016/j.marpetgeo.2016.10.015
    [Google Scholar]
  4. Anka, Z., & Séranne, M. (2004). Reconnaissance study of the ancient Zaire (Congo) deep‐sea fan (ZaiAngo project). Marine Geology, 209, 223–244. https://doi.org/10.1016/j.margeo.2004.06.007
    [Google Scholar]
  5. Anka, Z., Séranne, M., Lopez, M., Scheck‐Wenderoth, M., & Savoye, B. (2009). The long‐term evolution of The Congo deep‐sea fan: A basin‐wide view of the interaction between a giant submarine fan and a mature passive margin ZaiAngo project. Tectonophysics, 470, 42–56. https://doi.org/10.1016/j.tecto.2008.04.009
    [Google Scholar]
  6. Antobreh, A. A., Faleide, J. I., Tsikalas, F., & Planke, S. (2009). Rift‐shear architecture and tectonic development of the Ghana margin deduced from multichannel seismic reflection and potential field data. Marine and Petroleum Geology, 26, 345–368. https://doi.org/10.1016/j.marpetgeo.2008.04.005
    [Google Scholar]
  7. Antobreh, A. A., Faleide, J. I., Tsikalas, F., & Planke, S. (2012). Rift‐shear architecture and tectonic development of the Ghana margin. In D. G.Roberts (Ed.), Regional geology and tectonics: Phanerozoic passive margins, Cratonic Basins and global tectonic maps (pp. 566–615). Elsevier. https://doi.org/10.1016/B978‐0‐444‐56357‐6.00015‐9
    [Google Scholar]
  8. Aslanian, D., & Moulin, M. (2012). Palaeogeographic consequences of conservational models in the South Atlantic Ocean. Geological Society Special Publication, 369, 75–90. https://doi.org/10.1144/SP369.5
    [Google Scholar]
  9. Aslanian, D., Moulin, M., Olivet, J.‐L., Unternehr, P., Matias, L., Bache, F., Rabineau, M., Nouzé, H., Klingelheofer, F., Contrucci, I., & Labails, C. (2009). Brazilian and African passive margins of the central segment of the South Atlantic Ocean: Kinematic constraints. Tectonophysics, 468, 98–112. https://doi.org/10.1016/j.tecto.2008.12.016
    [Google Scholar]
  10. Assumpção, M., Bianchi, M., Julià, J., Dias, F. L., Sand França, G., Nascimento, R., Drouet, S., Pavão, C. G., Albuquerque, D. F., & Lopes, A. E. V. (2013). Crustal thickness map of Brazil: Data compilation and main features. Journal of South American Earth Sciences, 43, 74–85. https://doi.org/10.1016/j.jsames.2012.12.009
    [Google Scholar]
  11. Autin, J., Scheck‐Wenderoth, M., Loegering, M. J., Anka, Z., Vallejo, E., Rodriguez, J. F., Dominguez, F., Marchal, D., Reichert, C., Di Primio, R., & Götze, H.‐J. (2013). Colorado Basin 3D structure and evolution, argentine passive margin. Tectonophysics, 604, 264–279. https://doi.org/10.1016/j.tecto.2013.05.019
    [Google Scholar]
  12. Baby, G. (2017). Mouvements verticaux des marges passives d'Afrique australe depuis 130 Ma, étude couplée: stratigraphie de bassin: analyse des formes du relief [PhD Thesis]. Université Rennes 1.
    [Google Scholar]
  13. Baby, G., Guillocheau, F., Morin, J., Ressouche, J., Robin, C., Broucke, O., & Dall'Asta, M. (2018). Post‐rift stratigraphic evolution of the Atlantic margin of Namibia and South Africa: Implications for the vertical movements of the margin and the uplift history of the South African plateau. Marine and Petroleum Geology, 97, 169–191. https://doi.org/10.1016/j.marpetgeo.2018.06.030
    [Google Scholar]
  14. Bajolet, F., Chardon, D., Rouby, D., Dall'Asta, M., Loparev, A., Couëffe, R., & Roig, J.‐Y. (2022). Paleogeographic constraints on a continental‐scale source‐to‐sink system: Northern South America since the Early Mesozoic. Earth Science Reviews, 232, 104139. https://doi.org/10.1016/j.earscirev.2022.104139
    [Google Scholar]
  15. Bally, A. W., & Snelson, S. (1980). Realms of subsidence. Memoir ‐ Canadian Society of Petroleum Geologists, 6, 9–94.
    [Google Scholar]
  16. Basile, C., Maillard, A., Patriat, M., Gaullier, V., Loncke, L., Roest, W., Mercier de Lépinay, M., & Pattier, F. (2013). Structure and evolution of the demerara plateau, offshore French Guiana: Rifting, tectonic inversion and post‐rift tilting at transform‐divergent margins intersection. Tectonophysics, 591, 16–29. https://doi.org/10.1016/j.tecto.2012.01.010
    [Google Scholar]
  17. Basile, C., Mascle, J., & Guiraud, R. (2005). Phanerozoic geological evolution of the equatorial Atlantic domain. Journal of African Earth Sciences, 43, 275–282. https://doi.org/10.1016/j.jafrearsci.2005.07.011
    [Google Scholar]
  18. Bate, R. H. (1972). Phosphatized ostracods with appendages from the lower cretaceous of Brazil. Palaeontology, 15, 379–393.
    [Google Scholar]
  19. Bauer, K., Neben, S., Schreckenberger, B., Emmermann, R., Hinz, K., Fechner, N., Gohl, K., Schulze, A., Trumbull, R. B., & Weber, K. (2000). Deep structure of the Namibia continental margin as derived from integrated geophysical studies. Journal of Geophysical Research, 105, 25829–25853.
    [Google Scholar]
  20. Becker, K., Franke, D., Trumbull, R., Schnabel, M., Heyde, I., Schreckenberger, B., Koopmann, H., Bauer, K., Jokat, W., & Krawczyk, C. M. (2014). Asymmetry of high‐velocity lower crust on the South Atlantic rifted margins and implications for the interplay of magmatism and tectonics in continental breakup. Solid Earth, 5, 1011–1026. https://doi.org/10.5194/se‐5‐1011‐2014
    [Google Scholar]
  21. Becker, K., Tanner, D. C., Franke, D., & Krawczyk, C. M. (2016). Fault‐controlled lithospheric detachment of the volcanic southern South Atlantic rift. Geochemistry, Geophysics, Geosystems, 17, 887–894. https://doi.org/10.1002/2015GC006081
    [Google Scholar]
  22. Beglinger, S. E. (2011). Relating petroleum system and play development to basin evolution: South Atlantic marginal basins [PhD Thesis]. Vrije University, Amsterdam.
    [Google Scholar]
  23. Beglinger, S. E., Corver, M. P., Doust, H., Cloetingh, S., & Thurmond, A. K. (2012). A new approach of relating petroleum system and play development to basin evolution: An application to the conjugate margin Gabon coastal and Almada‐Camamu basins. American Association of Petroleum Geologists Bulletin, 96, 953–982. https://doi.org/10.1306/10271111040
    [Google Scholar]
  24. Beglinger, S. E., Doust, H., & Cloetingh, S. (2012a). Relating petroleum system and play development to basin evolution: West African South Atlantic basins. Marine and Petroleum Geology, 30, 1–25. https://doi.org/10.1016/j.marpetgeo.2011.08.008
    [Google Scholar]
  25. Beglinger, S. E., Doust, H., & Cloetingh, S. (2012b). Relating petroleum system and play development to basin evolution: Brazilian South Atlantic margin. Petroleum Geoscience, 18, 315–336. https://doi.org/10.1144/1354‐079311‐022
    [Google Scholar]
  26. Beniest, A. (2017). From continental rifting to conjugate margins: Insights from analogue and numerical modelling [PhD Thesis]. University of Pierre and Marie Curie.
    [Google Scholar]
  27. Beniest, A., Koptev, A., & Burov, E. (2017). Numerical models for continental break‐up: Implications for the South Atlantic. Earth and Planetary Science Letters, 461, 176–189. https://doi.org/10.1016/j.epsl.2016.12.034
    [Google Scholar]
  28. Benkhelil, J., Mascle, J., & Tricart, P. (1995). The Guinea continental margin: An example of a structurally complex transform margin. Tectonophysics, 248, 117–137. https://doi.org/10.1016/0040‐1951(94)00246‐6
    [Google Scholar]
  29. Biju‐Duval, B. (2002). Sedimentary geology: Sedimentary basins, depositional environments, petroleum formation (p. 656). Technip Editions.
    [Google Scholar]
  30. Blaich, O. A., Faleide, J. I., & Tsikalas, F. (2011). Crustal breakup and continent‐ocean transition at South Atlantic conjugate margins. Journal of Geophysical Research, 116, B01402. https://doi.org/10.1029/2010JB007686
    [Google Scholar]
  31. Blaich, O. A., Faleide, J. I., Tsikalas, F., Franke, D., & León, E. (2009). Crustal‐scale architecture and segmentation of the argentine margin and its conjugate off South Africa. Geophysical Journal International, 178, 85–105. https://doi.org/10.1111/j.1365‐246X.2009.04171.x
    [Google Scholar]
  32. Blaich, O. A., Faleide, J. I., Tsikalas, F., Lilletveit, R., Chiossi, D., Brockbank, P., & Cobbold, P. (2010). Structural architecture and nature of the continent‐ocean transitional domain at the Camamu and Almada basins (NE Brazil) within a conjugate margin setting. Geological Society, London, Petroleum Geology Conference Series, 7, 867–883. https://doi.org/10.1144/0070867
    [Google Scholar]
  33. Brandão, J., & Feijó, F. (1994). Bacia da foz do Amazonas. Boletim de Geociências da Petrobras, 8, 91–99.
    [Google Scholar]
  34. Branner, J. C. (1890). The cretaceous and tertiary geology of the Sergipe‐Alagôas Basin of Brazil. Transactions of the American Philosophical Society, 16, 369–434. https://doi.org/10.2307/1005398
    [Google Scholar]
  35. Bray, R., & Lawrence, S. (1999). Nearby finds brighten outlook. The leading edge, 18, 608–614. https://doi.org/10.1190/1.1438349
    [Google Scholar]
  36. Broad, D. S., Jungslager, E. H. A., McLachlan, I. R., Roux, J., & van der Spuy, D. (2012). South Africa's offshore Mesozoic basins. In D. G.Roberts (Ed.), Regional geology and tectonics: Phanerozoic passive margins, Cratonic basins and global tectonic maps (pp. 534–564). Elsevier. https://doi.org/10.1016/B978‐0‐444‐56357‐6.00014‐7
    [Google Scholar]
  37. Brognon, G. P., & Verrier, G. R. (1966). Oil and geology in Cuanza Basin of Angola. AAPG Bulletin, 51, 108–158.
    [Google Scholar]
  38. Broucke, O., Temple, F., Rouby, D., Robin, C., Calassou, S., Nalpas, T., & Guillocheau, F. (2004). The role of deformation processes on the geometry of mud‐dominated turbiditic systems, Oligocene and lower‐middle Miocene of the lower Congo basin (west African margin). Marine and Petroleum Geology, 21, 327–348. https://doi.org/10.1016/j.marpetgeo.2003.11.013
    [Google Scholar]
  39. Brown, G. W., & Mood, A. M. (1951). On median tests for linear hypotheses. Berkeley Symposium on Mathematical Statistics and Probability, 2, 159–166.
    [Google Scholar]
  40. Brown, L. F., Benson, J. M., Brink, G. J., Doherty, S., Jollands, A., Jungslager, E. H., Keenan, J. H., Muntingh, A., & van Wyk, N. J. (1995). Sequence stratigraphy in offshore south African divergent basins. AAPG Studies in Geology, 41, 184.
    [Google Scholar]
  41. Brownfield, M. E., & Charpentier, R. R. (2006a). Geology and total petroleum systems of the West‐Central Coastal Province (7203), West Africa. U.S. Geological Survey Bulletin, 2207‐B, 32. https://doi.org/10.3133/b2207B
    [Google Scholar]
  42. Brownfield, M. E., & Charpentier, R. R. (2006b). Geology and total petroleum systems of the Gulf of Guinea province of West Africa, 2006. U.S. Geological Survey Bulletin, 2207‐C, 52. https://doi.org/10.3133/b2207C
    [Google Scholar]
  43. Brune, S. (2014). Evolution of stress and fault patterns in oblique rift systems: 3‐D numerical lithospheric‐scale experiments from rift to breakup. Geochemistry, Geophysics, Geosystems, 15, 3392–3415. https://doi.org/10.1002/2014GC005446
    [Google Scholar]
  44. Brune, S., Heine, C., Clift, P. D., & Pérez‐Gussinyé, M. (2017). Rifted margin architecture and crustal rheology: Reviewing Iberia‐Newfoundland, central South Atlantic, and South China Sea. Marine and Petroleum Geology, 79, 257–281. https://doi.org/10.1016/j.marpetgeo.2016.10.018
    [Google Scholar]
  45. Bueno, G. V., Zacharias, A. A., Oreiro, S. G., Cupertino, J. A., Falkenhein, F. U. H., & Martins Neto, M. A. (2007). Bacia de Pelotas. Boletim de Geociências da Petrobras, 15, 551–559.
    [Google Scholar]
  46. Burchfiel, B. C. (1983). The continental crust. Scientific American, 249, 130–145.
    [Google Scholar]
  47. Burke, K., & Gunnell, Y. (Eds.). (2008). The African erosion surface: A continental‐scale synthesis of geomorphology, tectonics, and environmental change over the past 180 million years. Geological Society of America Memoirs, 201, 66.
    [Google Scholar]
  48. Cainelli, C., & Mohriak, W. (1999). Some remarks on the evolution of sedimentary basins along the eastern Brazilian continental margin. Episodes, 22, 206–216.
    [Google Scholar]
  49. Cappelletti, A., Tsikalas, F., Nestola, Y., Cavozzi, C., Argnani, A., Meda, M., & Salvi, F. (2013). Impact of lithospheric heterogeneities on continental rifting evolution: Constraints from analogue modelling on South Atlantic margins. Tectonophysics, 608, 30–50. https://doi.org/10.1016/j.tecto.2013.09.026
    [Google Scholar]
  50. Cartwright, J., Swart, R., & Corner, B. (2012). Conjugate margins of the South Atlantic: Namibia‐Pelotas. In D. G.Roberts (Ed.), Regional geology and tectonics: Phanerozoic passive margins, Cratonic basins and global tectonic maps (pp. 202–221). Elsevier. https://doi.org/10.1016/B978‐0‐444‐56357‐6.00005‐6
    [Google Scholar]
  51. Carvalho, H., Tassinari, C., Alves, P. H., Guimarães, F., & Simões, M. C. (2000). Geochronological review of the Precambrian in western Angola: Links with Brazil. Journal of African Earth Sciences, 31, 383–402. https://doi.org/10.1016/S0899‐5362(00)00095‐6
    [Google Scholar]
  52. Chaboureau, A.‐C., Donnadieu, Y., Sepulchre, P., Robin, C., Guillocheau, F., & Rohais, S. (2012). The Aptian evaporites of the South Atlantic: A climatic paradox?Climate of the Past, 8, 1047–1058. https://doi.org/10.5194/cp‐8‐1047‐2012
    [Google Scholar]
  53. Chaboureau, A.‐C., Guillocheau, F., Robin, C., Rohais, S., Moulin, M., & Aslanian, D. (2013). Paleogeographic evolution of the central segment of the South Atlantic during early cretaceous times: Paleotopographic and geodynamic implications. Tectonophysics, 604, 191–223. https://doi.org/10.1016/j.tecto.2012.08.025
    [Google Scholar]
  54. Chauvet, F., Sapin, F., Geoffroy, L., Ringenbach, J.‐C., & Ferry, J.‐N. (2021). Conjugate volcanic passive margins in the austral segment of the South Atlantic—Architecture and development. Earth Science Reviews, 212, 103461. https://doi.org/10.1016/j.earscirev.2020.103461
    [Google Scholar]
  55. Chen, A., Jin, C., Lou, Z., Chen, H., Xu, S., Huang, K., & Hu, S. (2013). Salt tectonics and basin evolution in the Gabon Coastal Basin, West Africa. Journal of Earth Science, 24, 903–917. https://doi.org/10.1007/s12583‐013‐0383‐5
    [Google Scholar]
  56. Chenin, P., Schmalholz, S. M., Manatschal, G., & Duretz, T. (2020). Impact of crust–mantle mechanical coupling on the topographic and thermal evolutions during the necking phase of ‘magma‐poor’ and ‘sediment‐starved’ rift systems: A numerical modeling study. Tectonophysics, 786, 228472. https://doi.org/10.1016/j.tecto.2020.228472
    [Google Scholar]
  57. Clemente, P. (2013). Petroleum geology of the Campos and Santos basins, Lower Cretaceous Brazilian sector of the South Atlantic margin [PhD Thesis]. Danmarks Tekniske Universitet.
    [Google Scholar]
  58. Clemson, J., Cartwright, J., & Booth, J. (1997). Structural segmentation and the influence of basement structure on the Namibian passive margin. Journal of the Geological Society, 154, 477–482. https://doi.org/10.1144/gsjgs.154.3.0477
    [Google Scholar]
  59. Clerc, C., Ringenbach, J.‐C., Jolivet, L., & Ballard, J.‐F. (2018). Rifted margins: Ductile deformation, boudinage, continentward‐dipping normal faults and the role of the weak lower crust. Gondwana Research, 53, 20–40. https://doi.org/10.1016/j.gr.2017.04.030
    [Google Scholar]
  60. Clift, P. D., Lorenzo, J., Carter, A., & Hurford, A. J. (1997). Transform tectonics and thermal rejuvenation on the Côte D'ivoire‐Ghana margin, West Africa. Journal of the Geological Society, 154, 483–489. https://doi.org/10.1144/gsjgs.154.3.0483
    [Google Scholar]
  61. Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J.‐X. (2013). Updated the ICS international chronostratigraphic chart. Episodes, 36, 199–204.
    [Google Scholar]
  62. Colli, L., Stotz, I., Bunge, H.‐P., Smethurst, M., Clark, S., Iaffaldano, G., Tassara, A., Guillocheau, F., & Bianchi, M. C. (2014). Rapid South Atlantic spreading changes and coeval vertical motion in surrounding continents: Evidence for temporal changes of pressure‐driven upper mantle flow. Tectonics, 33, 1304–1321. https://doi.org/10.1002/2014TC003612
    [Google Scholar]
  63. Contreras, J. (2011). Seismo‐stratigraphy and numerical basin modeling of the southern Brazilian continental margin (Campos, Santos, and Pelotas basins) [PhD Thesis]. Ruprecht‐Karls‐Universität.
    [Google Scholar]
  64. Contreras, J., Zühlke, R., Bowman, S., & Bechstädt, T. (2010). Seismic stratigraphy and subsidence analysis of the southern Brazilian margin (Campos, Santos and Pelotas basins). Marine and Petroleum Geology, 27, 1952–1980. https://doi.org/10.1016/j.marpetgeo.2010.06.007
    [Google Scholar]
  65. Contrucci, I., Matias, L., Moulin, M., Géli, L., Klingelhofer, F., Nouzé, H., Aslanian, D., Olivet, J. L., Réhault, J. P., & Sibuet, J. C. (2004). Deep structure of the west African continental margin (Congo, Zaïre, Angola), between 5°S and 8°S, from reflection/refraction seismics and gravity data. Geophysical Journal International, 158, 529–553. https://doi.org/10.1111/j.1365‐246X.2004.02303.x
    [Google Scholar]
  66. Córdoba, V. C., de Sá, E. F. J., & Antunes, A. F. (2007). Bacia de Pernambuco‐Paraíba. Boletim de Geociências da Petrobras, 15, 391–403.
    [Google Scholar]
  67. Coterill, K., Tari, G., Molnar, J., & Ashton, P. (2002). Comparison of depositional sequences and tectonic styles among the west African Deepwater frontiers of western Ivory Coast, southern Equatorial Guinea, and northern Namibia. The Leading Edge, 21, 1103–1111. https://doi.org/10.1190/1.1523747
    [Google Scholar]
  68. Coward, M. P., Purdy, E. G., Ries, A. C., & Smith, D. G. (1999). The distribution of petroleum reserves in basins of the South Atlantic margins. Geological Society, London, Special Publications, 153, 101–131. https://doi.org/10.1144/GSL.SP.1999.153.01.08
    [Google Scholar]
  69. Cramez, C., & Jackson, M. P. A. (2000). Superposed deformation straddling the continental‐oceanic transition in deep‐water Angola. Marine and Petroleum Geology, 17, 1095–1109. https://doi.org/10.1016/S0264‐8172(00)00053‐2
    [Google Scholar]
  70. Dailly, P., Lowry, P., Goh, K., & Monson, G. (2002). Exploration and development of Ceiba field, Rio Muni basin, Southern Equatorial Guinea. The Leading Edge, 21, 1140–1146. https://doi.org/10.1190/1.1523753
    [Google Scholar]
  71. Dauteuil, O., Rouby, D., Braun, J., Guillocheau, F., & Deschamps, F. (2013). Post‐breakup evolution of the Namibian margin: Constraints from numerical modeling. Tectonophysics, 604, 122–138. https://doi.org/10.1016/j.tecto.2013.03.034
    [Google Scholar]
  72. Davison, I. (1999). Tectonics and hydrocarbon distribution along the Brazilian South Atlantic margin. Geological Society Special Publication, 153, 133–151. https://doi.org/10.1144/GSL.SP.1999.153.01.09
    [Google Scholar]
  73. Davison, I. (2007). Geology and tectonics of the South Atlantic Brazilian salt basins. Geological Society Special Publication, 272, 345–559. https://doi.org/10.1144/GSL.SP.2007.272.01.18
    [Google Scholar]
  74. Davison, I., Anderson, L., & Nuttall, P. (2012). Salt deposition, loading and gravity drainage in the Campos and Santos salt basins. Geological Society Special Publication, 363, 159–173. https://doi.org/10.1144/SP363.8
    [Google Scholar]
  75. de Araujo Carvalho, M., Lana, C. C., Bengtson, P., & de Paula Sá, N. (2017). Late Aptian (cretaceous) climate changes in northeastern Brazil: A reconstruction based on indicator species analysis (IndVal). Palaeogeography Palaeoclimatology Palaeoecology, 485, 543–560. https://doi.org/10.1016/j.palaeo.2017.07.011
    [Google Scholar]
  76. de Campo Neto, O. P. A., Lima, W. S., & Cruz, F. E. G. (2007). Bacia de Sergipe‐Alagoas. Boletim de Geociências da Petrobras, 15, 405–415.
    [Google Scholar]
  77. de Castro, A. C. M. (1987). The northeastern Brazil and Gabon basins: A double rifting system associated with multiple crustal detachment surfaces. Tectonics, 6, 727–738. https://doi.org/10.1029/TC006i006p00727
    [Google Scholar]
  78. de Castro, A. C. M. (1989). Structural evolution of the Sergipe‐Alagoas basin, Brazil [PhD Thesis]. Rice University.
    [Google Scholar]
  79. de Freitas, J. T. R. (2006). Ciclos deposionais evaporíticos da Bacia de Santos uma análise cicloestratigráfica a partir de dados de 2 poços e de traços de sísmica [Master Thesis]. Universidade Federal do Rio Grande Do Sul.
    [Google Scholar]
  80. de Matos, R. M. D. (1992). The northeast Brazilian rift system. Tectonics, 11, 766–791.
    [Google Scholar]
  81. de Matos, R. M. D. (1999). History of the northeast Brazilian rift system: Kinematic implications for the break‐up between Brazil and West Africa. Geological Society, London, Special Publications, 153, 55–73. https://doi.org/10.1144/GSL.SP.1999.153.01.04
    [Google Scholar]
  82. de Matos, R. M. D. (2000). Tectonic evolution of the equatorial South Atlantic. In W.Mohriak & M.Taiwani (Eds.), Geophysical monograph series (Vol. 115, pp. 331–354). American Geophysical Union. https://doi.org/10.1029/GM115p0331
    [Google Scholar]
  83. de Matos, R. M. D., Krueger, A., Norton, I., & Casey, K. (2021). The fundamental role of the Borborema and Benin‐Nigeria provinces of NE Brazil and NW Africa during the development of the South Atlantic cretaceous rift system. Marine and Petroleum Geology, 127, 104872. https://doi.org/10.1016/j.marpetgeo.2020.104872
    [Google Scholar]
  84. Dehler, N. M., Magnavita, L. P., Gomes, L. C., Rigoti, C. A., de Oliveira, J. A. B., Sant'Anna, M. V., & da Costa, F. G. D. (2016). The ‘Helmut’ geophysical anomaly: A regional left‐lateral transtensional shear zone system connecting Santos and Campos basins, southeastern Brazil. Marine and Petroleum Geology, 72, 412–422. https://doi.org/10.1016/j.marpetgeo.2016.01.012
    [Google Scholar]
  85. dos Scherer, M. S. C., de Sá, J. E. F., Córdoba, V. C., do Sousa, D. C., Aquino, M. M., & Canelas Cardoso, F. M. (2014). Tectono‐stratigraphic evolution of the upper Jurassic‐Neocomian rift succession, Araripe Basin, Northeast Brazil. Journal of South American Earth Sciences, 49, 106–122. https://doi.org/10.1016/j.jsames.2013.10.007
    [Google Scholar]
  86. Doust, H. (2003). Placing petroleum systems and plays in their basin history context: A means to assist in the identification new opportunities. First Break, 21, 73–83.
    [Google Scholar]
  87. Dressel, I., Scheck‐Wenderoth, M., & Cacace, M. (2017). Backward modelling of the subsidence evolution of the Colorado Basin, offshore Argentina and its relation to the evolution of the conjugate Orange Basin, offshore SW Africa. Tectonophysics, 716, 168–181. https://doi.org/10.1016/j.tecto.2016.08.007
    [Google Scholar]
  88. Dressel, I., Scheck‐Wenderoth, M., Cacace, M., Lewerenz, B., Götze, H.‐J., & Reichert, C. (2015). Reconstruction of the southwestern African continental margin by backward modeling. Marine and Petroleum Geology, 67, 544–555. https://doi.org/10.1016/j.marpetgeo.2015.06.006
    [Google Scholar]
  89. Driscoll, N. W., & Karner, G. D. (1998). Lower crustal extension across the northern Carnarvon Basin, Australia: Evidence for an eastward dipping detachment. Journal of Geophysical Research, 103, 4975–4992.
    [Google Scholar]
  90. Dupré, S., Bertotti, G., & Cloetingh, S. (2007). Tectonic history along the South Gabon Basin: Anomalous early post‐rift subsidence. Marine and Petroleum Geology, 24, 151–172. https://doi.org/10.1016/j.marpetgeo.2006.11.003
    [Google Scholar]
  91. Epin, M.‐E., Manatschal, G., Sapin, F., & Rowan, M. G. (2021). The tectono‐magmatic and subsidence evolution during lithospheric breakup in a salt‐rich rifted margin: Insights from a 3D seismic survey from southern Gabon. Marine and Petroleum Geology, 128, 105005. https://doi.org/10.1016/j.marpetgeo.2021.105005
    [Google Scholar]
  92. Evain, M., Afilhado, A., Rigoti, C., Loureiro, A., Alves, D., Klingelhoefer, F., Schnurle, P., Feld, A., Fuck, R., Soares, J., de Lima, M. V., Corela, C., Matias, L., Benabdellouahed, M., Baltzer, A., Rabineau, M., Viana, A., Moulin, M., & Aslanian, D. (2015). Deep structure of the Santos Basin‐São Paulo plateau system, SE Brazil: Santos Basin‐São Paulo plateau structure. Journal of Geophysical Research: Solid Earth, 120, 5401–5431. https://doi.org/10.1002/2014JB011561
    [Google Scholar]
  93. Ferreira, T. S., de Araújo, M. N. C., & Alves da Silva, F. C. (2014). Cenozoic folding in the Cumuruxatiba basin, Brazil: An approach to the deformation trigger by the Abrolhos magmatism. Marine and Petroleum Geology, 54, 47–64. https://doi.org/10.1016/j.marpetgeo.2014.02.012
    [Google Scholar]
  94. Fetter, M. (2009). The role of basement tectonic reactivation on the structural evolution of Campos Basin, offshore Brazil: Evidence from 3D seismic analysis and section restoration. Marine and Petroleum Geology, 26, 873–886. https://doi.org/10.1016/j.marpetgeo.2008.06.005
    [Google Scholar]
  95. Figueiredo, J. P., Zalán, P. V., & Soares, E. F. (2007). Bacia da Foz do Amazonas. Boletim de Geociências da Petrobras, 15, 299–309.
    [Google Scholar]
  96. Filho, A. T., de Cesero, P., Mizusaki, A. M., & Leão, J. G. (2005). Hot spot volcanic tracks and their implications for south American plate motion, Campos basin (Rio de Janeiro state), Brazil. Journal of South American Earth Sciences, 18, 383–389. https://doi.org/10.1016/j.jsames.2004.11.006
    [Google Scholar]
  97. Florencio, C. P., Pueyo, J. J., & Ribeiro Filho, E. (2000). The Paripueira evaporitic interval of Maceio Sub‐Basin ‐ Sergipe/Alagoas basin. Anais da Academia Brasileira de Ciências, 72, 599. https://doi.org/10.1590/S0001‐37652000000400014
    [Google Scholar]
  98. Fox, J., & Weisberg, S. (2019). An {R} companion to applied regression (3rd ed.). Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/
    [Google Scholar]
  99. França, R. L., Del Rey, A. C., Tagliari, C. V., Brandão, J. R., & de Fontanelli, P. R. (2007). Bacia de Espírito Santo. Boletim de Geociências da Petrobras, 15, 501–509.
    [Google Scholar]
  100. Franke, D., Neben, S., Ladage, S., Schreckenberger, B., & Hinz, K. (2007). Margin segmentation and volcano‐tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic. Marine Geology, 244, 46–67. https://doi.org/10.1016/j.margeo.2007.06.009
    [Google Scholar]
  101. Freire, A. F. M., Iemini, J. A., Viana, A. R., Magnavita, L. P., Dehler, N. M., Kowsmann, R. O., Miller, D. J., Bezerra, S. H. D. G., Zerfass, G. S. A., Shimabukuro, S., & Nóbrega, M., II. (2017). A giant oil seep at a salt‐induced escarpment of the São Paulo plateau, Espírito Santo Basin, off Brazil: Host rock characteristics and geochemistry. Deep Sea Research Part II: Topical Studies in Oceanography, 146, 45–52. https://doi.org/10.1016/j.dsr2.2017.06.001
    [Google Scholar]
  102. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218.
    [Google Scholar]
  103. Gill, J., & Cameron, D. (2002). 3D revives an old play: An Aptian subsalt discovery, Etame field, offshore Gabon, West Africa. The Leading Edge, 21, 1147–1151. https://doi.org/10.1190/1.1523748
    [Google Scholar]
  104. Gladczenko, T. P., Hinz, K., Eldholm, O., Meyer, H., Neben, S., & Skogseid, J. (1997). South Atlantic volcanic margins. Journal of the Geological Society, 154, 465–470. https://doi.org/10.1144/gsjgs.154.3.0465
    [Google Scholar]
  105. Gladczenko, T. P., Skogseid, J., & Eldhom, O. (1998). Namibia volcanic margin. Marine Geophysical Research, 20, 313–341.
    [Google Scholar]
  106. Goldberg, K., Kuchle, J., Scherer, C., Alvarenga, R., Ene, P. L., Armelenti, G., & Ros, L. F. (2017). Re‐sedimented deposits in the rift section of the Campos Basin. Marine and Petroleum Geology, 80, 412–431. https://doi.org/10.1016/j.marpetgeo.2016.11.022
    [Google Scholar]
  107. Gonçalves, F. (2001). Controles limnológicos sobre a formação de rochas geradoras de petróleo lacustres: o exemplo da bacia de Camamu, nordeste do Brasil. Geociências, 20, 5–23.
    [Google Scholar]
  108. Gontijo, G. A., da Milhomem, P. S., Caixeta, J. M., Dupuy, I. S. S., & de Menezes, P. E. L. (2007). Bacia de Almada. Boletim de Geociências da Petrobras, 15, 463–473.
    [Google Scholar]
  109. Gordon, A. C., Mohriak, W. U., & Barbosa, V. C. F. (2013). Crustal architecture of the Almada Basin, NE Brazil: An example of a non‐volcanic rift segment of the South Atlantic passive margin. Geological Society Special Publications, 369, 215–234. https://doi.org/10.1144/SP369.1
    [Google Scholar]
  110. Greenroyd, C. J., Peirce, C., Rodger, M., Watts, A. B., & Hobbs, R. W. (2008). Demerara plateau—The structure and evolution of a transform passive margin. Geophysical Journal International, 172, 549–564. https://doi.org/10.1111/j.1365‐246X.2007.03662.x
    [Google Scholar]
  111. Guillocheau, F., Rouby, D., Robin, C., Helm, C., Rolland, N., Le Carlier de Veslud, C., & Braun, J. (2011). Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: A new method applied to the Namibia‐South Africa margin. Basin Research, 24, 3–30. https://doi.org/10.1111/j.1365‐2117.2011.00511.x
    [Google Scholar]
  112. Guiraud, M., Buta‐Neto, A., & Quesne, D. (2010). Segmentation and differential post‐rift uplift at the Angola margin as recorded by the transform‐rifted Benguela and oblique‐to‐orthogonal‐rifted kwanza basins. Marine and Petroleum Geology, 27, 1040–1068. https://doi.org/10.1016/j.marpetgeo.2010.01.017
    [Google Scholar]
  113. Guiraud, R., Binks, R., Fairhead, J., & Wilson, M. (1992). Chronology and geodynamic setting of cretaceous‐Cenozoic rifting in west and Central Africa. Tectonophysics, 213, 227–234. https://doi.org/10.1016/0040‐1951(92)90260‐D
    [Google Scholar]
  114. Hadler‐Jacobsen, F., Gardner, M. H., & Borer, J. M. (2007). Seismic stratigraphic and geomorphic analysis of deep‐marine deposition along the west African continental margin. Geological Society Special Publications, 277, 47–84. https://doi.org/10.1144/GSL.SP.2007.277.01.04
    [Google Scholar]
  115. Haghipour, A. (2006). Structural and kinematic map of the world, 1:50M scale. CGW/UNESCO.
    [Google Scholar]
  116. Harkin, C., Kusznir, N., Roberts, A., Manatschal, G., & Horn, B. (2020). Origin, composition and relative timing of seaward dipping reflectors on the Pelotas rifted margin. Marine and Petroleum Geology, 104, 235. https://doi.org/10.1016/j.marpetgeo.2020.104235
    [Google Scholar]
  117. Hartley, R. W., & Allen, P. A. (1994). Interior cratonic basins of Africa: Relation to continental break‐up and role of mantle convection. Basin Research, 6, 95–113. https://doi.org/10.1111/j.1365‐2117.1994.tb00078.x
    [Google Scholar]
  118. Heine, C., Zoethout, J., & Müller, R. D. (2013). Kinematics of the South Atlantic rift. Solid Earth, 4, 215–253. https://doi.org/10.5194/se‐4‐215‐2013
    [Google Scholar]
  119. Hervé, M. (2021). RVAideMemoire: Testing and plotting procedures for biostatistics. R package version 0.9‐81. https://CRAN.R‐project.org/package=RVAideMemoire
    [Google Scholar]
  120. Hothorn, T., Hornik, K., van de Wiel, M. A., & Zeileis, A. (2008). Implementing a class of permutation tests: The coin package. Journal of Statistical Software, 28, 1–23. https://doi.org/10.18637/jss.v028.i08
    [Google Scholar]
  121. Hudec, M. R., & Jackson, M. P. A. (2002). Structural segmentation, inversion, and salt tectonics on a passive margin: Evolution of the inner Kwanza Basin, Angola. Geological Society of America Bulletin, 114, 1222–1244. https://doi.org/10.1130/0016‐7606(2003)115<0641:SSIAST>2.0.CO;2
    [Google Scholar]
  122. Huismans, R. S., & Beaumont, C. (2011). Depth‐dependent extension, two‐stage breakup and cratonic underplating at rifted margins. Nature, 473, 74–78. https://doi.org/10.1038/nature09988
    [Google Scholar]
  123. Huismans, R. S., & Beaumont, C. (2014). Rifted continental margins: The case for depth‐dependent extension. Earth and Planetary Science Letters, 407, 148–162. https://doi.org/10.1016/j.epsl.2014.09.032
    [Google Scholar]
  124. Jackson, C. A.‐L., Jackson, M. P. A., Hudec, M. R., & Rodriguez, C. R. (2015). Enigmatic structures within salt walls of the Santos Basin—Part 1: Geometry and kinematics from 3D seismic reflection and well data. Journal of Structural Geology, 75, 135–162. https://doi.org/10.1016/j.jsg.2015.01.010
    [Google Scholar]
  125. Jackson, M. P. A., Cramez, C., & Fonck, J.‐M. (2000). Role of subaerial volcanic rocks and mantle plumes in creation of South Atlantic margins: Implications for salt tectonics and source rocks. Marine and Petroleum Geology, 17, 477–498. https://doi.org/10.1016/S0264‐8172(00)00006‐4
    [Google Scholar]
  126. Jeanniot, L., & Buiter, S. J. H. (2018). A quantitative analysis of transtensional margin width. Earth and Planetary Science Letters, 491, 95–108. https://doi.org/10.1016/j.epsl.2018.03.003
    [Google Scholar]
  127. Karner, G. D., Driscoll, N. W., & Barker, D. H. N. (2003). Syn‐rift regional subsidence across the west African continental margin: The role of lower plate ductile extension. In T. J.Arthur, D. S.MacGregor, & N. R.Cameron (Eds.), Petroleum geology of Africa: New themes and developing technologies (Vol. 207, pp. 105–129). Geological Society Special Publications.
    [Google Scholar]
  128. Karner, G. D., Driscoll, N. W., McGinnis, J. P., Brumbaugh, W. D., & Cameron, N. R. (1997). Tectonic significance of syn‐rift sediment packages across the Gabon‐Cabinda continental margin. Marine and Petroleum Geology, 14, 973–1000. https://doi.org/10.1016/S0264‐8172(97)00040‐8
    [Google Scholar]
  129. Karner, G. D., Egan, S. S., & Weissel, J. K. (1992). Modeling the tectonic development of the Tucano and Sergipe‐Alagoas rift basins, Brazil. Tectonophysics, 215, 133–160. https://doi.org/10.1016/0040‐1951(92)90078‐K
    [Google Scholar]
  130. Karner, G. D., & Gambôa, L. A. P. (2007). Timing and origin of the South Atlantic pre‐salt sag basins and their capping evaporites. Geological Society Special Publications, 285, 15–35. https://doi.org/10.1144/SP285.2
    [Google Scholar]
  131. Kollenz, S., Glasmacher, U. A., Rossello, E. A., Stockli, D. F., Schad, S., & Pereyra, R. E. (2017). Thermochronological constraints on the Cambrian to recent geological evolution of the Argentina passive continental margin. Tectonophysics, 716, 182–203. https://doi.org/10.1016/j.tecto.2016.11.019
    [Google Scholar]
  132. Kress, P., Catuneanu, O., Gerster, R., & Bolatti, N. (2021). Tectonic and stratigraphic evolution of the cretaceous Western South Atlantic. Marine and Petroleum Geology, 2021, 150197. https://doi.org/10.1016/j.marpetgeo.2021.105197
    [Google Scholar]
  133. Krob, F. C., Glasmacher, U. A., Bunge, H.‐P., Friedrich, A. M., & Hackspacher, P. C. (2020). Application of stratigraphic frameworks and thermochronological data on the Mesozoic SW Gondwana intraplate environment to retrieve the Paraná‐Etendeka plume movement. Gondwana Research, 84, 81–110. https://doi.org/10.1016/j.gr.2020.02.010
    [Google Scholar]
  134. Kuchle, J., dos Scherer, C. M. S., Born, C. C., dos Alvarenga, R. S., & Adegas, F. (2011). A contribution to regional stratigraphic correlations of the afro‐Brazilian depression—The Dom João stage (Brotas group and equivalent units—late Jurassic) in northeastern Brazilian sedimentary basins. Journal of South American Earth Sciences, 31, 358–371. https://doi.org/10.1016/j.jsames.2011.02.007
    [Google Scholar]
  135. Kuhlmann, G., Adams, S., Campher, C., van der Spuy, D., Di Primio, R., & Horsfield, B. (2010). Passive margin evolution and its controls on natural gas leakage in the southern Orange Basin, blocks 3/4, offshore South Africa. Marine and Petroleum Geology, 27, 973–992. https://doi.org/10.1016/j.marpetgeo.2010.01.010
    [Google Scholar]
  136. Kukla, P. A., Strozyk, F., & Mohriak, W. U. (2018). South Atlantic salt basins—Witnesses of complex passive margin evolution. Gondwana Research, 53, 41–57. https://doi.org/10.1016/j.gr.2017.03.012
    [Google Scholar]
  137. Kusznir, N. J., Roberts, A. M., & Alvey, A. D. (2018). Crustal structure of the conjugate equatorial Atlantic margins, derived by gravity anomaly inversion. Geological Society Special Publications, 476, 83–107. https://doi.org/10.1144/SP476.5
    [Google Scholar]
  138. Lavier, L. L., Steckler, M. S., & Brigaud, F. (2001). Climatic and tectonic control on the Cenozoic evolution of the west African margin. Marine Geology, 178, 63–80. https://doi.org/10.1016/S0025‐3227(01)00175‐X
    [Google Scholar]
  139. Lawrence, S. R., Beach, A., Jackson, O., & Jackson, A. (2017). Deformation of oceanic crust in the eastern gulf of Guinea: Role in the evolution of the Cameroon volcanic line and influence on the petroleum endowment of the Douala‐Rio muni basin. Geological Society Special Publications, 438, 7–26. https://doi.org/10.1144/SP438.7
    [Google Scholar]
  140. Lehner, P., & de Ruiter, P. A. C. (1977). Structural history of Atlantic margin of Africa. American Association of Petroleum Geologists Bulletin, 61, 961–981. https://doi.org/10.1306/C1EA43B0‐16C9‐11D7‐8645000102C1865D
    [Google Scholar]
  141. Lentini, M. R., Fraser, S. I., Sumner, H. S., & Davies, R. J. (2010). Geodynamics of the central South Atlantic conjugate margins: Implications for hydrocarbon potential. Petroleum Geoscience, 16, 217–229. https://doi.org/10.1144/1354‐079309‐909
    [Google Scholar]
  142. Leturmy, P. (2003). Dynamic interactions between the gulf of Guinea passive margin and The Congo River drainage basin: 1. Morphology and mass balance. Journal of Geophysical Research, 108, 2383. https://doi.org/10.1029/2002JB001927
    [Google Scholar]
  143. Levene, H. (1960). Robust tests for equality of variances. In I.Olkin & H.Hotelling (Eds.), Contributions to probability ans statistics: Essays in honor of Harold Hotelling (pp. 278–292). Stanford University Press.
    [Google Scholar]
  144. Loegering, M. J., Anka, Z., Autin, J., Di Primio, R., Marchal, D., Rodriguez, J. F., Franke, D., & Vallejo, E. (2013). Tectonic evolution of the Colorado Basin, offshore Argentina, inferred from seismo‐stratigraphy and depositional rates analysis. Tectonophysics, 604, 245–263. https://doi.org/10.1016/j.tecto.2013.02.008
    [Google Scholar]
  145. Loparev, A., Rouby, D., Chardon, D., Dall'Asta, M., Sapin, F., Bajolet, F., Ye, J., & Paquet, F. (2021). Superimposed rifting at the junction of the central and equatorial Atlantic: Formation of the passive margin of the Guiana shield. Tectonics, 40, e2020TC006159. https://doi.org/10.1029/2020TC006159
    [Google Scholar]
  146. Loureiro, A., Schnürle, P., Klingelhöfer, F., Afilhado, A., Pinheiro, J., Evain, M., Gallais, F., Dias, N. A., Rabineau, M., Baltzer, A., & Benabdellouahed, M. (2018). Imaging exhumed lower continental crust in the distal Jequitinhonha basin, Brazil. Journal of South American Earth Sciences, 84, 351–372. https://doi.org/10.1016/j.jsames.2018.01.009
    [Google Scholar]
  147. Lovecchio, J. P., Rohais, S., Joseph, P., Bolatti, N. D., Kress, P. R., Gerster, R., & Ramos, V. A. (2018). Multistage rifting evolution of the Colorado basin (offshore Argentina): Evidence for extensional settings prior to the South Atlantic opening. Terra Nova, 30, 359–368. https://doi.org/10.1111/ter.12351
    [Google Scholar]
  148. Lovecchio, J. P., Rohais, S., Joseph, P., Bolatti, N. D., & Ramos, V. A. (2020). Mesozoic rifting evolution of SW Gondwana: A poly‐phased, subduction‐related, extensional history responsible for basin formation along the Argentinean Atlantic margin. Earth Science Reviews, 203, 103138. https://doi.org/10.1016/j.earscirev.2020.103138
    [Google Scholar]
  149. Lucazeau, F. (2003). Dynamic interactions between the Gulf of Guinea passive margin and The Congo River drainage basin: 2. Isostasy and uplift. Journal of Geophysical Research, 108, 2384. https://doi.org/10.1029/2002JB001928
    [Google Scholar]
  150. Luzzi‐Arbouille, T., Schmid, E., & Piperi, T. (2009). Recent discoveries offshore Douala Basin. Search and Discovery, 10(185), 1–7.
    [Google Scholar]
  151. MacGregor, D. S. (2013). Late cretaceous–Cenozoic sediment and turbidite reservoir supply to South Atlantic margins. Geological Society, London, Special Publications, 369, 109–128. https://doi.org/10.1144/SP369.7
    [Google Scholar]
  152. MacGregor, D. S., Robinson, J., & Spear, G. (2003). Play fairways of the Gulf of Guinea transform margin. Geological Society, London, Special Publications, 207, 131–150. https://doi.org/10.1144/GSL.SP.2003.207.7
    [Google Scholar]
  153. Marcano, G., Anka, Z., & Di Primio, R. (2013). Major controlling factors on hydrocarbon generation and leakage in South Atlantic conjugate margins: A comparative study of Colorado, Orange, Campos and lower Congo basins. Tectonophysics, 604, 172–190. https://doi.org/10.1016/j.tecto.2013.02.004
    [Google Scholar]
  154. Marton, L. G., Tari, L. G., & Lehmann, C. T. (2000). Evolution of the Angolan passive margin, West Africa, with emphasis on post‐salt structural styles. In W.Mohriak & M.Talwani (Eds.), Atlantic rifts and continental margins (Vol. 115, pp. 129–149). American Geophysical Union, Geophysical Monograph Series.
    [Google Scholar]
  155. Marzoli, A., Melluso, L., Morra, V., Renne, P. R., Sgrosso, I., D'Antonio, M., Duarte Morais, L., Morais, E. A. A., & Ricci, G. (1999). Geochronology and petrology of cretaceous basaltic magmatism in the kwanza basin (western Angola), and relationships with the Paranà‐Etendeka continental flood basalt province. Journal of Geodynamics, 28, 341–356. https://doi.org/10.1016/S0264‐3707(99)00014‐9
    [Google Scholar]
  156. Maslanyj, M. P., Light, M. P. R., Greenwood, R. J., & Banks, N. L. (1992). Extension tectonics offshore Namibia and evidence for passive rifting in the South Atlantic. Marine and Petroleum Geology, 9, 590–601. https://doi.org/10.1016/0264‐8172(92)90032‐A
    [Google Scholar]
  157. Maurin, J.‐C., & Guiraud, R. (1993). Basement control in the development of the early cretaceous west and central African rift system. Tectonophysics, 228, 81–95. https://doi.org/10.1016/0040‐1951(93)90215‐6
    [Google Scholar]
  158. Maystrenko, Y. P., Scheck‐Wenderoth, M., Hartwig, A., Anka, Z., Watts, A. B., Hirsch, K. K., & Fishwick, S. (2013). Structural features of the southwest African continental margin according to results of lithosphere‐scale 3D gravity and thermal modelling. Tectonophysics, 604, 104–121. https://doi.org/10.1016/j.tecto.2013.04.014
    [Google Scholar]
  159. Mbina Mounguengui, M., & Guiraud, M. (2009). Neocomian to early Aptian syn‐rift evolution of the normal to oblique‐rifted North Gabon margin (interior and N'Komi basins). Marine and Petroleum Geology, 26, 1000–1017. https://doi.org/10.1016/j.marpetgeo.2008.11.001
    [Google Scholar]
  160. McDermott, K., Gillbard, E., & Clarke, N. (2015). From basalt to skeletons—The 200 million‐year history of the Namibian margin uncovered by new seismic data. First Break, 33, 77–85.
    [Google Scholar]
  161. McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32. https://doi.org/10.1016/0012‐821X(78)90071‐7
    [Google Scholar]
  162. McMillan, I. K. (2003). Foraminiferally defined biostratigraphic episodes and sedimentation pattern of the cretaceous drift succession (early Barremian to late Maastrichian) in seven basins of the south African and southern Namibian continental margin. South African Journal of Science, 99, 537–576.
    [Google Scholar]
  163. Meyers, J. B., Rosendahl, B. R., Groschel‐Becker, H., Austin, J. A., & Rona, P. A. (1996). Deep penetrating MCS imaging of the rift‐to‐drift transition, offshore Douala and North Gabon basins, West Africa. Marine and Petroleum Geology, 13, 791–835. https://doi.org/10.1016/0264‐8172(96)00030‐X
    [Google Scholar]
  164. Michels, F. H., de Souza, P. A., & Premaor, E. (2018). Aptian‐Albian palynologic assemblages interbedded within salt deposits in the Espírito Santo Basin, eastern Brazil: Biostratigraphical and paleoenvironmental analysis. Marine and Petroleum Geology, 91, 785–799. https://doi.org/10.1016/j.marpetgeo.2018.01.023
    [Google Scholar]
  165. Milani, E. J., Rangel, H. D., Bueno, G. V., Stica, J. M., Winter, W. R., Caixeta, J. M., & Neto, O. P. (2007). Bacias sedimentares brasileiras: cartas estratigráficas. Anexo Boletim de Geociências da Petrobras, 15, 183–205.
    [Google Scholar]
  166. Mills, J. V., Gomes, M. L., Kristall, B., Sageman, B., Jacobson, A., & Hurtgen, M. (2017). Massive volcanism, evaporite deposition, and the chemical evolution of the early cretaceous ocean. Geology, 45, 475–478. https://doi.org/10.1130/G38667.1
    [Google Scholar]
  167. Modica, C. J., & Brush, E. R. (2004). Postrift sequence stratigraphy, paleogeography, and fill history of the deep‐water Santos Basin, offshore Southeast Brazil. American Association of Petroleum Geologists Bulletin, 88, 923–945. https://doi.org/10.1306/01220403043
    [Google Scholar]
  168. Mohriak, W., Rosendahl, B. R., Turner, J. P., & Valente, S. (2002). Crustal architecture of South Atlantic volcanic margins. In M. A.Menzies, S. L.Klemperer, C. J.Ebinger, & J.Baker (Eds.), Volcanic rifted margins (Vol. 362, pp. 159–202). Special Paper of the Geological Society of America. https://doi.org/10.1130/0‐8137‐2362‐0.159
    [Google Scholar]
  169. Mohriak, W. U., Bassetto, M., & Vieira, I. S. (1998). Crustal architecture and tectonic evolution of the Sergipe‐Alagoas and Jacuípe basins, offshore northeastern Brazil. Tectonophysics, 288, 199–220. https://doi.org/10.1016/S0040‐1951(97)00294‐1
    [Google Scholar]
  170. Mohriak, W. U., Brown, D. E., & Tari, G. C. (2008). Sedimentary basins in the central and South Atlantic conjugate margins: Deep structures and salt tectonics. Central Atlantic Conjugate Margins Conference—Halifax. Extended Abstracts, 89–102.
  171. Mohriak, W. U., & Fainstein, R. (2012). Phanerozoic regional geology of the eastern Brazilian margin. In D. G.Roberts (Ed.), Regional geology and tectonics: Phanerozoic passive margins, Cratonic basins and global tectonic maps (pp. 222–282). Elsevier. https://doi.org/10.1016/B978‐0‐444‐56357‐6.00006‐8
    [Google Scholar]
  172. Mohriak, W. U., Hobbs, R., & Dewey, J. F. (1990). Basin‐forming processes and the deep structure of the Campos Basin, offshore Brazil. Marine and Petroleum Geology, 7, 94–122. https://doi.org/10.1016/0264‐8172(90)90035‐F
    [Google Scholar]
  173. Mohriak, W. U., Mello, M. R., Azambuja, F., & Nilo, C. (2012). Tectonic reconstructions and petroleum system correlations in the southern South Atlantic: Exploratory analysis and the search for a new hydrocarbon play. In N. C.Rosen, P.Weimer, S. M. C.dos Anjos, S.Henrickson, E.Marques, & M.Mayall (Eds.), New understanding of the petroleum systems of continental margins of the world (Vol. 32, pp. 306–346). https://doi.org/10.5724/gcs.12.32.0306
    [Google Scholar]
  174. Mohriak, W. U., Mello, M. R., Dewey, J. F., & Maxwell, J. R. (1990). Petroleum geology of the Campos Basin, offshore Brazil. Geological Society Special Publication, 50, 119–141. https://doi.org/10.1144/GSL.SP.1990.050.01.07
    [Google Scholar]
  175. Mohriak, W. U., Nemčok, M., & Enciso, G. (2008). South Atlantic divergent margin evolution: Rift‐border uplift and salt tectonics in the basins of SE Brazil. Geological Society Special Publications, 294, 365–398. https://doi.org/10.1144/SP294.19
    [Google Scholar]
  176. Mohriak, W. U., & Rosendahl, B. R. (2003). Transform zones in the South Atlantic rifted continental margins. Geological Society London Special Publications, 210, 211–228. https://doi.org/10.1144/GSL.SP.2003.210.01.13
    [Google Scholar]
  177. Mohriak, W. U., Szatmari, P., & Anjos, S. (2012). Salt: Geology and tectonics of selected Brazilian basins in their global context. Geological Society Special Publication, 363, 131–158. https://doi.org/10.1144/SP363.7
    [Google Scholar]
  178. Montenegro, C. G. L., Gomes, M. P., de Castro, D. L., Perez, Y. A., & Oliveira, D. C. (2021). The Barreirinhas Basin internal architecture and the evidence of transform movements along the Romanche fracture zone, Brazilian equatorial margin. Journal of South American Earth Sciences, 107, 103049. https://doi.org/10.1016/j.jsames.2020.103049
    [Google Scholar]
  179. Moulin, M. (2003). Etude géologique et géophysique des marges continentales passives: exemple du Zaïre et de l'Angola [PhD Thesis]. Université de Bretagne Occidentale.
    [Google Scholar]
  180. Moulin, M., Aslanian, D., Olivet, J.‐L., Contrucci, I., Matias, L., Géli, L., Klingelhoefer, F., Nouzé, H., Réhault, J.‐P., & Unternehr, P. (2005). Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (ZaïAngo project). Geophysical Journal International, 162, 793–810. https://doi.org/10.1111/j.1365‐246X.2005.02668.x
    [Google Scholar]
  181. Moulin, M., Aslanian, D., & Unternehr, P. (2010). A new starting point for the south and equatorial Atlantic Ocean. Earth Science Reviews, 98, 1–37. https://doi.org/10.1016/j.earscirev.2009.08.001
    [Google Scholar]
  182. Museur, T., Graindorge, D., Klingelhoefer, F., Roest, W. R., Basile, C., Loncke, L., & Sapin, F. (2020). Deep structure of the demerara plateau: From a volcanic margin to a transform marginal plateau. Tectonophysics, 2020, 228645. https://doi.org/10.1016/j.tecto.2020.228645
    [Google Scholar]
  183. Nemčok, M., Henk, A., Allen, R., Sikora, P. J., & Stuart, C. (2013). Continental break‐up along strike‐slip fault zones; observations from the equatorial Atlantic. Geological Society Special Publications, 369, 537–556. https://doi.org/10.1144/SP369.8
    [Google Scholar]
  184. Nicolai, C., Scheck‐Wenderoth, M., Warsitzka, M., Schødt, N., & Andersen, J. (2013). The deep structure of the South Atlantic Kwanza Basin—Insights from 3D structural and gravimetric modelling. Tectonophysics, 604, 139–152. https://doi.org/10.1016/j.tecto.2013.06.016
    [Google Scholar]
  185. Norton, I. O., Carruthers, D. T., & Hudec, M. R. (2016). Rift to drift transition in the South Atlantic salt basins: A new flavor of oceanic crust. Geology, 44, 55–58. https://doi.org/10.1130/G37265.1
    [Google Scholar]
  186. Ntamak‐Nida, M.‐J., Baudin, F., Schnyder, J., Makong, J.‐C., Komguem, P. B., & Abolo, G. M. (2008). Depositional environments and characterisation of the organic matter of the lower Mundeck formation (Barremian?‐Aptian) of the Kribi‐Campo sub‐basin (South Cameroon): Implications for petroleum exploration. Journal of African Earth Sciences, 51, 207–219. https://doi.org/10.1016/j.jafrearsci.2008.01.006
    [Google Scholar]
  187. Ntamak‐Nida, M. J., Bourquin, S., Makong, J.‐C., Baudin, F., Mpesse, J. E., Ngouem, C. I., Komguem, P. B., & Abolo, G. M. (2010). Sedimentology and sequence stratigraphy from outcrops of the Kribi‐Campo sub‐basin: Lower Mundeck formation (lower cretaceous, southern Cameroon). Journal of African Earth Sciences, 58, 1–18. https://doi.org/10.1016/j.jafrearsci.2010.01.004
    [Google Scholar]
  188. Ojeda, H. A. O. (1982). Structural framework, stratigraphy, and evolution of Brazilian marginal basins. AAPG Bulletin, 66, 732–749. https://doi.org/10.1016/0198‐0254(82)90135‐2
    [Google Scholar]
  189. Owona Angue, M. L. C., Nguiya, S., Nouayou, R., Tokam Kamga, A. P., & Manguelle‐Dicoum, E. (2011). Geophysical investigation of the transition zone between The Congo craton and the Kribi‐Campo sedimentary basin, southwestern Cameroon. South African Journal of Geology, 114, 145–158. https://doi.org/10.2113/gssajg.114.2.145
    [Google Scholar]
  190. Pautot, G., Renard, V., Daniel, J., & Dupont, J. (1973). Morphology, limits, origin, and age of salt layer along South Atlantic african margin. American Association of Petroleum Geologists Bulletin, 57, 1658–1671.
    [Google Scholar]
  191. Pérez‐Díaz, L., & Eagles, G. (2017). South Atlantic paleobathymetry since early cretaceous. Scientific Reports, 7, 11819. https://doi.org/10.1038/s41598‐017‐11959‐7
    [Google Scholar]
  192. Pérez‐Gussinyé, M., Metois, M., Fernández, M., Vergés, J., Fullea, J., & Lowry, A. R. (2009). Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics. Earth and Planetary Science Letters, 287, 152–167. https://doi.org/10.1016/j.epsl.2009.08.004
    [Google Scholar]
  193. Péron‐Pinvidic, G., Manatschal, G., & “IMAGinING RIFTING” Workshop Participants . (2019). Rifted margins: State of the art and future challenges. Frontiers in Earth Science, 7, 218. https://doi.org/10.3389/feart.2019.00218
    [Google Scholar]
  194. Péron‐Pinvidic, G., Manatschal, G., Masini, E., Sutra, E., Flament, J. M., Haupert, I., & Unternehr, P. (2017). Unravelling the along‐strike variability of the Angola‐Gabon rifted margin: A mapping approach. Geological Society Special Publications, 438, 49–76. https://doi.org/10.1144/SP438.1
    [Google Scholar]
  195. Péron‐Pinvidic, G., Manatschal, G., & Osmundsen, P. T. (2013). Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology, 43, 21–47. https://doi.org/10.1016/j.marpetgeo.2013.02.002
    [Google Scholar]
  196. Peyve, A. A. (2010). Tectonics and magmatism in eastern South America and the Brazil basin of the Atlantic in the Phanerozoic. Geotectonics, 44, 60–75. 10.1134/S001685211001005X
    [Google Scholar]
  197. Piedade, A., & Alves, T. M. (2017). Structural styles of Albian rafts in the Espírito Santo Basin (SE Brazil): Evidence for late raft compartmentalisation on a ‘passive’ continental margin. Marine and Petroleum Geology, 79, 201–221. https://doi.org/10.1016/j.marpetgeo.2016.10.023
    [Google Scholar]
  198. Pinheiro, J. M., Schnurle, P., Evain, M., Afilhado, A., Gallais, F., Klingelhoefer, F., Loureiro, A., Fuck, R., Soares, J., Cupertino, J. A., Viana, A., Rabineau, M., Baltzer, A., Benabdellouahed, M., Dias, N., Moulin, M., Aslanian, D., Morvan, L., Mazé, J. P., … Roudaut, M. (2018). Lithospheric structuration onshore‐offshore of the Sergipe‐Alagoas passive margin, NE Brazil, based on wide‐angle seismic data. Journal of South American Earth Sciences, 88, 649–672. https://doi.org/10.1016/j.jsames.2018.09.015
    [Google Scholar]
  199. Planert, L., Behrmann, J., Jokat, W., Fromm, T., Ryberg, T., Weber, M., & Haberland, C. (2017). The wide‐angle seismic image of a complex rifted margin, offshore North Namibia: Implications for the tectonics of continental breakup. Tectonophysics, 716, 130–148. https://doi.org/10.1016/j.tecto.2016.06.024
    [Google Scholar]
  200. Prosser, S. (1993). Rift‐related linked depositional systems and their seismic expression. Geological Society, London, Special Publications, 71, 35–66. https://doi.org/10.1144/GSL.SP.1993.071.01.03
    [Google Scholar]
  201. Quirk, D. G., Hertle, M., Jeppesen, J. W., Raven, M., Mohriak, W. U., Kann, D. J., Nørgaard, M., Howe, M. J., Hsu, D., Coffey, B., & Mendes, M. P. (2013). Rifting, subsidence and continental break‐up above a mantle plume in the central South Atlantic. Geological Society Special Publications, 369, 185–214. https://doi.org/10.1144/SP369.20
    [Google Scholar]
  202. R Core Team . (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/
    [Google Scholar]
  203. Rangel, H. D., de Oliveira, J. L. F., & Caixeta, J. M. (2007). Bacia de Jequitinhonha. Boletim de Geociências da Petrobras, 15, 475–483.
    [Google Scholar]
  204. Renne, P. R., Ernesto, M., Pacca, I. G., Coe, R. S., Glen, J. M., Prévot, M., & Perrin, M. (1992). The age of Paraná flood volcanism, rifting of Gondwanaland, and the Jurassic‐cretaceous boundary. Science, 258, 975–979. https://doi.org/10.1126/science.258.5084.975
    [Google Scholar]
  205. Rodovalho, N., Gontijo, R. C., Santos, C. F., & da Milhomem, P. S. (2007). Bacia de Cumuruxatiba. Boletim de Geociências da Petrobras, 15, 4785–4491.
    [Google Scholar]
  206. Rohais, S., Joannin, S., Colin, J. P., Suc, J. P., Guillocheau, F., & Eschard, R. (2007). Age and environmental evolution of the syn‐rift fill of the southern coast of the gulf of Corinth (Akrata‐Derveni region, Greece). Bulletin de la Société Géologique de France, 178, 231–243.
    [Google Scholar]
  207. Rohais, S., Lovecchio, J. P., Abreu, V., Miguez, M., & Paulin, S. (2021). High‐resolution sedimentary budget quantification—Example from the Cenozoic deposits in the Pelotas Basin, South Atlantic. Basin Research, 33, 2252–2280. https://doi.org/10.1111/bre.12556
    [Google Scholar]
  208. Rohde, J. K., van den Bogaard, P., Hoernle, K., Hauff, F., & Werner, R. (2013). Evidence for an age progression along the Tristan‐Gough volcanic track from new 40Ar/39Ar ages on phenocryst phases. Tectonophysics, 604, 60–71. https://doi.org/10.1016/j.tecto.2012.08.026
    [Google Scholar]
  209. Rosendahl, B. R., & Groschel‐Becker, H. (1999). Deep seismic structure of the continental margin in the Gulf of Guinea: A summary report. Geological Society Special Publication, 153, 75–83. https://doi.org/10.1144/GSL.SP.1999.153.01.05
    [Google Scholar]
  210. Rouby, D., Bonnet, S., Guillocheau, F., Gallagher, K., Robin, C., Biancotto, F., Dauteuil, O., & Braun, J. (2009). Sediment supply to the Orange sedimentary system over the last 150My: An evaluation from sedimentation/denudation balance. Marine and Petroleum Geology, 26, 782–794. https://doi.org/10.1016/j.marpetgeo.2008.08.004
    [Google Scholar]
  211. Royden, L., & Keen, C. E. (1980). Rifting process and thermal evolution of the continental margin of eastern Canada determined from subsidence curves. Earth and Planetary Science Letters, 51, 343–361. https://doi.org/10.1016/0012‐821X(80)90216‐2
    [Google Scholar]
  212. Sabato Ceraldi, T., Hodgkinson, R., & Backé, G. (2017). The petroleum geology of the West Africa margin: An introduction. Geological Society Special Publication, 438, 77–98. https://doi.org/10.1144/SP438.11
    [Google Scholar]
  213. Saller, A., Rushton, S., Buambua, L., Inman, K., McNeil, R., & Dickson, J. A. D. (2016). Presalt stratigraphy and depositional systems in the Kwanza Basin, offshore Angola. American Association of Petroleum Geologists Bulletin, 100, 1135–1164. https://doi.org/10.1306/02111615216
    [Google Scholar]
  214. Sapin, F., Davaux, M., Dall'asta, M., Lahmi, M., Baudot, G., & Ringenbach, J.‐C. (2016). Post‐rift subsidence of the French Guiana hyper‐oblique margin: From rift‐inherited subsidence to Amazon deposition effect. Geological Society Special Publications, 431, 125–144. https://doi.org/10.1144/SP431.11
    [Google Scholar]
  215. Sapin, F., Ringenbach, J.‐C., & Clerc, C. (2021). Rifted margins classification and forcing parameters. Scientific Reports, 11, 8199. https://doi.org/10.1038/s41598‐021‐87648‐3
    [Google Scholar]
  216. Schmidt, S. (2004). The petroleum potential of the passive continental margin of South‐Western Africa—A basin modelling study [PhD Thesis]. Rheinisch‐Westfälischen Technischen Hochschule.
    [Google Scholar]
  217. Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: An explanation of the Post‐Mid‐Cretaceous subsidence of the central North Sea Basin. Journal of Geophysical Research: Solid Earth, 85, 3711–3739. https://doi.org/10.1029/JB085iB07p03711
    [Google Scholar]
  218. Séranne, M., & Anka, Z. (2005). South Atlantic continental margins of Africa: A comparison of the tectonic vs climate interplay on the evolution of equatorial West Africa and SW Africa margins. Journal of the African Earth Sciences, 43, 283–300. https://doi.org/10.1016/j.jafrearsci.2005.07.010
    [Google Scholar]
  219. Séranne, M., Seguret, M., & Fauchier, M. (1992). Seismic super‐units and post‐rift evolution of the continental passive margin of southern Gabon. Bulletin de la Société géologique de France, 163, 135–146.
    [Google Scholar]
  220. Serié, C., Huuse, M., Schødt, N. H., Brooks, J. M., & Williams, A. (2017). Subsurface fluid flow in the deep‐water Kwanza Basin, offshore Angola. Basin Research, 29, 149–179. https://doi.org/10.1111/bre.12169
    [Google Scholar]
  221. Steckler, M. S., & Watts, A. B. (1978). Subsidence of the Atlantic‐type continental margin off New York. Earth and Planetary Science Letters, 41, 1–13. https://doi.org/10.1016/0012‐821X(78)90036‐5
    [Google Scholar]
  222. Stica, J. M., Zalán, P. V., & Ferrari, A. L. (2014). The evolution of rifting on the volcanic margin of the Pelotas Basin and the contextualization of the Paraná‐Etendeka LIP in the separation of Gondwana in the South Atlantic. Marine and Petroleum Geology, 50, 1–21. https://doi.org/10.1016/j.marpetgeo.2013.10.015
    [Google Scholar]
  223. Strozyk, F., Back, S., & Kukla, P. A. (2017). Comparison of the rift and post‐rift architecture of conjugated salt and salt‐free basins offshore Brazil and Angola/Namibia, South Atlantic. Tectonophysics, 716, 204–224. https://doi.org/10.1016/j.tecto.2016.12.012
    [Google Scholar]
  224. Sutra, E., Manatschal, G., Mohn, G., & Unternehr, P. (2013). Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins: Strain distribution along rifted margins. Geochemistry, Geophysics, Geosystems, 14, 2575–2597. https://doi.org/10.1002/ggge.20135
    [Google Scholar]
  225. Svartman Dias, A. E., Lavier, L. L., & Hayman, N. W. (2015). Conjugate rifted margins width and asymmetry: The interplay between lithospheric strength and thermomechanical processes. Journal of Geophysical Research: Solid Earth, 120, 8672–8700. https://doi.org/10.1002/2015JB012074
    [Google Scholar]
  226. Tankard, A., Welsink, H., Aukes, P., Newton, R., & Stettler, E. (2012). Geodynamic interpretation of the cape and Karoo basins, South Africa. In D. G.Roberts (Ed.), Regional geology and tectonics: Phanerozoic passive margins, Cratonic basins and global tectonic maps (pp. 868–945). Elsevier. https://doi.org/10.1016/B978‐0‐444‐56357‐6.00022‐6
    [Google Scholar]
  227. Thompson, D. L., Stilwell, J. D., & Hall, M. (2015). Lacustrine carbonate reservoirs from early cretaceous rift lakes of Western Gondwana: Pre‐salt coquinas of Brazil and West Africa. Gondwana Research, 28, 26–51. https://doi.org/10.1016/j.gr.2014.12.005
    [Google Scholar]
  228. Torsvik, T. H., Rousse, S., Labails, C., & Smethurst, M. A. (2009). A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophysical Journal International, 177, 1315–1333. https://doi.org/10.1111/j.1365‐246X.2009.04137.x
    [Google Scholar]
  229. Trosdfort, I., Jr., Zalán, P. V., de Figueiredo, J. J. P., & Soares, E. F. (2007). Bacia de Barreirinhas. Boletim de Geociências da Petrobras, 15, 331–339.
    [Google Scholar]
  230. Turner, J. P. (1999). Detachment faulting and petroleum prospectivity in the Rio Muni basin, Equatorial Guinea, West Africa. Geological Society Special Publication, 153, 303–320. https://doi.org/10.1144/GSL.SP.1999.153.01.19
    [Google Scholar]
  231. Turner, J. P., Rosendahl, B. R., & Wilson, P. G. (2003). Structure and evolution of an obliquely sheared continental margin: Rio Muni, West Africa. Tectonophysics, 374, 41–55. https://doi.org/10.1016/S0040‐1951(03)00325‐1
    [Google Scholar]
  232. Unternehr, P., Péron‐Pinvidic, G., Manatschal, G., & Sutra, E. (2010). Hyper‐extended crust in the South Atlantic: In search of a model. Petroleum Geoscience, 16, 207–215. https://doi.org/10.1144/1354‐079309‐904
    [Google Scholar]
  233. Valle, P. J., Gjelberg, J. G., & Helland‐Hansen, W. (2001). Tectonostratigraphic development in the eastern lower Congo Basin, offshore Angola, West Africa. Marine and Petroleum Geology, 18, 909–927. https://doi.org/10.1016/S0264‐8172(01)00036‐8
    [Google Scholar]
  234. Van den Belt, F. J. G., & de Boer, P. L. (2007). A shallow basin model for ‘saline giants’ based on isostasy‐driven subsidence. In C.Paola, G.Nichols, & E.Williams (Eds.), Sedimentary processes, environments and basins—A tribute to Peter friend (Vol. 38, pp. 241–252). Special Publications of the International Association of Sedimentologists.
    [Google Scholar]
  235. Vera, J., Granado, P., & McClay, K. (2010). Structural evolution of the Orange Basin gravity‐driven system, offshore Namibia. Marine and Petroleum Geology, 27, 223–237. https://doi.org/10.1016/j.marpetgeo.2009.02.003
    [Google Scholar]
  236. Wilson, P. G., Turner, J. P., & Westbrook, G. K. (2003). Structural architecture of the ocean‐continent boundary at an oblique transform margin through deep‐imaging seismic interpretation and gravity modelling: Equatorial Guinea, West Africa. Tectonophysics, 374, 19–40. https://doi.org/10.1016/S0040‐1951(03)00326‐3
    [Google Scholar]
  237. Winter, W. R., Jahnert, R. J., & França, A. B. (2007). Bacia de Campos. Boletim de Geociências da Petrobras, 15, 511–529.
    [Google Scholar]
  238. Xie, X., & Heller, P. (2006). Plate tectonics and basin subsidence history. Geological Society of America Bulletin, 121, 55–64. https://doi.org/10.1130/B26398.1
    [Google Scholar]
  239. Ye, J., Chardon, D., Rouby, D., Guillocheau, F., Dall'asta, M., Ferry, J.‐N., & Broucke, O. (2017). Paleogeographic and structural evolution of northwestern Africa and its Atlantic margins since the early Mesozoic. Geosphere, 13, 1254–1284. https://doi.org/10.1130/GES01426.1
    [Google Scholar]
  240. Ye, J., Rouby, D., Chardon, D., Dall'asta, M., Guillocheau, F., Robin, C., & Ferry, J. N. (2019). Post‐rift stratigraphic architectures along the African margin of the equatorial Atlantic: Part I the influence of extension obliquity. Tectonophysics, 753, 49–62. https://doi.org/10.1016/j.tecto.2019.01.003
    [Google Scholar]
  241. Zalán, P. V., & Matsuda, N. S. (2007). Bacia do Marajó. Boletim de Geociências da Petrobras, 15, 311–319.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12740
Loading
/content/journals/10.1111/bre.12740
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error