1887
Volume 35, Issue 3
  • E-ISSN: 1365-2117

Abstract

[Abstract

New Cuyo Group outcrop data complement recently published seismic and well data that detail the progradational character of the Lower‐Middle Jurassic Neuquén Margin (Argentina). The deepwater margin, with shelf topset (Lajas Formation), slope break and deepwater slope to basin‐floor deposits (Los Molles Formation), prograded northward and westward as large‐scale clinoforms (250–500 m high) for 120 km, during 13 My, supplied by sediment mainly from the North Patagonian Massif. The studied Lajas Formation topsets are themselves progradational, with a 500 m‐thick vertical succession of subaqueous delta, shoreface with associated tidal flat, mouth bar, fluvio‐tidal channel and alluvial plain deposits. This pattern is confirmed by facies analysis in five areas of outcrops and well data but is interrupted by frequent marine transgressions that add a short‐term cyclicity to the succession. A new paleogeographic map suggests previous disagreements on process stratigraphy are due to shoreline/paralic strike variability and to increased basinal process impact as the topset/shelf widened. A marked feature of each Lajas topset sequence is a differential partitioning of sand and mud, though not with a simple proximal to distal grain‐size reduction. The sand‐prone outer shelf passes landward to a channelized muddy shoreline environment, and then to a mixed sandy and muddy channelized coastal and alluvial plain. This type of partitioning, important for the characterization and prediction of reservoir quality, can also be recognized on seismic and well log data.

,

New outcrop, ash‐bed dating and well data have been integrated with recently published seismic data to detail the paleogeographic development of the Early‐Middle Jurassic Cuyo Group margin in southern Neuquen Basin. The topsets partition into sand‐rich subaqueous deltas, a muddy tidal shoreline zone and an inner topset alluvial zone that can be detected on subsurface data.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12743
2023-05-19
2024-04-25
Loading full text...

Full text loading...

References

  1. Allison, M. A., Khan, S. R., Goodbred, S. L., & Kuehl, S. A. (2003). Stratigraphic evolution of the late Holocene Ganges‐Brahmaputra lower delta plain. Sedimentary Geology, 155, 317–342.
    [Google Scholar]
  2. Almeida Junior, F. N., Steel, R. J., Olariu, C., Gan, Y., & Gomes Paim, P. S. (2020). River‐dominated and tide‐influenced shelf‐edge delta systems: Coarse‐grained deltas straddling the early–middle Jurassic shelf–slope break and transforming downslope, Lajas–los Molles formation, Neuquén Basin, Argentina. Sedimentology, 67, 2883–2916.
    [Google Scholar]
  3. Al‐Suwaidi, A. H., Hesselbo, S. P., Damborenea, S. E., Manceñido, M. O., Jenkyns, H. C., Riccardi, A. C., Angelozzi, G. N., & Baudin, F. (2016). The Toarcian oceanic anoxic event (early Jurassic) in the Neuquén Basin, Argentina: A reassessment of age and carbon isotope stratigraphy. The Journal of Geology, 124, 171–193.
    [Google Scholar]
  4. Brinkworth, W. G., Vocaturo, G., Loss, M. L., Lorenzo Giunta, D., Mortaloni, E. M., & Massaferro, J. (2017). Integracion regional de subsuelo orientado a la exploracion y desarrollo de Grupo Cuyo, Cuenca Neuquina (pp. 18–24). 20° Congreso Geol'ogico Argentino.
    [Google Scholar]
  5. Burgess, P. M., Flint, S., & Johnson, S. (2000). Sequence stratigraphic interpretation of turbiditic strata: An example from Jurassic strata of the Neuquén basin, Argentina. Geological Society of America Bulletin, 112, 1650–1666.
    [Google Scholar]
  6. Burgess, P. M., Zhang, J., & Steel, R. J. (2022). Narrow is normal: Exploring the extent and significance of flooded marine shelves in icehouse, transitional and greenhouse climate settings. Geology, 50, 496–499. https://doi.org/10.1130/G49468.1
    [Google Scholar]
  7. Canale, N., Ponce, J. J., Carmona, N. B., Drittanti, D. I., Olivera, D. E., Martínez, M. A., & Bournod, C. N. (2015). Sedimentología e Icnología de deltas fluvio‐dominados afectados por descargas hiperpícnicas de la Formacion Lajas (Jurasico Medio), Cuenca Neuquina, Argentina. Andean Geology, 42, 114–138.
    [Google Scholar]
  8. Coppo, R., Gatica, C., Iglesias, S., Fernández, J., Masiero, D., Rodríguez, E., Santiago, E., Terrasanta, G., Valenzuela, G., & Wagner, F. (2016). Static and dynamic characterization of Lajas Formation sands: Lessons learned and to be learned in the Cupen Mahuida area, Neuquén Basin. Geosciences Technology Workshop (AAPG).
    [Google Scholar]
  9. Edmonds, D., & Slingerland, R. (2008). Stability of delta distributary networks and their bifurcations. Water Resources Research, 44, W09426.
    [Google Scholar]
  10. Gan, Y., Steel, R. J., Olariu, C., & De Almeida, F. (2020). Facies and architectural variability of sub‐seismic slope‐channel fills in prograding clinoforms, Mid‐Jurassic Neuquen Basin, Argentina. Basin Research, 32, 348–362. https://doi.org/10.1111/bre.12409
    [Google Scholar]
  11. Giacomone, G., Olariu, C., Steel, R., & Shin, M. (2020). A coarse‐grained basin floor turbidite system—The Jurassic los Molles formation, Neuquén basin, Argentina. Sedimentology, 67, 3809–3843.
    [Google Scholar]
  12. Gómez, C., Conci, I., Rives, E., Vallejo, D., Lopez, P. G., Parra, D., Zarpellon, C., Sattler, F., Arregui, C., Giménez, A., Iñigo, J., Minisini, D., Mosquera, A., Buchanan, A., Bande, A., Scaricabarozzi, N., Cervera, M., Giorgetti, M., López, S., … Zavala, C. (2018). Transectas sismicas regionales, Grupo Cuyo, Cuenca Neuquina. In M.Schiuma, G.Hinterwimmer, & G.Vergani (Eds.), Rocas Reservorio de las Cuencas Productivas Argentinas, 2° Edición Revisada y Ampliada (pp. 395–398). Instituto Argentino del Petroleo y del Gas (IAPG).
    [Google Scholar]
  13. Gonzales‐Estebenet, M. C., Naipauer, M., Pazos, P. J., & Valencia, V. A. (2021). U‐Pb detrital zircon ages in the Lajas Formation at Portado Covunco: Maximum depositional age and provenance implications for the Neuquen Basin Argentina. Journal of South American Earth Sciences, 110, 103325.
    [Google Scholar]
  14. Goodbred, S. L., & Kuehl, S. A. (2000). Enormous Ganges‐Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology, 28, 1083–1086.
    [Google Scholar]
  15. Gugliotta, M., Flint, S. S., Hodgson, D. M., & Veiga, G. D. (2015). Stratigraphic record of river‐dominated crevasse subdeltas with tidal influence (Lajas Formation, Argentina). Journal of Sedimentary Research, 85, 265–284.
    [Google Scholar]
  16. Gugliotta, M., Flint, S. S., Hodgson, D. M., & Veiga, G. D. (2016). Recognition criteria, characteristics, and implications of the fluvial to marine transition zone in ancient deltaic deposits (Lajas Formation, Argentina). Sedimentology, 63, 1971–2001.
    [Google Scholar]
  17. Gulisano, C. A., Gutiérrez Pleimling, A. R., & Digregorio, R. E. (1984). Esquema estratigráfico de la secuencia jurásica del oeste de la Provincia de Neuquén. 9° Congreso Geológico Argentino, Actas, 1, 236–259.
    [Google Scholar]
  18. Iglesia Llanos, M. P., Kietzmann, D. A., Kohan Martínez, M., & Minisini, D. (2019). Magnetostratigraphy of a middle Jurassic delta system (Lajas Formation), Portada Covunco section, southern Neuquén basin, Argentina. Journal of South American Earth Sciences, 94, 102235.
    [Google Scholar]
  19. Kern, H. P., Lavina, E. L., Paim, P. S., & Leanza, H. A. (2019). Stratigraphic evolution of the nearshore to fluvial plain of the upper Cuyo Group, Neuquén, Argentina. Sedimentology, 66, 2686–2720.
    [Google Scholar]
  20. Kim, H. J., Mallea, M., Guti'errez, R., & Malone, P. (2014). Exploraci'on del Gr. Cuyo Jur'asico en Bloques Maduros de la Dorsal Huincul—puesto touquet y el Porvenir, Cuenca Neuquina. 9° Congreso de exploraci'on y Desarrollo de Hidrocarburos, 2, 71–93.
    [Google Scholar]
  21. Kurcinka, C. E., Dalrymple, R. W., & Gugliotta, M. (2018). Facies and architecture of river dominated to tide‐influenced mouth bars in the lower Lajas Formation (Jurassic), Argentina. AAPG Bulletin, 102, 885–912.
    [Google Scholar]
  22. Lamb, M. P., Nittrouer, J. A., Mohrig, D., & Shaw, J. (2012). Backwater and river plume controls on scour upstream of river mouths: Implications for fluviodeltaic morphodynamics. Journal of Geophysical Research, 117, F01002. https://doi.org/10.1029/2011JF002079
    [Google Scholar]
  23. Leanza, H. A. (2009). Las principales discordancias del Mesozoico de la Cuenca Neuquina según observaciones de superficie. Revista del Museo Argentino de Ciencias Naturales (Nueva Serie), 11, 145–184.
    [Google Scholar]
  24. Leanza, H. A., & Garate Zubillaga, J. I. (1987). Faunas de Trigonia (Bivalvia) del Jurasico y Cretacico inferior del Neuquén, Argentina, conservadas en el Museo Juan Olsacher de Zapala. In W.Volkheimer (Ed.), Bioestratigrafía de los Sistemas Regionales del Jurasico y Cret'acico de America del Sur (Vol. 1, pp. 201–255). conservadas en el Museo Juan Olsacher de Zapala.
    [Google Scholar]
  25. Legarreta, L., & Uliana, M. (1996). The Jurassic succession in west‐Central Argentina: Stratal patterns, sequences and paleogeographic evolution. Paleogeography, Palaeoclimatology, Palaeoecology, 120, 303–330.
    [Google Scholar]
  26. Loss, M. L., Brinkworth, W., Vocaturo, G., Sanchez, D., Mortaloni, E. M., Olariu, C., & Steel, R. (2018). Frentes deltaicos, canones y turbiditas en el Grupo Cuyo. Definicion de plays a partir de un modelo sismoestratigrafico regional y afloramientos analogos. 10° Congreso de Exploracion y Desarrollo de Hidrocarburos, CD Room.
    [Google Scholar]
  27. Martınez, M. A., Pramparo, M. B., Quattrocchio, M. E., & Zavala, C. A. (2008). Depositional environments and hydrocarbon potential of the middle Jurassic los Molles formation, Neuquen Basin, Argentina: Palynofacies and organic geochemical data. Revista Geologica de Chile, 35, 279–305.
    [Google Scholar]
  28. Mattinson, J. M. (2005). Zircon U‐Pb chemical abrasion (CA‐TIMS) method: Combined annealing and multi step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220, 47–66.
    [Google Scholar]
  29. McIlroy, D. (1999). Applications of high‐resolution sequence stratigraphy to reservoir prediction and flow unit definition in aggradational tidal successions. GCSSEPM Foundation 19th Annual Research Conference on Advanced Reservoir Characterization, 121–132.
    [Google Scholar]
  30. McIlroy, D., Flint, S., Howell, J. A., & Timms, N. (2005). Sedimentology of the Jurassic tide dominated Lajas Formation, Neuquén basin, Argentina. In G. D.Veiga, L. A.Spalletti, J. A.Howell, & E.Schwarz (Eds.), The Neuquén Basin, Argentina: A case study in sequence stratigraphy and Basin dynamics (Vol. 252, pp. 83–108). The Geological Society, Special Publication.
    [Google Scholar]
  31. Naipauer, M., Brinkworth, W., Loss, M. L., Vocaturo, G., Giunta, D., & Mortaloni, M. (2017). Estudio integral de datos geocronológicos (edades U‐Pb) y sísmicos en el subsuelo del Engolfamiento Neuquino: edades máximas de sedimentación y áreas de aporte para el Grupo Cuyo (pp. 7–11). XX Congreso Geológico Argentino.
    [Google Scholar]
  32. Naipauer, M., García Morabito, E., Manassero, M., Valencia, V. V., & Ramos, V. A. (2018). A provenance analysis from the lower Jurassic units of the Neuquen basin. Volcanic arc or intraplate magmatic input? In A.Folguera (Ed.), The evolution of the Chilean‐Argentinean Andes (pp. 191–222), Springer International Publishing.
    [Google Scholar]
  33. Nguyen, V. L., Ta, T. K. O., & Tateishi, M. (2000). Late Holocene depositional environments and coastal evolution of the Mekong River Delta, southern Vietnam. Journal of Asian Earth Sciences, 18, 427–439.
    [Google Scholar]
  34. Olariu, C., Steel, R. J., Vann, N., Tudor, E., Shin, M., Winter, R., Gan, Y., De Jung, E., Almeida, F., Giacomone, G., Minisini, B., Brinkworth, W., Loss, M. L., Inigo, J., & Gutierrez, R. (2020). Criteria for recognizing shelf‐slope clinoforms in outcrop: Jurassic Lajas and los Molles formations, S. Neuquén Basin, Argentina. Basin Research, 32, 279–292. https://doi.org/10.1111/bre.12395
    [Google Scholar]
  35. Paim, P. S. G., Lavina, E. L. C., Faccini, U. F., Silveira, A. S., Leanza, H. A., & D'Avila, R. S. F. (2011). Fluvial‐derived turbidites in the los Molles formation (Jurassic of the Neuqu'en basin): Initiation, transport, and deposition. In R. M.Slatt & C.Zavala (Eds.), Sediment transfer from shelf to deep water—Revisiting the delivery system (Vol. 61, pp. 95–116). AAPG Studies in Geology.
    [Google Scholar]
  36. Paim, P. S. G., Silveira, A. S., Lavina, E. L. C., Faccini, U. F., Leanza, H. A., de Oliveira, J. T., & D'Avila, R. S. (2008). High resolution stratigraphy and gravity flow deposits in the los Molles formation (Cuyo Group, Jurassic) at La Jardinera region, Neuquen basin. Revista de la Asociacion Geologica Argentina, 63, 728–753.
    [Google Scholar]
  37. Patruno, S., Hampson, G. J., & Jackson, C. A. (2015). Quantitative characterisation of deltaic and subaqueous clinoforms. Earth Science Reviews, 142, 79–119.
    [Google Scholar]
  38. Pazos, P. J., Gonzalez Estebenet, M. C., Cocca, S. E., & Pascua, D. (2019). The oldest record of a tyreophoran track in Gondwana: Geological implications of subaerial exposure in the lower part of the Lajas Formation at the Covunco section (Neuquén Basin), Patagonia, Argentina. Journal of South American Earth Sciences, 94, 102198.
    [Google Scholar]
  39. Peng, Y., Steel, R. J., Rossi, V., & Olariu, C. (2018). Mixed energy process interactions read from a compound clinoform delta (paleo‐Orinoco delta, Trinidad): Preservation of river and tidal signals by mud‐induced wave damping. Journal of Sedimentary Research, 88, 75–90.
    [Google Scholar]
  40. Privat, A. M.‐L. J. (2021). Evolution from syn‐rift carbonates to early post‐rift deep marine intra‐slope lobes: The role of rift basin physiography on sedimentation patterns. Sedimentology, 68, 2563–2605. https://doi.org/10.1111/SED.12864
    [Google Scholar]
  41. Quattrocchio, M. E., Zavala, C. A., Garcıa, V., & Volkheimer, W. (1996). Paleogeographic changes during the middle Jurassic in the southern part of the Neuquén Basin, Argentina. In A. C.Riccardi (Ed.), Advances in Jurassic research (Vol. 1–2, pp. 467–474). Geo Research Forum, Transtec Publications.
    [Google Scholar]
  42. Rossi, V. M., Perillo, M. M., Steel, R. J., & Olariu, C. (2016). Quantifying mixed‐process variability in shallow marine depositional systems: What are sedimentary structures really telling us?Journal of Sedimentary Research, 87, 1–15.
    [Google Scholar]
  43. Rossi, V. M., & Steel, R. J. (2016). The role of tidal, wave and river currents in the evolution of mixed‐energy deltas: Example from the Lajas Formation (Argentina). Sedimentology, 63, 824–864.
    [Google Scholar]
  44. Steel, E., Simms, A. R., Steel, R., & Olariu, C. (2018). Hyperpycnal delivery of sand to the continental shelf: Insights from the Jurassic Lajas Formation, Neuquén Basin, Argentina. Sedimentology, 65, 2149–2170.
    [Google Scholar]
  45. Steel, R. J., Olariu, C., Chen, S., & Zhang, J. (2019). What is the topset of a shelf‐margin prism?Basin Research, 32, 263–278. https://doi.org/10.1111/bre.12394
    [Google Scholar]
  46. Stukins, S., McIlroy, D., & Riding, J. B. (2013). Comparative biostratigraphy and palaeoenvironmental analysis between the upper and lower Lajas Formation, Neuquén Basin, from Portada Covunco and Sierra de Chacaico. AASP‐TPS 46th Annual Meeting, San Francisco, USA.
    [Google Scholar]
  47. Swenson, J. B., Paola, C., Pratson, L., Voller, V. R., & Murray, A. B. (2005). Fluvial and marine controls on combined subaerial and subaqueous delta progradation: Morphodynamic modeling of compound‐clinoform development. Journal of Geophysical Research, 110(F2). https://doi.org/10.1029/2004JF000265
    [Google Scholar]
  48. Talling, P. J., Masson, D. G., Sumner, E. J., & Malgesini, G. (2012). Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59, 1937–2003.
    [Google Scholar]
  49. Veiga, G. D. (1998). Estratigrafıa secuencial en series continentales: aplicacion a los depositos de la formacion challaco, Jurassico de la Cuenca Neuquina Austral (Republica Argentina). Revista de la Sociedad Geológica de España, 11, 95–109.
    [Google Scholar]
  50. Veiga, G. D., Schwarz, E., Spalletti, L. A., & Massaferro, J. L. (2013). Anatomy and sequence architecture of the early post‐rift in the Neuquén Basin (Argentina): A response to physiography and relative sea‐level changes. Journal of Sedimentary Research, 83, 746–765.
    [Google Scholar]
  51. Vergani, G., Tankard, A., Belotti, H., & Welsink, H. (1995). Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. In A.Tankard, R.Suárez, & H.Welsink (Eds.), Petroleum basins of South America (Vol. 62, pp. 383–402). American Association of Petroleum Geologists, Memoir.
    [Google Scholar]
  52. Zavala, C. A. (1993). Estratigrafía y análisis de facies de la Formación Lajas (Jurásico medio) en el sector suroccidental de la Cuenca Neuquina. Provincia del Neuquén. República Argentina [PhD Thesis (Unpublished)] (p. 259). Universidad Nacional del Sur, Departamento de Geología.
    [Google Scholar]
  53. Zavala, C. A. (1996a). Sequence stratigraphy in continental to marine transitions. An example from the middle Jurassic Cuyo Group, South Neuquén Basin, Argentina. In A. C.Riccardi (Ed.), Advances in Jurassic research (Vol. 1, pp. 285–294). Trans Tech Publications, GeoResearch Forum.
    [Google Scholar]
  54. Zavala, C. A. (1996b). High‐resolution sequence stratigraphy in the middle Jurassic Cuyo Group, South Neuquén basin. In A. C.Riccardi (Ed.), Advances in Jurassic research Argentina (Vol. 1, pp. 295–303). Trans Tech Publications, GeoResearch Forum.
    [Google Scholar]
  55. Zavala, C. A. (2002). El contacto entre los grupos Cuyo y Lotena (Jurasico) en la Sierra de la Vaca Muerta. Cuenca Neuquina, Argentina. In N.Cabaleri, C. A.Cingolani, E.Linares, M. G.Lopez de Luchi, H. A.Ostera, & H. O.Panarello (Eds.), Actas del 15th Congreso Geologico Argentino (Vol. 234, p. 6). CD‐Room.
    [Google Scholar]
  56. Zavala, C. A., Arcuri, M., Di Meglio, M., Zorzano, A., & Otharan, G. (2020). Jurassic uplift along the Huincul arch and its consequences in the stratigraphy of the Cuyo and Lotena groups. Neuquén basin, Argentina. In D.Kietzmann & A.Folguera (Eds.), Opening and closure of the Neuquén Basin in the southern Andes (pp. 53–74). Springer Earth System Sciences.
    [Google Scholar]
  57. Zavala, C. A., & Gonzalez, R. (2001). Estratigrafía del Grupo Cuyo (Jurasico inferior‐medio) en la Sierra de la Vaca Muerta, Cuenca Neuquina. Boletín de Informaciones Petroleras, 65, 40–54.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12743
Loading
/content/journals/10.1111/bre.12743
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Cuyo Group; Lajas Formation; margin clinoforms; partitioning; shelf‐edge; topset

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error