1887
Volume 35, Issue 3
  • E-ISSN: 1365-2117

Abstract

[Abstract

The Taiwan Western Foreland Basin is thought traditionally to have received sediment mainly from Eurasia until the late Pliocene–early Pleistocene, after which time, the Taiwan orogen became the dominant source. However, a combination of clay mineralogy, δ13C and C/N of organic matter, and mass‐specific magnetic susceptibility of late Miocene to early Pliocene strata of the Kueichulin Formation indicate that onset of major sediment contributions from Taiwan occurred much earlier, and correlates closely to the uplift and initial emergence of the Taiwan orogen. Clay mineralogy shows an upsection increase in illite and illite crystallinity, and a decrease in chlorite and kaolinite after the late Miocene, and this is attributed to rapid erosion of the Taiwan orogen. Results from δ13C and C/N analyses show that organic material in the Kueichulin Formation changed from dominantly marine to dominantly terrestrial in the early Pliocene, and this is linked to the delivery of large quantities of terrestrial organic material from the Taiwan orogen to the adjacent Taiwan Strait. Magnetic susceptibility also decreases significantly during the early Pliocene, resulting from dilution of magnetic minerals through the influx of non‐magnetic minerals delivered from the Taiwan orogenic belt. The establishment of the growing Taiwan orogen as a major sediment source to the Western Foreland Basin occurred at the Miocene–Pliocene transition, about two million years earlier than previously recognized.

,

The Taiwan Western Foreland Basin is thought to have received sediment mainly from Eurasia until the late Pliocene–early Pleistocene. However, clay mineralogy, δ13C and C/N of organic matter and magnetic susceptibility of the Kueichulin Formation show the rapidly uplifting Taiwan became the dominant sediment source at the Miocene–Pliocene transition.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12741
2023-05-19
2024-04-19
Loading full text...

Full text loading...

References

  1. Biscaye, P. E. (1965). Mineralogy and sedimentation of recent deep‐sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803–831. https://doi.org/10.1130/0016‐7606(1965)76[803:MASORD]2.0.CO;2
    [Google Scholar]
  2. Castelltort, S., Nagel, S., Mouthereau, F., Lin, A. T.‐S., Wetzel, A., Kaus, B., Willett, S., Chiang, S.‐P., & Chiu, W.‐Y. (2011). Sedimentology of early Pliocene sandstones in the south‐western Taiwan foreland: Implications for basin physiography in the early stages of collision. Journal of Asian Earth Sciences, 40, 52–71. https://doi.org/10.1016/j.jseaes.2010.09.005
    [Google Scholar]
  3. Chamley, H., Angelier, J., & Teng, L. S. (1993). Tectonic and environmental control of the clay mineral sedimentation in the late Cenozoic orogen of Taiwan. Geodinamica Acta, 6, 135–147. https://doi.org/10.1080/09853111.1993.11105243
    [Google Scholar]
  4. Chang, S. S. L. (1971). Regional stratigraphy and petroleum possibilities of Miocene formations in northwestern Taiwan, China. American Association of Petroleum Geologists Bulletin, 55, 1838–1865. https://doi.org/10.1306/819A3DAE‐16C5‐11D7‐8645000102C1865D
    [Google Scholar]
  5. Chang, S. S. L., & Chi, W. R. (1983). Neogene nannoplankton biostratigraphy in Taiwan and the tectonic implications. Petroleum Geology of Taiwan, 19, 93–147.
    [Google Scholar]
  6. Chen, C.‐H., Lee, C.‐Y., Lin, J.‐W., & Chu, M.‐F. (2019). Provenance of sediments in western Foothills and Hsuehshan Range (Taiwan): A new view based on the EMP monazite versus LA‐ICPMS zircon geochronology of detrital grains. Earth‐Science Reviews, 190, 224–246. https://doi.org/10.1016/j.earscirev.2018.12.015
    [Google Scholar]
  7. Chen, C.‐T., Lo, C.‐H., Wang, P.‐L., & Lin, L.‐H. (2022). Extensional mountain building along convergent plate boundary: Insights from the active Taiwan mountain belt. Geology, 50, 1245–1249. https://doi.org/10.1130/G50311.1
    [Google Scholar]
  8. Chen, C.‐W., Oguchi, T., Hayakawa, Y. S., Saito, H., Chen, H., Lin, G.‐W., Wei, L.‐W., & Chao, Y.‐C. (2018). Sediment yield during typhoon events in relation to landslides, rainfall, and catchment areas in Taiwan. Geomorphology, 303, 540–548. https://doi.org/10.1016/j.geomorph.2017.11.007
    [Google Scholar]
  9. Chen, J., Ma, J., Xu, K., Liu, Y., Cao, W., Wei, T., Zhao, B., & Chen, Z. (2017). Provenance discrimination of the clay sediment in the western Taiwan Strait and its implication for coastal current variability during the late‐Holocene. The Holocene, 27, 110–121. https://doi.org/10.1177/0959683616652706
    [Google Scholar]
  10. Chen, W. S. (2016). An introduction to the geology of Taiwan. Geological Society of Taiwan.
    [Google Scholar]
  11. Chen, W. S., Erh, C. H., Chen, M. M., Yang, C. C., Chang, I. S., Liu, T. K., Horng, C. S., Shea, K. S., Yeh, M. G., Chang, W. J., Te, K. C., Lin, C. C., & Huang, N. W. (2000). The evolution of foreland basins in the western Taiwan: Evidence from the Plio‐Pleistocene sequences. Bulletin of the Central Geological Survey, 13, 137–156.
    [Google Scholar]
  12. Chen, W.‐S., Yeh, J.‐J., & Syu, S.‐J. (2019). Late Cenozoic exhumation and erosion of the Taiwan orogenic belt: New insights from petrographic analysis of foreland basin sediments and thermochronological dating on the metamorphic orogenic wedge. Tectonophysics, 750, 56–69. https://doi.org/10.1016/j.tecto.2018.09.003
    [Google Scholar]
  13. Chen, Z. H., Chen, W. S., Wang, Y., & Chen, M. M. (1992). Petrographical study of foreland sandstones and its relation to unroofing history of the fold‐thrust belt in central Taiwan. Ti‐Chih, 12, 147–165.
    [Google Scholar]
  14. Chmura, G. L., & Aharon, P. (1995). Stable carbon isotope signatures of sedimentary carbon in coastal wetlands as indicators of salinity regime. Journal of Coastal Research, 11, 124–135.
    [Google Scholar]
  15. Chou, J. T. (1972). A sedimentologic and paleogeographic study of the upper Cenozoic clastic sequences in the Chiayi region, western Taiwan. Petroleum Geology of Taiwan, 10, 141–158.
    [Google Scholar]
  16. Chou, Y.‐W., & Yu, H.‐S. (2002). Structural expressions of flexural extension in the arc‐continent collisional foredeep of western Taiwan. Special Paper of the Geological Society of America, 358, 1–12. https://doi.org/10.1130/0‐8137‐2358‐2.1
    [Google Scholar]
  17. Coumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature Climate Change, 2, 491–496. https://doi.org/10.1038/nclimate1452
    [Google Scholar]
  18. Covey, M. (1986). The evolution of foreland basins to steady state: evidence from the Western Taiwan Foreland Basin. In Foreland Basins (pp. 77–90). Blackwell Publishing Ltd. https://doi.org/10.1002/9781444303810.ch4
    [Google Scholar]
  19. Czarnecki, J. M., Dashtgard, S. E., Pospelova, V., Mathewes, R. W., & MacEachern, J. A. (2014). Palynology and geochemistry of channel‐margin sediments across the tidal–fluvial transition, lower Fraser River, Canada: Implications for the rock record. Marine and Petroleum Geology, 51, 152–166. https://doi.org/10.1016/j.marpetgeo.2013.12.008
    [Google Scholar]
  20. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.‐L., Willett, S. D., Hu, J.‐C., Horng, M.‐J., Chen, M.‐C., Stark, C. P., Lague, D., & Lin, J.‐C. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426, 648–651. https://doi.org/10.1038/nature02150
    [Google Scholar]
  21. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J.‐C., Hsu, M.‐L., Lin, C.‐W., Horng, M.‐J., Chen, T.‐C., Milliman, J., & Stark, C. P. (2004). Earthquake‐triggered increase in sediment delivery from an active mountain belt. Geology, 32, 733. https://doi.org/10.1130/G20639.1
    [Google Scholar]
  22. Dashtgard, S. E., Löwemark, L., Vaucher, R., Pan, Y.‐Y., Pilarczyk, J. E., & Castelltort, S. (2020). Tropical cyclone deposits in the Pliocene Taiwan Strait: Processes, examples, and conceptual model. Sedimentary Geology, 405, 105687. https://doi.org/10.1016/j.sedgeo.2020.105687
    [Google Scholar]
  23. Dashtgard, S. E., Löwemark, L., Wang, P.‐L., Setiaji, R. A., & Vaucher, R. (2021). Geochemical evidence of tropical cyclone controls on shallow‐marine sedimentation (Pliocene, Taiwan). Geology, 49, 566–570. https://doi.org/10.1130/G48586.1
    [Google Scholar]
  24. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8, 105–123. https://doi.org/10.1046/j.1365‐2117.1996.01491.x
    [Google Scholar]
  25. Fedorov, A. V., Brierley, C. M., Lawrence, K. T., Liu, Z., Dekens, P. S., & Ravelo, A. C. (2013). Patterns and mechanisms of early Pliocene warmth. Nature, 496, 43–49. https://doi.org/10.1038/nature12003
    [Google Scholar]
  26. Flemings, P. B., & Jordan, T. E. (1989). A synthetic stratigraphic model of foreland basin development. Journal of Geophysical Research, 94, 3851–3866. https://doi.org/10.1029/JB094iB04p03851
    [Google Scholar]
  27. Hatfield, R. (2014). Particle size‐specific magnetic measurements as a tool for enhancing our understanding of the bulk magnetic properties of sediments. Minerals, 4, 758–787. https://doi.org/10.3390/min4040758
    [Google Scholar]
  28. Hauff, P. L., Starkey, H. C., Blackmon, P. D., & Pevear, D. R. (1984). Sample preparation procedures for the analysis of clay minerals by X‐ray diffraction. Open‐File Report, US Geological Survey.
    [Google Scholar]
  29. Hilton, R. G., Galy, A., Hovius, N., Horng, M.‐J., & Chen, H. (2010). The isotopic composition of particulate organic carbon in mountain rivers of Taiwan. Geochimica et Cosmochimica Acta, 74, 3164–3181. https://doi.org/10.1016/j.gca.2010.03.004
    [Google Scholar]
  30. Horng, C.‐S., & Huh, C.‐A. (2011). Magnetic properties as tracers for source‐to‐sink dispersal of sediments: A case study in the Taiwan Strait. Earth and Planetary Science Letters, 309, 141–152. https://doi.org/10.1016/j.epsl.2011.07.002
    [Google Scholar]
  31. Horng, C.‐S., Huh, C.‐A., Chen, K.‐H., Lin, C.‐H., Shea, K.‐S., & Hsiung, K.‐H. (2012). Pyrrhotite as a tracer for denudation of the Taiwan orogen. Geochemistry, Geophysics, Geosystems, 13, Q08Z47. https://doi.org/10.1029/2012GC004195
    [Google Scholar]
  32. Horng, C. S., & Shea, K. S. (2007). The Quaternary magnetobiostratigraphy of Taiwan and Penglai orogenic events. Special Publication of the Central Geological Survey, 18, 51–83.
    [Google Scholar]
  33. Hsu, W.‐H., Byrne, T. B., Ouimet, W., Lee, Y.‐H., Chen, Y.‐G., van Soest, M., & Hodges, K. (2016). Pleistocene onset of rapid, punctuated exhumation in the eastern central range of the Taiwan orogenic belt. Geology, 44, 719–722. https://doi.org/10.1130/G37914.1
    [Google Scholar]
  34. Huang, A. H., Lin, A. T., Jiang, W. T., & Wu, R. Z. (2012). Clay mineralogy of the Miocene–Pleistocene sedimentary rocks, NW Taiwan. Western Pacific Earth Sciences, 12, 65–84.
    [Google Scholar]
  35. Huang, T.‐C. (1976). Neogene calcareous nannoplankton biostratigraphy viewed from the Chuhuangkeng section, northwestern Taiwan. Proceedings of the Geological Society of China, 19, 7–24.
    [Google Scholar]
  36. Johnson, M. E. (2021). Geological oceanography of the Pliocene Warm Period: A review with predictions on the future of global warming. Journal of Marine Science and Engineering, 9, 1210. https://doi.org/10.3390/jmse9111210
    [Google Scholar]
  37. Kao, S.‐J., Hilton, R. G., Selvaraj, K., Dai, M., Zehetner, F., Huang, J.‐C., Hsu, S.‐C., Sparkes, R., Liu, J. T., Lee, T.‐Y., Yang, J.‐Y. T., Galy, A., Xu, X., & Hovius, N. (2014). Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration. Earth Surface Dynamics, 2, 127–139. https://doi.org/10.5194/esurf‐2‐127‐2014
    [Google Scholar]
  38. Kao, S. J., & Liu, K. K. (2000). Stable carbon and nitrogen isotope systematics in a human‐disturbed watershed (Lanyang‐Hsi) in Taiwan and the estimation of biogenic particulate organic carbon and nitrogen fluxes. Global Biogeochemical Cycles, 14, 189–198. https://doi.org/10.1029/1999GB900079
    [Google Scholar]
  39. Kao, S. J., & Milliman, J. D. (2008). Water and sediment discharge from small mountainous rivers, Taiwan: the roles of lithology, episodic events, and human activities. The Journal of Geology, 116, 431–448. https://doi.org/10.1086/590921
    [Google Scholar]
  40. Kelman, I. (2013). Saffir–Simpson Hurricane Intensity Scale. In P. T.Bobrowsky (Ed.), Encyclopedia of Natural Hazards (pp. 882–883). Springer. https://doi.org/10.1007/978‐1‐4020‐4399‐4_306
    [Google Scholar]
  41. Kirstein, L. A., Fellin, M. G., Willett, S. D., Carter, A., Chen, Y.‐G., Garver, J. I., & Lee, D. C. (2010). Pliocene onset of rapid exhumation in Taiwan during arc‐continent collision: New insights from detrital thermochronometry. Basin Research, 22, 270–285. https://doi.org/10.1111/j.1365‐2117.2009.00426.x
    [Google Scholar]
  42. Kodama, K. P., & Hinnov, L. A. (2015). Rock Magnetic Cyclostratigraphy (1st ed.). John Wiley & Sons.
    [Google Scholar]
  43. Kossin, J. P. (2018). A global slowdown of tropical‐cyclone translation speed. Nature, 558, 104–107. https://doi.org/10.1038/s41586‐018‐0158‐3
    [Google Scholar]
  44. Kossin, J. P., Knapp, K. R., Olander, T. L., & Velden, C. S. (2020). Global increase in major tropical cyclone exceedance probability over the past four decades. Proceedings of the National Academy of Sciences, 117, 11975–11980. https://doi.org/10.1073/pnas.1920849117
    [Google Scholar]
  45. Kübler, B., & Jaboyedoff, M. (2000). Illite crystallinity. Comptes Rendus de l'Académie des Sciences—Series IIA—Earth and Planetary Science, 331, 75–89. https://doi.org/10.1016/S1251‐8050(00)01395‐1
    [Google Scholar]
  46. Lai, L. S.‐H., Dorsey, R. J., Horng, C.‐S., Chi, W.‐R., Shea, K.‐S., & Yen, J.‐Y. (2022). Extremely rapid up‐and‐down motions of sland arc crust during arc‐continent collision. Communications Earth & Environment, 3, 100. https://doi.org/10.1038/s43247‐022‐00429‐2
    [Google Scholar]
  47. Lee, Y.‐H., Chen, C.‐C., Liu, T.‐K., Ho, H.‐C., Lu, H.‐Y., & Lo, W. (2006). Mountain building mechanisms in the Southern Central Range of the Taiwan Orogenic Belt—From accretionary wedge deformation to arc–continental collision. Earth and Planetary Science Letters, 252, 413–422. https://doi.org/10.1016/j.epsl.2006.09.047
    [Google Scholar]
  48. Li, C., Shi, X., Kao, S., Chen, M., Liu, Y., Fang, X., Lü, H., Zou, J., Liu, S., & Qiao, S. (2012). Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers. Chinese Science Bulletin, 57, 673–681. https://doi.org/10.1007/s11434‐011‐4824‐1
    [Google Scholar]
  49. Lin, A. T., Wang, S.‐M., Hung, J.‐H., Wu, M.‐S., & Liu, C.‐S. (2007). Lithostratigraphy of the Taiwan Chelungpu‐Fault Drilling Project‐A borehole and its neighboring region, Central Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 18, 223. https://doi.org/10.3319/TAO.2007.18.2.223(TCDP)
    [Google Scholar]
  50. Lin, A. T., & Watts, A. B. (2002). Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research: Solid Earth, 107, ETG 2‐1–ETG 2‐19. https://doi.org/10.1029/2001JB000669
    [Google Scholar]
  51. Lin, A. T., Watts, A. B., & Hesselbo, S. P. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region: Cenozoic stratigraphy of Taiwan. Basin Research, 15, 453–478. https://doi.org/10.1046/j.1365‐2117.2003.00215.x
    [Google Scholar]
  52. Lin, B., Liu, Z., Eglinton, T. I., Kandasamy, S., Blattmann, T. M., Haghipour, N., Huang, K.‐F., & You, C.‐F. (2020). Island‐wide variation in provenance of riverine sedimentary organic carbon: A case study from Taiwan. Earth and Planetary Science Letters, 539, 116238. https://doi.org/10.1016/j.epsl.2020.116238
    [Google Scholar]
  53. Lin, C.‐W., & Chen, W.‐S. (2016). Geologic map of Taiwan. Geological Society of Taiwan.
    [Google Scholar]
  54. Liu, J. P., Liu, C. S., Xu, K. H., Milliman, J. D., Chiu, J. K., Kao, S. J., & Lin, S. W. (2008). Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 256, 65–76. https://doi.org/10.1016/j.margeo.2008.09.007
    [Google Scholar]
  55. Liu, T.‐K., Chen, Y.‐G., Chen, W.‐S., & Jiang, S.‐H. (2000). Rates of cooling and denudation of the Early Penglai Orogeny, Taiwan, as assessed by fission‐track constraints. Tectonophysics, 320, 69–82. https://doi.org/10.1016/S0040‐1951(00)00028‐7
    [Google Scholar]
  56. Liu, Z., Colin, C., Huang, W., Chen, Z., Trentesaux, A., & Chen, J. (2007). Clay minerals in surface sediments of the Pearl River drainage basin and their contribution to the South China Sea. Chinese Science Bulletin, 52, 1101–1111. https://doi.org/10.1007/s11434‐007‐0161‐9
    [Google Scholar]
  57. Liu, Z., Colin, C., Huang, W., Le, K. P., Tong, S., Chen, Z., & Trentesaux, A. (2007). Climatic and tectonic controls on weathering in south China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochemistry, Geophysics, Geosystems, 8, Q05005. https://doi.org/10.1029/2006GC001490
    [Google Scholar]
  58. Liu, Z., Tuo, S., Colin, C., Liu, J. T., Huang, C.‐Y., Selvaraj, K., Chen, C.‐T. A., Zhao, Y., Siringan, F. P., Boulay, S., & Chen, Z. (2008). Detrital fine‐grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology, 255, 149–155. https://doi.org/10.1016/j.margeo.2008.08.003
    [Google Scholar]
  59. Liu, Z., Zhao, Y., Colin, C., Siringan, F. P., & Wu, Q. (2009). Chemical weathering in Luzon, Philippines from clay mineralogy and major‐element geochemistry of river sediments. Applied Geochemistry, 24, 2195–2205. https://doi.org/10.1016/j.apgeochem.2009.09.025
    [Google Scholar]
  60. Martini, E. (1971). Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation. In A.Farinacci (Ed.), Proceedings of the Second International Conference on Planktonic Microfossils (pp. 739–785). Rome.
    [Google Scholar]
  61. Martiny, A. C., Pham, C. T. A., Primeau, F. W., Vrugt, J. A., Moore, J. K., Levin, S. A., & Lomas, M. W. (2013). Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nature Geoscience, 6, 279–283. https://doi.org/10.1038/ngeo1757
    [Google Scholar]
  62. Milliman, J. D., & Kao, S. (2005). Hyperpycnal Discharge of Fluvial Sediment to the Ocean: Impact of Super‐Typhoon Herb (1996) on Taiwanese Rivers. The Journal of Geology, 113, 503–516. https://doi.org/10.1086/431906
    [Google Scholar]
  63. Milliman, J. D., Lee, T. Y., Huang, J. C., & Kao, S. J. (2017). Impact of catastrophic events on small mountainous rivers: Temporal and spatial variations in suspended‐ and dissolved‐solid fluxes along the Choshui River, central western Taiwan, during typhoon Mindulle, July 2–6, 2004. Geochimica et Cosmochimica Acta, 205, 272–294. https://doi.org/10.1016/j.gca.2017.02.015
    [Google Scholar]
  64. Milliman, J. D., Lin, S. W., Kao, S. J., Liu, J. P., Liu, C. S., Chiu, J. K., & Lin, Y. C. (2007). Short‐term changes in seafloor character due to flood‐derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004. Geology, 35, 779. https://doi.org/10.1130/G23760A.1
    [Google Scholar]
  65. MOEA . (2019). Geology of Taiwan. Central Geological Survey. https://www.moeacgs.gov.tw/eng
    [Google Scholar]
  66. Nagel, S., Castelltort, S., Garzanti, E., Lin, A. T., Willett, S. D., Mouthereau, F., Limonta, M., & Adatte, T. (2014). Provenance evolution during arc‐continent collision: sedimentary petrography of Miocene to Pleistocene sediments in the Western Foreland Basin of Taiwan. Journal of Sedimentary Research, 84, 513–528. https://doi.org/10.2110/jsr.2014.44
    [Google Scholar]
  67. Nagel, S., Castelltort, S., Wetzel, A., Willett, S. D., Mouthereau, F., & Lin, A. T. (2013). Sedimentology and foreland basin paleogeography during Taiwan arc continent collision. Journal of Asian Earth Sciences, 62, 180–204. https://doi.org/10.1016/j.jseaes.2012.09.001
    [Google Scholar]
  68. Nagel, S., Granjeon, D., Willett, S., Lin, A. T.‐S., & Castelltort, S. (2018). Stratigraphic modeling of the Western Taiwan foreland basin: Sediment flux from a growing mountain range and tectonic implications. Marine and Petroleum Geology, 96, 331–347. https://doi.org/10.1016/j.marpetgeo.2018.05.034
    [Google Scholar]
  69. Pan, T.‐Y., Lin, A. T.‐S., & Chi, W.‐R. (2015). Paleoenvironments of the evolving Pliocene to early Pleistocene foreland basin in northwestern Taiwan: An example from the Dahan River section: Paleoenvironments of NW Taiwan foreland. Island Arc, 24, 317–341. https://doi.org/10.1111/iar.12113
    [Google Scholar]
  70. Peterson, B. J., & Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18, 293–320. https://doi.org/10.1146/annurev.es.18.110187.001453
    [Google Scholar]
  71. Poppe, L.J., Paskevich, V.F., Hathaway, J.C., and Blackwood, D.S.2001. A laboratory manual for X‐ray powder diffraction. Report. https://doi.org/10.3133/ofr0141.
    [Google Scholar]
  72. Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L., & Hilgen, F. (2006). A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quaternary Science Reviews, 25, 3113–3137. https://doi.org/10.1016/j.quascirev.2006.07.007
    [Google Scholar]
  73. Reineck, H. E. (1963). Sedimentgefüge im Bereich der südlichen Nordsee. Abhandlungen der Senckenbergischen Gesellschaft für Naturforschung, 505, 1–138.
    [Google Scholar]
  74. Shaw, C.‐L. (1996). Stratigraphic correlation and isopach maps of the Western Taiwan Basin. Terrestrial, Atmospheric, and Oceanic Sciences, 7, 333–360. https://doi.org/10.3319/TAO.1996.7.3.333(T)
    [Google Scholar]
  75. Shea, K.‐S., & Huang, T. (2003). Tertiary stratigraphy in Taiwan. The Taiwan Mining Industry, 55, 17–32.
    [Google Scholar]
  76. Simoes, M., & Avouac, J. P. (2006). Investigating the kinematics of mountain building in Taiwan from the spatiotemporal evolution of the foreland basin and western foothills. Journal of Geophysical Research: Solid Earth, 111, B10401. https://doi.org/10.1029/2005JB004209
    [Google Scholar]
  77. Steer, P., Jeandet, L., Cubas, N., Marc, O., Meunier, P., Simoes, M., Cattin, R., Shyu, J. B. H., Mouyen, M., Liang, W.‐T., Theunissen, T., Chiang, S.‐H., & Hovius, N. (2020). Earthquake statistics changed by typhoon‐driven erosion. Scientific Reports, 10, 10899. https://doi.org/10.1038/s41598‐020‐67865‐y
    [Google Scholar]
  78. Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China, 4, 67–89.
    [Google Scholar]
  79. Taylor, A. M., & Goldring, R. (1993). Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150, 141–148. https://doi.org/10.1144/gsjgs.150.1.0141
    [Google Scholar]
  80. Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc‐continent collision in Taiwan. Tectotnophysics, 183, 57–76. https://doi.org/10.1016/0040‐1951(90)90188‐E
    [Google Scholar]
  81. Teng, L. S., Wang, Y., Tang, C.‐H., Huang, C.‐Y., Huang, T.‐C., Yu, M.‐S., & Ke, A. (1991). Tectonic aspects of the Paleogene depositional basin of northern Taiwan. Proceedings of the Geology Society of China, 34, 313–336.
    [Google Scholar]
  82. Thompson, R., & Oldfield, F. (1986). Magnetic properties of natural materials. In R.Thompson & F.Oldfield (Eds.), Environmental magnetism (pp. 21–38). Springer. https://doi.org/10.1007/978‐94‐011‐8036‐8_4
    [Google Scholar]
  83. Vaucher, R., Dashtgard, S. E., Horng, C.‐S., Zeeden, C., Dillinger, A., Pan, Y.‐Y., Setiaji, R. A., Chi, W.‐R., & Löwemark, L. (2021). Insolation‐paced sea level and sediment flux during the early Pleistocene in Southeast Asia. Scientific Reports, 11, 16707. https://doi.org/10.1038/s41598‐021‐96372‐x
    [Google Scholar]
  84. Willett, S. D., Fisher, D., Fuller, C., En‐Chao, Y., & Chia‐Yu, L. (2003). Erosion rates and orogenic‐wedge kinematics in Taiwan inferred from fission‐track thermochronometry. Geology, 31, 945. https://doi.org/10.1130/G19702.1
    [Google Scholar]
  85. Yan, Q., Korty, R., Zhang, Z., & Wang, H. (2019). Evolution of tropical cyclone genesis regions during the Cenozoic era. Nature Communications, 10, 3076. https://doi.org/10.1038/s41467‐019‐11110‐2
    [Google Scholar]
  86. Yan, Q., Wei, T., Korty, R. L., Kossin, J. P., Zhang, Z., & Wang, H. (2016). Enhanced intensity of global tropical cyclones during the mid‐Pliocene warm period. Proceedings of the National Academy of Sciences, 113, 12963–12967. https://doi.org/10.1073/pnas.1608950113
    [Google Scholar]
  87. Yan, Q., Wei, T., Zhang, Z., & Jiang, N. (2019). Orbitally induced variation of tropical cyclone genesis potential over the western North Pacific during the mid‐Piacenzian warm period: A modeling perspective. Paleoceanography and Paleoclimatology, 34, 902–916. https://doi.org/10.1029/2018PA003535
    [Google Scholar]
  88. Yang, Y., Piper, D. J. W., Normandeau, A., Zhou, L., Jia, J., Wang, Y. P., & Gao, S. (2022). A late Holocene shift of typhoon activity recorded by coastal sedimentary archives in eastern China. Sedimentology, 69, 954–969. https://doi.org/10.1111/sed.12934
    [Google Scholar]
  89. Yu, H.‐S., & Chou, Y.‐W. (2001). Characteristics and development of the flexural forebulge and basal unconformity of Western Taiwan Foreland Basin. Tectonophysics, 333, 277–291. https://doi.org/10.1016/S0040‐1951(00)00279‐1
    [Google Scholar]
  90. Zhao, Y., Zou, X., Gao, J., Wang, C., Li, Y., Yao, Y., Zhao, W., & Xu, M. (2018). Clay mineralogy and source‐to‐sink transport processes of Changjiang River sediments in the estuarine and inner shelf areas of the East China Sea. Journal of Asian Earth Sciences, 152, 91–102. https://doi.org/10.1016/j.jseaes.2017.11.038
    [Google Scholar]
  91. Zhao, Y., Zou, X., Liu, Q., Wang, C., Ge, C., & Xu, M. (2018). Clay mineralogy indicates the muddy sediment provenance in the estuarine‐inner shelf of the East China Sea. Journal of Asian Earth Sciences, 152, 69–79. https://doi.org/10.1016/j.jseaes.2017.11.036
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12741
Loading
/content/journals/10.1111/bre.12741
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error