1887
Volume 35, Issue 3
  • E-ISSN: 1365-2117

Abstract

[

Simplified palaeogeographic framework of the Himalayan orogen and Indus‐Yarlung suture zone denoting provenance changes in sedimentary rocks in the TH, LH and Sub‐Himalaya and tectonic evolution of the Himalayan orogen from the initial India‐Asia collision to the early‐middle Miocene.

, Abstract

Cretaceous‐Miocene sedimentary rocks in the Nepalese Lesser Himalaya provide an opportunity to decipher the timing of India‐Asia collision and unroofing history of the Himalayan orogen, which are significant for understanding the growth processes of the Himalayan‐Tibetan orogen. Our new data indicate that detrital zircon ages and whole‐rock Sr‐Nd isotopes in Cretaceous‐Miocene Lesser Himalayan sedimentary rocks underwent two significant changes. First, from the Upper Cretaceous‐Palaeocene Amile Formation to the Eocene Bhainskati Formation, the proportion of late Proterozoic‐early Palaeozoic zircons (quantified by an index of 500–1200 Ma/1600–2800 Ma) increased from nearly 0 to 0.7–1.4, and the percentage of Mesozoic zircons decreased from ca. 14% to 5–12%. The whole‐rock 87Sr/86Sr and εNd( = 0) values changed markedly from 0.732139 and −17.2 for the Amile Formation to 0.718106 and −11.4 for the Bhainskati Formation. Second, from the Bhainskati Formation to the lower‐middle Miocene Dumri Formation, the index of 500–1200 Ma/1600–2800 Ma increased to 2.2–3.7 and the percentage of Mesozoic zircons abruptly decreased to nearly 0. The whole‐rock 87Sr/86Sr and εNd( = 0) values changed significantly to 0.750124 and −15.8 for the Dumri Formation. The εHf() values of Early Cretaceous zircons in the Taltung Formation and Amile Formation plot in the U‐Pb‐εHf() field of Indian derivation, whereas εHf() values of Triassic‐Palaeocene zircons in the Bhainskati Formation demonstrate the arrival of Asian‐derived detritus in the Himalayan foreland basin in the Eocene based on available datasets. Our data indicate that (1) the timing of terminal India‐Asia collision was no later than the early‐middle Eocene in the central Himalaya, and (2) the Greater Himalaya served as a source for the Himalayan foreland basin by the early Miocene. When coupled with previous Palaeocene‐early Eocene provenance records of the Tethyan Himalaya, our new data challenge dual‐stage India‐Asia collision models, such as the Greater India Basin hypothesis and its variants and the arc–continent collision model.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12742
2023-05-19
2024-03-29
Loading full text...

Full text loading...

References

  1. Ahmad, T., Harris, N., Bickle, M., Chapman, H., Bunbury, J., & Prince, C. (2000). Isotopic constraints on the structural relationships between the Lesser Himalayan series and the high Himalayan crystalline series, Garhwal Himalaya. Geological Society of America Bulletin, 112, 467–477.
    [Google Scholar]
  2. Aitchison, J. C., Ali, J. R., & Davis, A. M. (2007). When and where did India and Asia collide?Journal of Geophysical Research, 112, B05423.
    [Google Scholar]
  3. Aitchison, J. C., Badengzhu, D., Aileen, M., Liu, J. B., Luo, H., Malpas, J. G., McDermid, I. R. C., Wu, H. Y., Ziabrev, S. V., & Zhou, M. F. (2000). Remnants of a Cretaceous intra‐oceanic subduction system within the Yarlung‐Zangbo suture (southern Tibet). Earth and Planetary Science Letters, 183, 231–244.
    [Google Scholar]
  4. An, W., Hu, X. M., Garzanti, E., BouDagher‐Fadel, M. K., Wang, J. G., & Sun, G. Y. (2014). Xigaze forearc basin revisited (South Tibet): Provenance changes and origin of the Xigaze ophiolite. Geological Society of America Bulletin, 126, 1595–1613.
    [Google Scholar]
  5. An, W., Hu, X. M., Garzanti, E., Wang, J. G., & Liu, Q. (2021). New precise dating of the India‐Asia collision in the Tibetan Himalaya at 61 Ma. Geophysical Research Letters, 48, e2020GL090641.
    [Google Scholar]
  6. Andersen, T. (2002). Correction of common lead in U‐Pb analyses that do not report 204Pb. Chemical Geology, 192, 59–79.
    [Google Scholar]
  7. Baral, U., Ding, L., & Chamlagain, D. (2017). Detrital zircon ages and provenance of Neogene foreland basin sediments of the Karnali River section, Western Nepal Himalaya. Journal of Asian Earth Sciences, 138, 98–109.
    [Google Scholar]
  8. Bera, M. K., Sarkar, A., Chakraborty, P. P., Ravikant, V., & Choudhury, A. K. (2010). Forced regressive shoreface sandstone from Himalayan foreland: Implications to early Himalayan tectonic evolution. Sedimentary Geology, 229, 268–281.
    [Google Scholar]
  9. Bhandari, S., Xiao, W. J., Ao, S. J., Windley, B. F., Zhu, R. X., Li, R., Wang, H. Y. C., & Esmaeili, R. (2019). Rifting of the northern margin of the Indian craton in the early Cretaceous: Insight from the Aulis trachyte of the Lesser Himalaya (Nepal). Lithosphere, 11, 643–651.
    [Google Scholar]
  10. Bian, W. W., Yang, T. S., Peng, W. X., Wang, S., Gao, F., Zhang, S. H., Wu, H. C., Li, H. Y., Cao, L. W., Jiang, T., & Wang, H. P. (2021). Paleomagnetic constraints on the India‐Asia collision and the size of greater India. Journal of Geophysical Research: Solid Earth, 126, e2021JB021965.
    [Google Scholar]
  11. Bossart, P., & Ottiger, R. (1989). Rocks of the Murree formation in northern Pakistan: Indicators of a descending foreland basin of late Paleocene to middle Eocene age. Eclogae Geologicae Helveticae, 82, 133–165.
    [Google Scholar]
  12. Bouilhol, P., Jagoutz, O., Hanchar, J. M., & Dudas, F. O. (2013). Dating the India‐Eurasia collision through arc magmatic records. Earth and Planetary Science Letters, 366, 163–175.
    [Google Scholar]
  13. Cai, F. L., Ding, L., Laskowski, A. K., Kapp, P., Wang, H. Q., Xu, Q., & Zhang, L. Y. (2016). Late Triassic paleogeographic reconstruction along the neo‐Tethyan Ocean margins, southern Tibet. Earth and Planetary Science Letters, 435, 105–114.
    [Google Scholar]
  14. Cai, F. L., Ding, L., & Yue, Y. H. (2011). Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India‐Asia collision. Earth and Planetary Science Letters, 305, 195–206.
    [Google Scholar]
  15. Cao, M. J., Qin, K. Z., Li, G. M., Li, J. X., Zhao, J. X., Evans, N. J., & Hollings, P. (2016). Tectono‐magmatic evolution of late Jurassic to early Cretaceous granitoids in the west Central Lhasa subterrane, Tibet. Gondwana Research, 39, 386–400.
    [Google Scholar]
  16. Cao, Y., Sun, Z. M., Li, H. B., Pei, J. L., Jiang, W., Xu, W., Zhao, L. S., Wang, L. Z., Li, C. L., Ye, X. Z., & Zhang, L. (2017). New late Cretaceous paleomagnetic data from volcanic rocks and red beds from the Lhasa terrane and its implications for the paleolatitude of the southern margin of Asia prior to the collision with India. Gondwana Research, 41, 337–351.
    [Google Scholar]
  17. Cawood, P. A., Johnson, M. R. W., & Nemchin, A. A. (2007). Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth and Planetary Science Letters, 255, 70–84.
    [Google Scholar]
  18. Chen, L., Qin, K. Z., Li, G. M., Li, J. X., Xiao, B., Zhao, J. X., & Fan, X. (2015). Zircon U‐Pb ages, geochemistry, and Sr‐Nd‐Pb‐Hf isotopes of the Nuri intrusive rocks in the Gangdese area, southern Tibet: Constraints on timing, petrogenesis, and tectonic transformation. Lithos, 212–215, 379–396.
    [Google Scholar]
  19. Chen, Y., Zhu, D. C., Zhao, Z. D., Meng, F. Y., Wang, Q., Santosh, M., Wang, L. Q., Dong, G. C., & Mo, X. X. (2014). Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa terrane, Tibet. Gondwana Research, 26, 449–463.
    [Google Scholar]
  20. Chu, M. F., Chung, S. L., Song, B., Liu, D. Y., O'Reilly, S. Y., Pearson, N. J., Ji, J. Q., & Wen, D. J. (2006). Zircon U‐Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34, 745–748.
    [Google Scholar]
  21. Chung, S. L., Chu, M. F., Zhang, Y. Q., Xie, Y. W., Lo, C. H., Lee, T. Y., Lan, C. Y., Li, X. H., Zhang, Q., & Wang, Y. Z. (2005). Tibetan tectonic evolution inferred from spatial and temporal variations in post‐collisional magmatism. Earth‐Science Reviews, 68, 173–196.
    [Google Scholar]
  22. Coffin, M. F., Pringle, M. S., Duncan, R. A., Gladczenko, T. P., Storey, M., Müller, R. D., & Gahagan, L. A. (2002). Kerguelen hotspot magma output since 130 Ma. Journal of Petrology, 43, 1121–1139.
    [Google Scholar]
  23. Colleps, C. L., McKenzie, N. R., Horton, B. K., Webb, A. A. G., Ng, Y. W., & Singh, B. P. (2020). Sediment provenance of pre‐ and post‐collisional Cretaceous‐Paleogene strata from the frontal Himalaya of Northwest India. Earth and Planetary Science Letters, 534, 116079.
    [Google Scholar]
  24. Colleps, C. L., McKenzie, N. R., Stockli, D. F., Hughes, N. C., Singh, B. P., Webb, A. A. G., Myrow, P. M., Planavsky, N. J., & Horton, B. K. (2018). Zircon (U‐Th)/He thermochronometric constraints on Himalayan thrust belt exhumation, bedrock weathering, and Cenozoic seawater chemistry. Geochemistry, Geophysics, Geosystems, 19, 257–271.
    [Google Scholar]
  25. Critelli, S., & Garzanti, E. (1994). Provenance of the lower tertiary Murree redbeds (Hazara‐Kashmir Syntaxis, Pakistan) and initial rising of the Himalayas. Sedimentary Geology, 89, 265–284.
    [Google Scholar]
  26. DeCelles, P. G., Gehrels, G. E., Najman, Y., Martin, A. J., Carter, A., & Garzanti, E. (2004). Detrital geochronology and geochemistry of Cretaceous‐early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis. Earth and Planetary Science Letters, 227, 313–330.
    [Google Scholar]
  27. DeCelles, P. G., Gehrels, G. E., Quade, J., LaReau, B., & Spurlin, M. (2000). Tectonic implications of U‐Pb zircon ages of the Himalayan orogenic belt in Nepal. Science, 288, 497–499.
    [Google Scholar]
  28. DeCelles, P. G., Gehrels, G. E., Quade, J., & Ojha, T. P. (1998). Eocene‐early Miocene foreland basin development and the history of Himalayan thrusting, western and Central Nepal. Tectonics, 17, 741–765.
    [Google Scholar]
  29. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8, 105–123.
    [Google Scholar]
  30. DeCelles, P. G., Kapp, P., Gehrels, G. E., & Ding, L. (2014). Paleocene‐Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India‐Asia collision. Tectonics, 33, 824–849.
    [Google Scholar]
  31. DeCelles, P. G., Robinson, D. M., Quade, J., Ojha, T. P., Garzione, C. N., Copeland, P., & Upreti, B. N. (2001). Stratigraphy, structure and tectonic evolution of the Himalayan fold‐thrust belt in western Nepal. Tectonics, 20, 487–509.
    [Google Scholar]
  32. Deenen, M. H. L., Langereis, C. G., van Hinsbergen, D. J. J., & Biggin, A. J. (2011). Geomagnetic secular variation and the statistics of palaeomagnetic directions. Geophysical Journal International, 186, 509–520.
    [Google Scholar]
  33. Ding, L., Cai, F. L., Zhang, Q. H., Zhang, L. Y., Xu, Q., Yang, D., Liu, D. L., & Zhong, D. L. (2009). Provenance and tectonic evolution of the foreland basin systems in the Gandese‐Himalayan collisional orogen belt. Chinese Journal of Geology, 44, 1289–1311 (in Chinese with English abstract).
    [Google Scholar]
  34. Ding, L., Kapp, P., Cai, F. L., Garzione, C. N., Xiong, Z. Y., Wang, H. Q., & Wang, C. (2022). Timing and mechanisms of Tibetan plateau uplift. Nature Reviews Earth & Environment, 3, 652–667.
    [Google Scholar]
  35. Ding, L., Kapp, P., & Wan, X. Q. (2005). Paleocene‐Eocene record of ophiolite obduction and initial India‐Asia collision, south Central Tibet. Tectonics, 24, TC3001.
    [Google Scholar]
  36. Ding, L., Qasim, M., Jadoon, I. A. K., Khan, M. A., Xu, Q., Cai, F. L., Wang, H. Q., Baral, U., & Yue, Y. H. (2016). The India‐Asia collision in North Pakistan: Insight from the U‐Pb detrital zircon provenance of Cenozoic foreland basin. Earth and Planetary Science Letters, 455, 49–61.
    [Google Scholar]
  37. Ding, L., Xu, Q., Yue, Y. H., Wang, H. Q., Cai, F. L., & Li, S. (2014). The Andean‐type Gangdese Mountains: Paleoelevation record from the Paleocene‐Eocene Linzhou Basin. Earth and Planetary Science Letters, 392, 250–264.
    [Google Scholar]
  38. Dupont‐Nivet, G., Lippert, P. C., van Hinsbergen, D. J. J., Meijers, M. J. M., & Kapp, P. (2010). Palaeolatitude and age of the indo‐Asia collision: Palaeomagnetic constraints. Geophysical Journal International, 182, 1189–1198.
    [Google Scholar]
  39. Duvall, M. J., Waldron, J. W. F., Godin, L., & Najman, Y. (2020). Active strike‐slip faults and an outer frontal thrust in the Himalayan foreland basin. Proceedings of the National Academy of Sciences of the United States of America, 117, 17615–17621.
    [Google Scholar]
  40. Evans, M. J., Derry, L. A., Anderson, S. P., & France‐Lanord, C. (2001). Hydrothermal source of radiogenic Sr to Himalayan rivers. Geology, 29, 803–806.
    [Google Scholar]
  41. Fang, X. M., Dupont‐Nivet, G., Wang, C. S., Song, C. H., Meng, Q. Q., Zhang, W. L., Nie, J. S., Zhang, T., Mao, Z. Q., & Chen, Y. (2020). Revised chronology of Central Tibet uplift (Lunpola Basin). Science Advances, 6, eaba7298.
    [Google Scholar]
  42. Frank, W., & Fuchs, G. R. (1970). Geological investigations in West Nepal and their significance for the geology of the Himalayas. Geologische Rundschau, 59, 552–580.
    [Google Scholar]
  43. Gaetani, M., & Garzanti, E. (1991). Multicyclic history of the northern India continental margin (northwestern Himalaya). The American Association of Petroleum Geologists Bulletin, 75, 1427–1446.
    [Google Scholar]
  44. Galy, A., France‐Lanord, C., & Derry, L. A. (1999). The strontium isotopic budget of Himalayan Rivers in Nepal and Bangladesh. Geochimica et Cosmochimica Acta, 63, 1905–1925.
    [Google Scholar]
  45. Garzanti, E. (1999). Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. Journal of Asian Earth Sciences, 17, 805–827.
    [Google Scholar]
  46. Garzanti, E., & Hu, X. M. (2015). Latest Cretaceous Himalayan tectonics: Obduction, collision or Deccan‐related uplift?Gondwana Research, 28, 165–178.
    [Google Scholar]
  47. Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A., McQuarrie, N., & Yin, A. (2011). Detrital zircon geochronology of pre‐tertiary strata in the Tibetan‐Himalayan orogen. Tectonics, 30, TC5016.
    [Google Scholar]
  48. Griffin, W. L., Powell, W. J., Pearson, N. J., & O'Rilly, S. Y. (2008). Glitter: Data reduction software for laser ablation ICP‐MC. In P.Sylvester (Ed.), Laser ablation‐ICP‐MS in the earth sciences (Vol. 40, pp. 204–207). Mineralogical Association Canada, Short Course.
    [Google Scholar]
  49. Harris, N., Bickle, M., Chapman, H., Fairchild, I., & Bunbury, J. (1998). The significance of Himalayan rivers for silicate weathering rates: Evidence from the Bhote Kosi tributary. Chemical Geology, 144, 205–220.
    [Google Scholar]
  50. Hodges, K. V., Parrish, R. R., & Searle, M. P. (1996). Tectonic evolution of the Central Annapurna range, Nepalese Himalayas. Tectonics, 15, 1264–1291.
    [Google Scholar]
  51. Horton, B. K. (2018). Sedimentary record of Andean mountain building. Earth‐Science Reviews, 178, 279–309.
    [Google Scholar]
  52. Horton, B. K. (2022). Unconformity development in retroarc foreland basins: Implications for the geodynamics of Andean‐type margins. Journal of the Geological Society, 179, jgs2020‐263.
    [Google Scholar]
  53. Hu, X. M. (2012). Testing the validity of Nd isotopes as a provenance tool in southern Tibet for constraining the initial India‐Asia collision. Journal of Asian Earth Sciences, 53, 51–58.
    [Google Scholar]
  54. Hu, X. M., Garzanti, E., Moore, T., & Raffi, I. (2015). Direct stratigraphic dating of India‐Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma). Geology, 43, 859–862.
    [Google Scholar]
  55. Hu, X. M., Garzanti, E., Wang, J. G., Huang, W. T., An, W., & Webb, A. (2016). The timing of India‐Asia collision onset—Facts, theories, controversies. Earth‐Science Reviews, 160, 264–299.
    [Google Scholar]
  56. Hu, X. M., Jansa, L., Chen, L., Griffin, W. L., O'Reilly, S. Y., & Wang, J. G. (2010). Provenance of lower Cretaceous Wölong Volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of eastern Gondwana. Sedimentary Geology, 223, 193–205.
    [Google Scholar]
  57. Hu, X. M., Sinclair, H. D., Wang, J. G., Jiang, H. H., & Wu, F. Y. (2012). Late Cretaceous‐Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: Implications for the timing of India‐Asia initial collision. Basin Research, 24, 520–543.
    [Google Scholar]
  58. Hu, X. M., Wang, J. G., BouDagher‐Fadel, M., Garzanti, E., & An, W. (2016). New insights into the timing of the India‐Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet. Gondwana Research, 32, 76–92.
    [Google Scholar]
  59. Hu, Z. C., Liu, Y. S., Gao, S., Liu, W. G., Zhang, W., Tong, X. R., Lin, L., Zong, K. Q., Li, M., Chen, H. H., Zhou, L., & Yang, L. (2012). Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP‐MS. Journal of Analytical Atomic Spectrometry, 27, 1391–1399.
    [Google Scholar]
  60. Huang, W. T., Dupont‐Nivet, G., Lippert, P. C., van Hinsbergen, D. J. J., Dekkers, M. J., Waldrip, R., Ganerød, M., Li, X. C., Guo, Z. J., & Kapp, P. (2015). What was the Paleogene latitude of the Lhasa terrane? A reassessment of the geochronology and paleomagnetism of Linzizong volcanic rocks (Linzhou basin, Tibet). Tectonics, 34, 594–622.
    [Google Scholar]
  61. Huang, W. T., Dupont‐Nivet, G., Lippert, P. C., van Hinsbergen, D. J. J., & Hallot, E. (2013). Inclination shallowing in Eocene Linzizong sedimentary rocks from southern Tibet: Correction, possible causes and implications for reconstructing the India‐Asia collision. Geophysical Journal International, 194, 1390–1411.
    [Google Scholar]
  62. Ingalls, M., Rowley, D. B., Currie, B., & Colman, A. S. (2016). Large‐scale subduction of continental crust implied by India‐Asia mass‐balance calculation. Nature Geoscience, 9, 848–853.
    [Google Scholar]
  63. Ingle, S., Scoates, J. S., Weis, D., Brügmann, G., & Kent, R. W. (2004). Origin of Cretaceous continental tholeiites in southwestern Australia and eastern Indian: Insights from Hf and Os isotopes. Chemical Geology, 209, 83–106.
    [Google Scholar]
  64. Jadoon, U. F., Huang, B. C., Shah, S. A., Rahim, Y., Khan, A. A., & Bibi, A. (2021). Multi‐stage India‐Asia collision: Paleomagnetic constraints from Hazara‐Kashmir syntaxis in the western Himalaya. Geological Society of America Bulletin, 134, 1109–1128.
    [Google Scholar]
  65. Jagoutz, O., Royden, L., Holt, A. F., & Becker, T. W. (2015). Anomalously fast convergence of India and Eurasia caused by double subduction. Nature Geoscience, 8, 475–478.
    [Google Scholar]
  66. Jain, A. K., Lal, N., Sulemani, B., Awasthi, A. K., Singh, S., Kumar, R., & Kumar, D. (2009). Detrital‐zircon fission‐track ages from the lower Cenozoic sediments, NW Himalayan foreland basin: Clues for exhumation and denudation of the Himalaya during the India‐Asia collision. Geological Society of America Bulletin, 121, 519–535.
    [Google Scholar]
  67. Ji, W. Q., Wu, F. Y., Chung, S. L., Li, J. X., & Liu, C. Z. (2009). Zircon U‐Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262, 229–245.
    [Google Scholar]
  68. Kapp, P., & DeCelles, P. G. (2019). Mesozoic‐Cenozoic geological evolution of the Himalayan‐Tibetan orogen and working tectonic hypotheses. American Journal of Science, 319, 159–254.
    [Google Scholar]
  69. Kapp, P., DeCelles, P. G., Gehrels, G. E., Heizler, M., & Ding, L. (2007). Geological records of the Lhasa‐Qiangtang and indo‐Asian collisions in the Nima area of Central Tibet. Geological Society of America Bulletin, 119, 917–932.
    [Google Scholar]
  70. Kapp, P., Yin, A., Harrison, T. M., & Ding, L. (2005). Cretaceous‐tertiary shortening, basin development, and volcanism in Central Tibet. Geological Society of America Bulletin, 117, 865–878.
    [Google Scholar]
  71. Kellett, D. A., Cottle, J. M., & Larson, K. P. (2018). The south Tibetan detachment system: History, advances, definition and future directions. In P. J.Treloar & M. P.Searle (Eds.), Himalayan tectonics: A modern synthesis (Vol. 483, pp. 377–400). Geological Society, London, Special Publications.
    [Google Scholar]
  72. Kent, R. W., Pringle, M. S., Müller, R. D., Saunders, A. D., & Ghose, N. C. (2002). 40Ar/39Ar geochronology of the Rajmahal basalts, India, and their relationship to the Kerguelen plateau. Journal of Petrology, 43, 1141–1153.
    [Google Scholar]
  73. Kent, R. W., Saunders, A. D., Kempton, P. D., & Ghose, N. C. (1997). Rajmahal basalts, eastern India: Mantle sources and melt distribution at a volcanic rifted margin. In J. J.Mahoney & M. F.Coffin (Eds.), Large igneous provinces: Continental, oceanic and planetary flood volcanism (Vol. 100, pp. 145–182). Geophysical Monograph, American Geophysical Union.
    [Google Scholar]
  74. Khan, S. D., Walker, D. J., Hall, S. A., Burke, K. C., Shah, M. T., & Stockli, L. (2009). Did the Kohistan‐Ladakh Island arc collide first with India?Geological Society of America Bulletin, 121, 366–384.
    [Google Scholar]
  75. Kohn, M. J., Paul, S. K., & Corrie, S. L. (2010). The lower Lesser Himalayan sequence: A Paleoproterozoic arc on the northern margin of the Indian plate. Geological Society of America Bulletin, 122, 323–335.
    [Google Scholar]
  76. Leier, A. L., Kapp, P., Gehrels, G. E., & DeCelles, P. G. (2007). Detrital zircon geochronology of carboniferous‐Cretaceous strata in the Lhasa terrane, southern Tibet. Basin Research, 19, 361–378.
    [Google Scholar]
  77. Leloup, P. H., Liu, X. B., Mahéo, G., Paquette, J. L., Arnaud, N., Aubray, A., & Liu, X. H. (2015). New constraints on the timing of partial melting and deformation along the Nyalam section (central Himalaya): Implications for extrusion models. In S.Mukherjee, R.Carosi, P. A.van der Beek, B. K.Mukherjee, & D. M.Robinson (Eds.), Tectonics of the Himalaya (Vol. 412, pp. 131–175). Geological Society, London, Special Publications.
    [Google Scholar]
  78. Li, G. W., Liu, X. H., Pullen, A., Wei, L. J., Liu, X. B., Huang, F. X., & Zhou, X. J. (2010). In‐situ detrital zircon geochronology and Hf isotopic analyses from upper Triassic Tethys sequence strata. Earth and Planetary Science Letters, 297, 461–470.
    [Google Scholar]
  79. Li, J., Hu, X. M., Garzanti, E., An, W., & Wang, J. G. (2015). Paleogene carbonate microfacies and sandstone provenance (Gamba area, South Tibet): Stratigraphic response to initial India‐Asia continental collision. Journal of Asian Earth Science, 104, 39–54.
    [Google Scholar]
  80. Li, R., Ao, S. J., Xiao, W. J., Windley, B. F., Zhan, M. G., Huang, P., & Bhandari, S. (2021). Tectonic setting and provenance of early Cretaceous strata in the footwall of Main central thrust, eastern Nepal: Implications for the archipelago palaeogeography of the neo‐Tethys. Geological Journal, 56, 1958–1973.
    [Google Scholar]
  81. Li, S., Li, Y. L., Tan, X. D., Wang, C. S., Han, Z. P., Xiao, S. Q., Guo, Z. C., Ma, X. D., Li, Z. J., & Zhang, J. (2022). New paleomagnetic results of the upper Cretaceous to lower Eocene sedimentary rocks from the Xigaze forearc basin and their tectonic implications. Tectonophysics, 837, 229433.
    [Google Scholar]
  82. Li, X. H., Mattern, F., Zhang, C. K., Zeng, Q. G., & Mao, G. Z. (2016). Multiple sources of the upper Triassic flysch in the eastern Himalaya Orogen, Tibet, China: Implications to palaeogeography and palaeotectonic evolution. Tectonophysics, 666, 12–22.
    [Google Scholar]
  83. Li, Z. Y., Ding, L., Laskowski, A. K., Burke, W. B., Chen, Y. F., Song, P. P., Yue, Y. H., & Xie, J. (2022). New paleomagnetic constraints on the early Cretaceous paleolatitude of the Lhasa terrane (Tibet). Frontiers in Earth Science, 10, 785726.
    [Google Scholar]
  84. Ma, L., Wang, Q., Wyman, D. A., Li, Z. X., Jiang, Z. Q., Yang, J. H., Gou, G. N., & Guo, H. F. (2013). Late Cretaceous (100–89 Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos, 175–176, 315–332.
    [Google Scholar]
  85. Ma, Y. M., Yang, T. S., Yang, Z. Y., Zhang, S. H., Wu, H. C., Li, H. Y., Li, H. K., Chen, W. W., Zhang, J. H., & Ding, J. K. (2014). Paleomagnetism and U‐Pb zircon geochronology of lower Cretaceous lava flows from the western Lhasa terrane: New constraints on the India‐Asia collision process and intracontinental deformation within Asia. Journal of Geophysical Research: Solid Earth, 119, 7404–7424.
    [Google Scholar]
  86. Martin, A. J. (2017). A review of definitions of the Himalayan Main central thrust. International Journal of Earth Sciences, 106, 2131–2145.
    [Google Scholar]
  87. Martin, A. J., Burgy, K. D., Kaufman, A. J., & Gehrels, G. E. (2011). Stratigraphic and tectonic implications of field and isotopic constraints on depositional ages of Proterozoic Lesser Himalayan rocks in Central Nepal. Precambrian Research, 185, 1–17.
    [Google Scholar]
  88. Martin, A. J., DeCelles, P. G., Gehrels, G. E., Patchett, P. J., & Isachsen, C. (2005). Isotopic and structural constraints on the location of the Main central thrust in the Annapurna range, Central Nepal Himalaya. Geological Society of America Bulletin, 117, 926–944.
    [Google Scholar]
  89. Martin, C. R., Jagoutz, O., Upadhyay, R., Royden, L. H., Eddy, M. P., Bailey, E., Nichols, C. I. O., & Weiss, B. P. (2020). Paleocene latitude of the Kohistan‐Ladakh arc indicates multistage India‐Eurasia collision. Proceedings of the National Academy of Sciences of the United States of America, 117, 29487–29494.
    [Google Scholar]
  90. Mathur, N. S. (1978). Biostratigraphical aspects of the Subathu formation Kumaon Himalayas. Recent Researches in Geology, 5, 96–112.
    [Google Scholar]
  91. Matsumaru, K., & Sakai, H. (1989). Nummulites and Assilina from Tansen area, Palpa district, the Nepal Lesser Himalayas. Transactions and Proceedings of the Palaeontological Society of Japan, 154, 68–76.
    [Google Scholar]
  92. McKenzie, N. R., Hughes, N. C., Myrow, P. M., Banerjee, D. M., Deb, M., & Planavsky, N. J. (2013). New age constraints for the Proterozoic Aravalli‐Delhi successions of India and their implications. Precambrian Research, 238, 120–128.
    [Google Scholar]
  93. McKenzie, N. R., Hughes, N. C., Myrow, P. M., Xiao, S. H., & Sharma, M. (2011). Correlation of Precambrian‐Cambrian sedimentary successions across northern India and the utility of isotopic signatures of Himalayan lithotectonic zones. Earth and Planetary Science Letters, 312, 471–483.
    [Google Scholar]
  94. McQuarrie, N., Robinson, D., Long, S., Tobgay, T., Grujic, D., Gehrels, G., & Ducea, M. (2008). Preliminary stratigraphic and structural architecture of Bhutan: Implications for the along strike architecture of the Himalayan system. Earth and Planetary Science Letters, 272, 105–117.
    [Google Scholar]
  95. Meng, J., Gilder, S. A., Li, Y. L., Wang, C. S., & Liu, T. (2020). Expanse of greater India in the late Cretaceous. Earth and Planetary Science Letters, 542, 116330.
    [Google Scholar]
  96. Meng, J., Gilder, S. A., Wang, C. S., Coe, R. S., Tan, X. D., Zhao, X. X., & He, K. (2019). Defining the limits of greater India. Geophysical Research Letters, 46, 4182–4191.
    [Google Scholar]
  97. Meyer, I., Davies, G. R., & Stuut, J. B. W. (2011). Grain size control on Sr‐Nd isotope provenance studies and impact on paleoclimate reconstructions: An example from deep‐sea sediments offshore NW Africa. Geochemistry, Geophysics, Geosystems, 12, Q03005.
    [Google Scholar]
  98. Mo, X. X., Niu, Y. L., Dong, G. C., Zhao, Z. D., Hou, Z. Q., Zhou, S., & Ke, S. (2008). Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250, 49–67.
    [Google Scholar]
  99. Molnar, P., Boos, W. R., & Battisti, D. S. (2010). Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan plateau. Annual Review of Earth and Planetary Sciences, 38, 77–102.
    [Google Scholar]
  100. Montomoli, C., Carosi, R., & Iaccarino, S. (2014). Tectonometamorphic discontinuities in the greater Himalayan sequence: A local or a regional feature? In S.Mukherjee, R.Carosi, P. A.van der Beek, B. K.Mukherjee, & D. M.Robinson (Eds.), Tectonics of the Himalaya (Vol. 412, pp. 25–41). Geological Society, London, Special Publications.
    [Google Scholar]
  101. Myrow, P. M., Hughes, N. C., Goodge, J. W., Fanning, C. M., Williams, I. S., Peng, S. C., Bhargava, O. N., Parcha, S. K., & Pogue, K. R. (2010). Extraordinary transport and mixing of sediment across Himalayan Central Gondwana during the Cambrian‐Ordovician. Geological Society of America Bulletin, 122, 1660–1670.
    [Google Scholar]
  102. Myrow, P. M., Hughes, N. C., & McKenzie, N. R. (2019). Reconstructing the Himalayan margin prior to collision with Asia: Proterozoic and lower Paleozoic geology and its implications for Cenozoic tectonics. Geological Society, London, Special Publications, 483, 39–64.
    [Google Scholar]
  103. Myrow, P. M., Hughes, N. C., Paulsen, T. S., Williams, I. S., Parcha, S. K., Thompson, K. R., Bowring, S. A., Peng, S. C., & Ahluwalia, A. D. (2003). Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth and Planetary Science Letters, 212, 433–441.
    [Google Scholar]
  104. Najman, Y. (2006). The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth‐Science Reviews, 74, 1–72.
    [Google Scholar]
  105. Najman, Y., Appel, E., Boudagher‐Fadel, M., Bown, P., Carter, A., Garzanti, E., Godin, L., Han, J. T., Liebke, U., Oliver, G., Parrish, R., & Vezzoli, G. (2010). Timing of India‐Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research: Solid Earth, 115, B12416.
    [Google Scholar]
  106. Najman, Y., Bickle, M., BouDagher‐Fadel, M., Carter, A., Garzanti, E., Paul, M., Wijbrans, J., Willett, E., Oliver, G., Parrish, R., Akhter, S. H., Allen, R., Ando, S., Chisty, E., Reisberg, L., & Vezzoli, G. (2008). The Paleogene record of Himalayan erosion: Bengal Basin, Bangladesh. Earth and Planetary Science Letters, 273, 1–14.
    [Google Scholar]
  107. Najman, Y., Bickle, M., & Chapman, H. (2000). Early Himalayan exhumation: Isotopic constraints from the Indian foreland basin. Terra Nova, 12, 28–34.
    [Google Scholar]
  108. Najman, Y., Carter, A., Oliver, G., & Garzanti, E. (2005). Provenance of Eocene foreland basin sediments, Nepal: Constraints to the timing and diachroneity of early Himalayan orogenesis. Geology, 33, 309–312.
    [Google Scholar]
  109. Najman, Y., & Garzanti, E. (2000). Reconstructing early Himalayan tectonic evolution and paleogeography from tertiary foreland basin sedimentary rocks, northern India. Geological Society of America Bulletin, 112, 435–449.
    [Google Scholar]
  110. Najman, Y., Jenks, D., Godin, L., Boudagher‐Fadel, M., Millar, I., Garzanti, E., Horstwood, M., & Bracciali, L. (2017). The Tethyan Himalayan detrital record shows that India‐Asia terminal collision occurred by 54 Ma in the Western Himalaya. Earth and Planetary Science Letters, 459, 301–310.
    [Google Scholar]
  111. Najman, Y., Pringle, M., Godin, L., & Oliver, G. (2001). Dating of the oldest continental sediments from the Himalayan foreland basin. Nature, 410, 194–197.
    [Google Scholar]
  112. Neupane, B., Ju, Y. W., Allen, C. M., Ulak, P. D., & Han, K. (2018). Petrography and provenance of upper Cretaceous‐Palaeogene sandstones in the foreland basin system of Central Nepal. International Geology Review, 60, 135–156.
    [Google Scholar]
  113. Ojha, T. P., Butler, R. F., DeCelles, P. G., & Quade, J. (2009). Magnetic polarity stratigraphy of the Neogene foreland basin deposits of Nepal. Basin Research, 21, 61–90.
    [Google Scholar]
  114. Orme, D. A., Carrapa, B., & Kapp, P. (2015). Sedimentology, provenance and geochronology of the upper Cretaceous‐lower Eocene western Xigaze forearc basin, southern Tibet. Basin Research, 27, 387–411.
    [Google Scholar]
  115. Parrish, R. R., & Hodges, K. V. (1996). Isotopic constraints on the age and provenance of the Lesser and greater Himalayan sequences, Nepalese Himalaya. Geological Society of America Bulletin, 108, 904–911.
    [Google Scholar]
  116. Parsons, A. J., Hosseini, K., Palin, R. M., & Sigloch, K. (2020). Geological, geophysical and plate kinematic constraints for models of the India‐Asia collision and the post‐Triassic central Tethys oceans. Earth‐Science Reviews, 208, 103084.
    [Google Scholar]
  117. Pivnik, D. A., & Wells, N. A. (1996). The transition from Tethys to the Himalaya as recorded in Northwest Pakistan. Geological Society of America Bulletin, 108, 1295–1313.
    [Google Scholar]
  118. Pullen, A., Kapp, P., Gehrels, G. E., DeCelles, P. G., Brown, E. H., Fabijanic, J. M., & Ding, L. (2008). Gangdese retroarc thrust belt and foreland basin deposits in the Damxung area, southern Tibet. Journal of Asian Earth Sciences, 33, 323–336.
    [Google Scholar]
  119. Pusok, A. E., & Stegman, D. R. (2020). The convergence history of India‐Eurasia records multiple subduction dynamics processes. Science Advances, 6, eaaz8681.
    [Google Scholar]
  120. Ratschbacher, L., Frisch, W., Liu, G. H., & Chen, C. S. (1994). Distributed deformation in southern and western Tibet during and after the India‐Asia collision. Journal of Geophysical Research: Solid Earth, 99, 19917–19945.
    [Google Scholar]
  121. Ravikant, V., Wu, F. Y., & Ji, W. Q. (2009). Zircon U‐Pb and Hf isotopic constraints on petrogenesis of the Cretaceous‐tertiary granites in eastern Karakoram and Ladakh, India. Lithos, 110, 153–166.
    [Google Scholar]
  122. Ravikant, V., Wu, F. Y., & Ji, W. Q. (2011). U‐Pb age and Hf isotopic constraints of detrital zircons from the Himalayan foreland Subathu sub‐basin on the tertiary palaeogeography of the Himalaya. Earth and Planetary Science Letters, 304, 356–368.
    [Google Scholar]
  123. Raymo, M. E., & Ruddiman, W. F. (1992). Tectonic forcing of late Cenozoic climate. Nature, 359, 117–122.
    [Google Scholar]
  124. Richards, A., Argles, T., Harris, N., Parrish, R., Ahmad, T., Darbyshire, F., & Draganits, E. (2005). Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth and Planetary Science Letters, 236, 773–796.
    [Google Scholar]
  125. Richter, F. M., Rowley, D. B., & DePaolo, D. J. (1992). Sr isotope evolution of seawater: The role of tectonics. Earth and Planetary Science Letters, 109, 11–23.
    [Google Scholar]
  126. Robinson, D. M. (2001). Structural and Nd‐isotopic evidence for the tectonic evolution of the Himalayan fold‐thrust belt, western Nepal and the northern Tibetan plateau (pp. 1–224). [Doctoral dissertation], University of Arizona.
    [Google Scholar]
  127. Robinson, D. M., DeCelles, P. G., & Copeland, P. (2006). Tectonic evolution of the Himalayan thrust belt in western Nepal: Implications for channel flow models. Geological Society of America Bulletin, 118, 865–885.
    [Google Scholar]
  128. Robinson, D. M., DeCelles, P. G., Garzione, C. N., Pearson, O. N., Harrison, T. M., & Catlos, E. J. (2003). Kinematic model for the Main central thrust in Nepal. Geology, 31, 359–362.
    [Google Scholar]
  129. Robinson, D. M., DeCelles, P. G., Patchett, P. J., & Garzione, C. N. (2001). The kinematic evolution of the Nepalese Himalaya interpreted from Nd isotopes. Earth and Planetary Science Letters, 192, 507–521.
    [Google Scholar]
  130. Robinson, D. M., & Martin, A. J. (2014). Reconstructing the greater Indian margin: A balanced cross section in Central Nepal focusing on the Lesser Himalayan duplex. Tectonics, 33, 2143–2186.
    [Google Scholar]
  131. Robinson, D. M., & McQuarrie, N. (2012). Pulsed deformation and variable slip rates within the central Himalayan thrust belt. Lithosphere, 4, 449–464.
    [Google Scholar]
  132. Robinson, D. M., & Pearson, O. N. (2006). Exhumation of greater Himalayan rock along the Main central thrust in Nepal: Implications for channel flow. In R. D.Law, M. P.Searle, & L.Godin (Eds.), Channel fow, ductile extrusion and exhumation in continental collision zones (Vol. 268, pp. 255–267). Geological Society, London, Special Publications.
    [Google Scholar]
  133. Sakai, H. (1983). Geology of the Tansen Group of the Lesser Himalaya in Nepal. Memoirs of the Faculty of Science, Kyushu University: Series D, 25, 27–74.
    [Google Scholar]
  134. Searle, M. P., & Godin, L. (2003). The south Tibetan detachment and the Manaslu leucogranite: A structural reinterpretation and restoration of the Annapurna‐Manaslu Himalaya, Nepal. The Journal of Geology, 111, 505–523.
    [Google Scholar]
  135. Soucy La Roche, R., Godin, L., Cottle, J. M., & Kellett, D. A. (2016). Direct shear fabric dating constrains early Oligocene onset of the south Tibetan detachment in the western Nepal Himalaya. Geology, 44, 403–406.
    [Google Scholar]
  136. Stickroth, S. F., Carrapa, B., DeCelles, P. G., Gehrels, G. E., & Thomson, S. N. (2019). Tracking the growth of the Himalayan fold‐and‐thrust belt from lower Miocene foreland basin strata: Dumri formation, western Nepal. Tectonics, 38, 3765–3793.
    [Google Scholar]
  137. Stockmal, G. S., Beaumont, C., & Boutilier, R. (1986). Geodynamic models of convergent margin tectonics: Transition from rifted margin to overthrust belt and consequences for foreland‐basin development. American Association of Petroleum Geologists Bulletin, 70, 181–190.
    [Google Scholar]
  138. Su, T., Spicer, R. A., Wu, F. X., Farnsworth, A., Huang, J., Rio, C. D., Deng, T., Ding, L., Deng, W. Y. D., Huang, Y. J., Hughes, A., Jia, L. B., Jin, J. H., Li, S. F., Liang, S. Q., Liu, J., Liu, X. Y., Sherlock, S., Spicer, T., … Zhou, Z. K. (2020). A middle Eocene lowland humid subtropical “Shangri‐La” ecosystem in Central Tibet. Proceedings of the National Academy of Sciences of the United States of America, 117, 32989–32995.
    [Google Scholar]
  139. Sui, Q. L., Wang, Q., Zhu, D. C., Zhao, Z. D., Chen, Y., Santosh, M., Hu, Z. C., Yuan, H. L., & Mo, X. X. (2013). Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent‐continent collision zone. Lithos, 168–169, 144–159.
    [Google Scholar]
  140. Szulc, A. G., Najman, Y., Sinclair, H. D., Pringle, M., Bickle, M., Chapman, H., Garzanti, E., Andò, S., Huyghe, P., Mugnier, J. L., Ojha, T., & DeCelles, P. (2006). Tectonic evolution of the Himalaya constrained by detrital 40Ar‐39Ar, Sm‐Nd and petrographic data from the Siwalik foreland basin succession, SW Nepal. Basin Research, 18, 375–391.
    [Google Scholar]
  141. Tauxe, L. (2005). Inclination flattening and the geocentric axial dipole hypothesis. Earth and Planetary Science Letters, 233, 247–261.
    [Google Scholar]
  142. Tong, Y. B., Yang, Z. Y., Pei, J. L., Wang, H., Xu, Y. C., & Pu, Z. W. (2017). Paleomagnetism of the upper Cretaceous red‐beds from the eastern edge of the Lhasa terrane: New constraints on the onset of the India‐Eurasia collision and latitudinal crustal shortening in southern Eurasia. Gondwana Research, 48, 86–100.
    [Google Scholar]
  143. Turner, C. C., Meert, J. G., Pandit, M. K., & Kamenov, G. D. (2014). A detrital zircon U‐Pb and Hf isotopic transect across the Son Valley sector of the Vindhyan Basin, India: Implications for basin evolution and paleogeography. Gondwana Research, 26, 348–364.
    [Google Scholar]
  144. Van Hinsbergen, D. J. J. (2022). Indian plate paleogeography, subduction and horizontal underthrusting below Tibet: Paradoxes, controversies and opportunities. National Science Review, 9, nwac074.
    [Google Scholar]
  145. Van Hinsbergen, D. J. J., Kapp, P., Dupont‐Nivet, G., Lippert, P. C., DeCelles, P. G., & Torsvik, T. H. (2011). Restoration of Cenozoic deformation in Asia and the size of greater India. Tectonics, 30, TC5003.
    [Google Scholar]
  146. Van Hinsbergen, D. J. J., Lippert, P. C., Dupont‐Nivet, G., McQuarrie, N., Doubrovine, P. V., Spakman, W., & Torsvik, T. H. (2012). Greater India Basin hypothesis and a two‐stage Cenozoic collision between India and Asia. Proceedings of the National Academy of Sciences of the United States of America, 109, 7659–7664.
    [Google Scholar]
  147. Van Hinsbergen, D. J. J., Lippert, P. C., Li, S. H., Huang, W. T., Advokaat, E. L., & Spakman, W. (2019). Reconstructing greater India: Paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics, 760, 69–94.
    [Google Scholar]
  148. Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chemical Geology, 312–313, 190–194.
    [Google Scholar]
  149. Vermeesch, P., Resentini, A., & Garzanti, E. (2016). An R package for statistical provenance analysis. Sedimentary Geology, 336, 14–25.
    [Google Scholar]
  150. Wang, J. G., Hu, X. M., Jansa, L., & Huang, Z. C. (2011). Provenance of the upper Cretaceous‐Eocene deep‐water sandstones in Sangdanlin, southern Tibet: Constraints on the timing of initial India‐Asia collision. The Journal of Geology, 119, 293–309.
    [Google Scholar]
  151. Wang, J. G., Wu, F. Y., Garzanti, E., Hu, X. M., Ji, W. Q., Liu, Z. C., & Liu, X. C. (2016). Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue group): The terminal of a sediment‐routing system sourced in the Gondwanide Orogen. Gondwana Research, 34, 84–98.
    [Google Scholar]
  152. Webb, A. A. G., Yin, A., Harrison, T. M., Célérier, J., Gehrels, G. E., Manning, C. E., & Grove, M. (2011). Cenozoic tectonic history of the Himachal Himalaya (northwestern India) and its constraints on the formation mechanism of the Himalayan orogen. Geosphere, 7, 1013–1061.
    [Google Scholar]
  153. Wei, Y. Q., Zhao, Z. D., Niu, Y. L., Zhu, D. C., Liu, D., Wang, Q., Hou, Z. Q., Mo, X. X., & Wei, J. C. (2017). Geochronology and geochemistry of the early Jurassic Yeba formation volcanic rocks in southern Tibet: Initiation of back‐arc rifting and crustal accretion in the southern Lhasa terrane. Lithos, 278–281, 477–490.
    [Google Scholar]
  154. Wen, D. R., Liu, D. Y., Chung, S. L., Chu, M. F., Ji, J. Q., Zhang, Q., Song, B., Lee, T. Y., Yeh, M. W., & Lo, C. H. (2008). Zircon SHRIMP U‐Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252, 191–201.
    [Google Scholar]
  155. Westerweel, J., Roperch, P., Licht, A., Dupont‐Nivet, G., Win, Z., Poblete, F., Ruffet, G., Swe, H. H., Thi, M. K., & Aung, D. W. (2019). Burma terrane part of the trans‐Tethyan arc during collision with India according to palaeomagnetic data. Nature Geoscience, 12, 863–868.
    [Google Scholar]
  156. Wu, F. Y., Ji, W. Q., Liu, C. Z., & Chung, S. L. (2010). Detrital zircon U‐Pb and Hf isotopic data from the Xigaze fore‐arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 271, 13–25.
    [Google Scholar]
  157. Wu, F. Y., Ji, W. Q., Wang, J. G., Liu, C. Z., Chung, S. L., & Clift, P. D. (2014). Zircon U‐Pb and Hf isotopic constraints on the onset time of India‐Asia collision. American Journal of Science, 314, 548–579.
    [Google Scholar]
  158. Xia, Y., Zhu, D. C., Zhao, Z. D., Wang, Q., Yuan, S. H., Chen, Y., & Mo, X. X. (2012). Whole‐rock geochemistry and zircon Hf isotope of the OIB‐type mafic rocks from the Comei large Igneous Province in southeastern Tibet. Acta Petrologica Sinica, 28, 1588–1602 (in Chinese with English abstract).
    [Google Scholar]
  159. Xiao, W. J. (2015). New paleomagnetic data confirm a dual‐collision process in the Himalayas. National Science Review, 2, 395–396.
    [Google Scholar]
  160. Yang, T. S., Jin, J. J., Bian, W. W., Ma, Y. M., Gao, F., Peng, W. X., Ding, J. K., Wang, S., Zhang, S. H., Wu, H. C., Li, H. Y., & Yang, Z. Y. (2019). Precollisional latitude of the northern Tethyan Himalaya from the Paleocene redbeds and its implication for greater India and the India‐Asia collision. Journal of Geophysical Research: Solid Earth, 124, 10777–10798.
    [Google Scholar]
  161. Yang, T. S., Ma, Y. M., Bian, W. W., Jin, J. J., Zhang, S. H., Wu, H. C., Li, H. Y., Yang, Z. Y., & Ding, J. K. (2015). Paleomagnetic results from the early Cretaceous Lakang formation lavas: Constraints on the paleolatitude of the Tethyan Himalaya and the India‐Asia collision. Earth and Planetary Science Letters, 428, 120–133.
    [Google Scholar]
  162. Yi, Z. Y., Huang, B. C., Chen, J. S., Chen, L. W., & Wang, H. L. (2011). Paleomagnetism of early Paleogene marine sediments in southern Tibet, China: Implications to onset of the India‐Asia collision and size of greater India. Earth and Planetary Science Letters, 309, 153–165.
    [Google Scholar]
  163. Yi, Z. Y., Wang, T. Y., Meert, J. G., Zhao, Q., & Liu, Y. S. (2021). An initial collision of India and Asia in the equatorial humid belt. Geophysical Research Letters, 48, e2021GL093408.
    [Google Scholar]
  164. Yin, A. (2006). Cenozoic tectonic evolution of the Himalayan orogen as constrained by along‐strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth‐Science Reviews, 76, 1–131.
    [Google Scholar]
  165. Yin, A., & Harrison, T. M. (2000). Geologic evolution of the Himalayan‐Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28, 211–280.
    [Google Scholar]
  166. Yuan, J., Deng, C. L., Yang, Z. Y., Krijgsman, W., Thubtantsering , Qin, H. F., Shen, Z. S., Hou, Y. F., Zhang, S., Yu, Z. Q., Zhao, P., Zhao, L., Wan, B., He, H. Y., & Guo, Z. T. (2022). Triple‐stage India‐Asia collision involving arc‐continent collision and subsequent two‐stage continent‐continent collision. Global and Planetary Change, 212, 103821.
    [Google Scholar]
  167. Yuan, J., Yang, Z. Y., Deng, C. L., Krijgsman, W., Hu, X. M., Li, S. H., Shen, Z. S., Qin, H. F., An, W., He, H. Y., Ding, L., Guo, Z. T., & Zhu, R. X. (2021). Rapid drift of the Tethyan Himalaya terrane before two‐stage India‐Asia collision. National Science Review, 8, nwaa173.
    [Google Scholar]
  168. Zhang, H. F., Xu, W. C., Guo, J. Q., Zong, K. Q., Cai, H. M., & Yuan, H. L. (2007). Zircon U‐Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese belt, Tibet: Evidence for early Jurassic subduction of neo‐Tethyan oceanic slab. Acta Petrologica Sinica, 23, 1347–1353 (in Chinese with English abstract).
    [Google Scholar]
  169. Zhang, Q. H., Willems, H., Ding, L., Gräfe, K.‐U., & Appel, E. (2012). Initial India‐Asia continental collision and foreland basin evolution in the Tethyan Himalaya of Tibet: Evidence from stratigraphy and paleontology. The Journal of Geology, 120, 175–189.
    [Google Scholar]
  170. Zhang, S. Q., Mahoney, J. J., Mo, X. X., Ghazi, A. M., Milani, L., Crawford, A. J., Guo, T. Y., & Zhao, Z. D. (2005). Evidence for a widespread Tethyan upper mantle with Indian‐Ocean‐type isotopic characteristics. Journal of Petrology, 46, 829–858.
    [Google Scholar]
  171. Zhang, Z. M., Zhao, G. C., Santosh, M., Wang, J. L., Dong, X., & Shen, K. (2010). Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for neo‐Tethyan mid‐ocean ridge subduction?Gondwana Research, 17, 615–631.
    [Google Scholar]
  172. Zheng, H., Huang, Q. T., Cai, Z. R., Zhang, K. J., Liu, H. C., Cheng, C., Lu, L. J., Yang, P., & Yu, S. R. (2019). Early Cretaceous arc granitoids from the Central Lhasa subterrane: Production of the northward subduction of Yarlung Zangbo neo‐Tethyan Ocean?Geological Journal, 54, 4001–4013.
    [Google Scholar]
  173. Zhu, B., Kidd, W. S. F., Rowley, D. B., Currie, B. S., & Shafique, N. (2005). Age of initiation of the India‐Asia collision in the east‐central Himalaya. The Journal of Geology, 113, 265–285.
    [Google Scholar]
  174. Zhu, D. C., Chung, S. L., Mo, X. X., Zhao, Z. D., Niu, Y. L., Song, B., & Yang, Y. H. (2009). The 132 Ma Comei‐Bunbury large igneous province: Remnants identified in present‐day southeastern Tibet and southwestern Australia. Geology, 37, 583–586.
    [Google Scholar]
  175. Zhu, D. C., Mo, X. X., Niu, Y. L., Zhao, Z. D., Wang, L. Q., Liu, Y. S., & Wu, F. Y. (2009). Geochemical investigation of early Cretaceous igneous rocks along an east‐west traverse throughout the Central Lhasa terrane, Tibet. Chemical Geology, 268, 298–312.
    [Google Scholar]
  176. Zhu, D. C., Pan, G. T., Mo, X. X., Liao, Z. L., Jiang, X. S., Wang, L. Q., & Zhao, Z. D. (2007). Petrogenesis of volcanic rocks in the Sangxiu formation, central segment of Tethyan Himalaya: A probable example of plume‐lithosphere interaction. Journal of Asian Earth Sciences, 29, 320–335.
    [Google Scholar]
  177. Zhu, D. C., Zhao, Z. D., Niu, Y. L., Dilek, Y., & Mo, X. X. (2011). Lhasa terrane in southern Tibet came from Australia. Geology, 39, 727–730.
    [Google Scholar]
  178. Zhu, D. C., Zhao, Z. D., Niu, Y. L., Mo, X. X., Chung, S. L., Hou, Z. Q., Wang, L. Q., & Wu, F. Y. (2011). The Lhasa terrane: Record of a microcontinent and its histories of drift and growth. Earth Planetary Science Letters, 301, 241–255.
    [Google Scholar]
  179. Zhu, D. C., Zhao, Z. D., Pan, G. T., Lee, H. Y., Kang, Z. Q., Liao, Z. L., Wang, L. Q., Li, G. M., Dong, G. C., & Liu, B. (2009). Early Cretaceous subduction‐related adakite‐like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt‐peridotite interaction?Journal of Asian Earth Sciences, 34, 298–309.
    [Google Scholar]
  180. Zhuang, G. S., Najman, Y., Guillot, S., Roddaz, M., Antoine, P.‐O., Métais, G., Carter, A., Marivaux, L., & Solangi, S. H. (2015). Constraints on the collision and the pre‐collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower Indus basin, Pakistan. Earth and Planetary Science Letters, 432, 363–373.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12742
Loading
/content/journals/10.1111/bre.12742
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error