Volume 35, Issue 3

Abstract

[

This study attempts to understand the Late Jurassic evolution of the Neuquén Basin, particularly during Tordillo Formation sedimentation, which has been linked to opposite tectonic scenarios: extension and compression. To achieve this, we performed structural, sedimentological and provenance analyses. We found evidence of syndepositional extension within the Tordillo Formation.

, Abstract

The Middle Jurassic–Early Cretaceous evolution of the Neuquén Basin is traditionally attributed to a long phase of thermal subsidence. However, recent works have challenged this model. In view of this, we study the Late Jurassic Tordillo Formation, a non‐marine depositional unit that marks a shift to regional regression across the basin. Previous studies propose different causes for this regression, including the growth of the magmatic arc in the west, uplift in the south or extension in the north. We studied the Tordillo Formation in sections located at an intermediate position in the Neuquén Basin, in order to understand the tectonic processes active during sedimentation. We present evidence of normal faulting within the Tordillo Formation and the base of the overlying Vaca Muerta Formation. Some of these faults can be attributed as syndepositional. We characterize the Tordillo Formation as part of a distal fan‐playa lake depositional system with a contemporaneous western magmatic arc as the main source of sediment. When compared to the Late Triassic–Early Jurassic NE to NNE‐oriented rifting, which marks the opening of the Neuquén Basin, the Late Jurassic extension shows a switch in stress orientation; the latter is orthogonal to the north‐trending subduction zone. We interpret this change as a renewed phase of back‐arc extension induced by slab rollback along with minor distributed intraplate extension prior to opening of the South Atlantic Ocean.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12744
2023-05-19
2024-03-28
Loading full text...

Full text loading...

References

  1. Acevedo, E., Rosselot, E. A., Martos, F., Fennell, L., Naipauer, M., & Folguera, A. (2020). Tectonic setting of the Tordillo formation in the Aconcagua fold‐and‐thrust belt. In D.Kietzmann & A.Folguera (Eds.), Opening and closure of the Neuquén Basin in the southern Andes (pp. 159–174). Springer Earth System Sciences.
    [Google Scholar]
  2. Alexander, J., & Leeder, M. R. (1987). Active tectonic control of alluvial architecture. In F. G.Ethridge, R. M.Flores, & M. D.Harvey (Eds.), Recent developments in fluvial sedimentology (pp. 243–252). SEPM, Special Publication 39.
    [Google Scholar]
  3. Allen, J. R. (1977). The possible mechanics of convolute lamination in graded sand beds. Journal of the Geological Society, 134(1), 19–31.
    [Google Scholar]
  4. Allmendinger, R. W., Cardozo, N. C., & Fisher, D. (2012). Structural geology algorithms: Vectors & tensors. Cambridge University Press.
    [Google Scholar]
  5. Arregui, C. (1993). Análisis estratigráfico paleoambiental de la Formación Tordillo en el subsuelo de la Cuenca Neuquina. Actas XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos, 1, 165–170.
    [Google Scholar]
  6. Bechis, F., Cristallini, E. O., Giambiagi, L. B., Yagupsky, D. L., Guzmán, C. G., & García, V. H. (2014). Transtensional tectonics induced by oblique reactivation of previous lithospheric anisotropies during the late Triassic to early Jurassic rifting in the Neuquén basin: Insights from analog models. Journal of Geodynamics, 79, 1–17.
    [Google Scholar]
  7. Bechis, F., Giambiagi, L., García, V., Lanés, S., Cristallini, E., & Tunik, M. (2010). Kinematic analysis of a transtensional fault system: The Atuel depocenter of the Neuquén basin, southern Central Andes, Argentina. Journal of Structural Geology, 32(7), 886–899.
    [Google Scholar]
  8. Bechis, F., Giambiagi, L. B., Tunik, M. A., Suriano, J., Lanés, S., & Mescua, J. F. (2020). Tectono‐stratigraphic evolution of the Atuel Depocenter during the late Triassic to early Jurassic rift stage, Neuquén Basin, west‐Central Argentina. In D.Kietzmann & A.Folguera (Eds.), Opening and closure of the Neuquén Basin in the southern Andes (pp. 23–52). Springer Earth System Sciences.
    [Google Scholar]
  9. Blair, T. C. (1999). Cause of dominance by sheetflood vs. debris‐flow processes on two adjoining alluvial fans, Death Valley, California. Sedimentology, 46(6), 1015–1028.
    [Google Scholar]
  10. Blair, T. C. (2000). Sedimentology and progressive tectonic unconformities of the sheetflood‐dominated Hell's gate alluvial fan, Death Valley, California. Sedimentary Geology, 132(3–4), 233–262.
    [Google Scholar]
  11. Borghi, P., Fennell, L., Omil, R. G., Naipauer, M., Acevedo, E., & Folguera, A. (2019). The Neuquén group: The reconstruction of a late cretaceous foreland basin in the southern Central Andes (35–37°S). Tectonophysics, 767, 228177.
    [Google Scholar]
  12. Bridge, J. S. (2003). Rivers and floodplains: Forms, processes, and sedimentary record. Blackwell.
    [Google Scholar]
  13. Cegarra, M. I., & Ramos, V. A. (1996). La faja plegada y corrida del Aconcagua. In V. A.Ramos (Ed.), Geología de la región del Aconcagua, provincias de San Juan y Mendoza (pp. 387–422). Dirección Nacional del Servicio Geológico, Subsecretaría de Minería de la Nación.
    [Google Scholar]
  14. Chang, Z., Vervoort, J. D., McClelland, W. C., & Knaack, C. (2006). U‐Pb dating of zircon by LA‐ICP‐MS. Geochemistry, Geophysics, Geosystems, 7(5), Q05009.
    [Google Scholar]
  15. Charrier, R. (1981). Geologie der chilenischen Hauptkordillere zwischen 34° und 34°30′ südlicher Breite und ihre tektonische, magmatische und paläogeographische Entwicklung. Berliner geowissenschaften Abhandlungen, A(36), 270.
    [Google Scholar]
  16. Charrier, R., Pinto, L., & Rodríguez, M. P. (2007). Tectonostratigraphic evolution of the Andean Orogen in Chile. In T.Moreno & W.Gibbons (Eds.), The geology of Chile (pp. 21–114). Geological Society of London.
    [Google Scholar]
  17. Charrier, R., Ramos, V. A., Tapia, F., & Sagripanti, L. (2015). Tectono‐stratigraphic evolution of the Andean Orogen between 31 and 37 S (Chile and Western Argentina). Geological Society of London, Special Publications, 399(1), 13–61.
    [Google Scholar]
  18. Collinson, J. D. (1996). Alluvial Sediments. In H. G.Reading (Ed.), Sedimentary environments: Processes, facies and stratigraphy (pp. 37–81). Blackwell Science.
    [Google Scholar]
  19. Coronel, M. D., Isla, M. F., Veiga, G. D., Mountney, N. P., & Colombera, L. (2020). Anatomy and facies distribution of terminal lobes in ephemeral fluvial successions: Jurassic Tordillo formation, Neuquén Basin, Argentina. Sedimentology, 67(5), 2596–2624.
    [Google Scholar]
  20. Coutts, D. S., Matthews, W. A., & Hubbard, S. M. (2019). Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geoscience Frontiers, 10(4), 1421–1435.
    [Google Scholar]
  21. Cristallini, E., Bottesi, G., Gavarrino, A., Rodríguez, L., Tomezzoli, R., & Comeron, R. (2006). Synrift geometry of the Neuquén Basin in northeastern Neuquén Province, Argentina. Geological Society of America, Special Paper, 407, 147–161.
    [Google Scholar]
  22. Davidson, J. (1988). El Jurásico y Cretácico inferior en las nacientes del río Teno (Chile): una revisión. V Congreso Geológico Chileno, 1, 453–458.
    [Google Scholar]
  23. D'Elia, L., Bilmes, A., Naipauer, M., Vergani, G. D., Muravchik, M., & Franzese, J. R. (2020). The Syn‐rift of the Neuquén Basin (Precuyano and lower Cuyano cycle): Review of structure, volcanism, tectono‐stratigraphy and depositional scenarios. In D.Kietzmann & A.Folguera (Eds.), Opening and closure of the Neuquén Basin in the southern Andes (pp. 3–21). Springer Earth System Sciences.
    [Google Scholar]
  24. Dellape, D. A. (1976). Informe mensual, Diciembre 1976. Comisión Geológica N° 1. Yacimientos Petrolíferos Fiscales.
    [Google Scholar]
  25. Di Giulio, A., Ronchi, A., Sanfilippo, A., Balgord, E. A., Carrapa, B., & Ramos, V. A. (2017). Cretaceous evolution of the Andean margin between 36 S and 40 S latitude through a multi‐proxy provenance analysis of Neuquén Basin strata (Argentina). Basin Research, 29(3), 284–304.
    [Google Scholar]
  26. Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., Knepp, R. A., Lindberg, F. A., & Ryberg, P. T. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94(2), 222–235.
    [Google Scholar]
  27. Dickinson, W. R., & Gehrels, G. E. (2009). Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado plateau Mesozoic database. Earth and Planetary Science Letters, 288(1–2), 115–125.
    [Google Scholar]
  28. Dominguez, R. F., Cristallini, E., & Leanza, H. A. (2017). Evolución Tectono—Sedimentaria del Sistema Vaca Muerta—Quintuco (Tithoniano a Valanginiano Inferior) en el Engolfamiento Neuquino, Argentina (pp. 31–37). Actas XX Congreso Geológico Argentino, S5.
    [Google Scholar]
  29. Fennell, L. M., Folguera, A., Naipauer, M., Gianni, G., Rojas Vera, E. A., Bottesi, G., & Ramos, V. A. (2017). Cretaceous deformation of the southern Central Andes: Synorogenic growth strata in the Neuquén group (35° 30′–37°S). Basin Research, 29, 51–72.
    [Google Scholar]
  30. Fennell, L. M., Iannelli, S. B., Encinas, A., Naipauer, M., Valencia, V., & Folguera, A. (2019). Alternating contraction and extension in the southern Central Andes (35°–37°S). American Journal of Science, 319(5), 381–429.
    [Google Scholar]
  31. Fennell, L. M., Naipauer, M., Borghi, P., Sagripanti, L., Pimentel, M., & Folguera, A. (2020). Early Jurassic intraplate extension in west‐Central Argentina constrained by U‐Pb SHRIMP dating: Implications for the opening of the Neuquén basin. Gondwana Research, 87, 278–302.
    [Google Scholar]
  32. Ferguson, R. I. (1977). Meander sinuosity and direction variance. Geological Society of America Bulletin, 88(2), 212–214.
    [Google Scholar]
  33. Fisher, J. A., Krapf, C. B., Lang, S. C., Nichols, G. J., & Payenberg, T. H. (2008). Sedimentology and architecture of the Douglas Creek terminal splay, Lake Eyre, Central Australia. Sedimentology, 55(6), 1915–1930.
    [Google Scholar]
  34. Fisher, J. A., Nichols, G. J., & Waltham, D. A. (2007). Unconfined flow deposits in distal sectors of fluvial distributary systems: Examples from the Miocene Luna and Huesca systems, northern Spain. Sedimentary Geology, 195(1–2), 55–73.
    [Google Scholar]
  35. Folk, R. L., Andrews, P. B., & Lewis, D. W. (1970). Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology and Geophysics, 13(4), 937–968.
    [Google Scholar]
  36. Folguera, A., Ramos, V. A., Zapata, T., & Spagnuolo, M. G. (2007). Andean evolution at the Guañacos and Chos Malal fold and thrust belts (36 30′–37 S). Journal of Geodynamics, 44(3–5), 129–148.
    [Google Scholar]
  37. Franzese, J. R., & Spalletti, L. A. (2001). Late Triassic–early Jurassic continental extension in southwestern Gondwana: Tectonic segmentation and pre‐break‐up rifting. Journal of South American Earth Sciences, 14(3), 257–270.
    [Google Scholar]
  38. Freije, H., Azúa, G., González, R., Ponce, J. J., & Zavala, C. (2002). Actividad tectónica sinsedimentaria en el Jurásico del sur de la Cuenca Neuquina (p. 17). Actas V Congreso de Exploración y Desarrollo de Hidrocarburos.
    [Google Scholar]
  39. Friend, P. F. (1977). Distinctive features of some ancient river systems. In A. D.Miall (Ed.), Fluvial Sedimentology (pp. 531–542). Canadian Society of Petroleum Geologists.
    [Google Scholar]
  40. Galetto, A., Georgieva, V., García, V. H., Zattin, M., Sobel, E. R., Glodny, J., Bordese, S., Arzadún, G., Bechis, F., Caselli, A. T., & Becchio, R. (2021). Cretaceous and Eocene rapid cooling phases in the southern Andes (36°–37°S): Insights from low‐temperature Thermochronology, U‐Pb geochronology, and inverse thermal modeling from Domuyo area, Argentina. Tectonics, 40(6), e2020TC006415.
    [Google Scholar]
  41. Gallardo Jara, R. E., Ghiglione, M. C., & Rojas Galliani, L. (2019). Tectonic evolution of the southern austral‐Magallanes Basin in Tierra del Fuego. Latin American Journal of Sedimentology and Basin Analysis, 26(2), 127–154.
    [Google Scholar]
  42. Gana, P., & Tosdal, R. (1996). Geocronología U‐Pb y K‐Ar en intrusivos del Paleozoico y Mesozoico de la Cordillera de la Costa, Región de Valparaíso, Chile. Revista Geológica de Chile, 23(2), 151–164.
    [Google Scholar]
  43. Gehrels, G., & Pecha, M. (2014). Detrital zircon U‐Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America. Geosphere, 10(1), 49–65.
    [Google Scholar]
  44. Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems, 9(3), Q03017.
    [Google Scholar]
  45. Giacosa, R., Allard, J., Foix, N., & Heredia, N. (2014). Stratigraphy, structure and geodynamic evolution of the Paleozoic rocks in the cordillera del Viento (37°S latitude, Andes of Neuquén, Argentina). Journal of Iberian Geology, 40(2), 331–348.
    [Google Scholar]
  46. Giambiagi, L., Tunik, M., Barredo, S., Bechis, F., Ghiglione, M., Alvarez, P., & Drosina, M. (2009). Cinemática de apertura del sector norte de la cuenca Neuquina. Revista de la Asociación Geológica Argentina, 65(2), 278–292.
    [Google Scholar]
  47. Giambiagi, L. B., Alvarez, P. P., Godoy, E., & Ramos, V. A. (2003). The control of pre‐existing extensional structures on the evolution of the southern sector of the Aconcagua fold and thrust belt, southern Andes. Tectonophysics, 369(1–2), 1–19.
    [Google Scholar]
  48. Gibbs, A. D. (1983). Balanced cross‐section construction from seismic sections in areas of extensional tectonics. Journal of Structural Geology, 5(2), 153–160.
    [Google Scholar]
  49. Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (2020). The geologic time scale 2020. Elsevier.
    [Google Scholar]
  50. Grier, M. E., Salfity, J. A., & Allmendinger, R. W. (1991). Andean reactivation of the cretaceous Salta rift, northwestern Argentina. Journal of South American Earth Sciences, 4(4), 351–372.
    [Google Scholar]
  51. Groeber, P. (1933). Hoja 31c, Confluencia de los Ríos Grande y Barrancas. Dirección General de Minas, Geología e Hidrología.
    [Google Scholar]
  52. Groeber, P., Stipanicic, P. N., & Mingramm, A. (1953). Jurásico. In Geografía de la República Argentina (Vol. 2, pp. 143–347). Sociedad Argentina Estudios Geográficos GAEA.
    [Google Scholar]
  53. Guillaume, B., Martinod, J., & Espurt, N. (2009). Variations of slab dip and overriding plate tectonics during subduction: Insights from analogue modelling. Tectonophysics, 463(1–4), 167–174.
    [Google Scholar]
  54. Gulisano, C. A. (1988). Análisis estratigráfico y sedimentológico de la Formación Tordillo en el oeste de la Provincia del Neuquén, Cuenca Neuquina, Argentina [Unpublished doctoral dissertation]. Universidad de Buenos Aires.
    [Google Scholar]
  55. Gulisano, C. A. (1993). Ciclo Precuyano. In A. C.Riccardi & S. E.Damborenea (Eds.), Léxico estratigráfico de la Argentina. Volumen 9: Jurásico (Vol. 21, pp. 334–335). Asociación Geológica Argentina, B.
    [Google Scholar]
  56. Gust, D. A., Biddle, K. T., Phelps, D. W., & Uliana, M. A. (1985). Associated middle to late Jurassic volcanism and extension in southern South America. Tectonophysics, 116(3–4), 223–253.
    [Google Scholar]
  57. Guzmán, C., Tapia, F., Ambrosio, A., Pleimling, A. G., Bustos, G., Gómez, C., & González, J. M. (2021). Lower Jurassic deformation in the eastern Huincul high, Argentina. Journal of South American Earth Sciences, 109, 103295.
    [Google Scholar]
  58. Hampton, B. A., & Horton, B. K. (2007). Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia. Sedimentology, 54, 1121–1147.
    [Google Scholar]
  59. Haq, B. U. (2018). Jurassic sea‐level variations: A reappraisal. GSA Today, 28(1), 4–10.
    [Google Scholar]
  60. Heredia, N., García‐Sansegundo, J., Gallastegui, G., Farias, P., Giacosa, R. E., Giambiagi, L. B., Busquets, P., Colombo, F., Charrier, R., Cuesta, A., Rubio‐Ordóñez, A., & Ramos, V. A. (2018). Review of the geodynamic evolution of the SW margin of Gondwana preserved in the Central Andes of Argentina and Chile (28°‐38° S latitude). Journal of South American Earth Sciences, 87, 87–94.
    [Google Scholar]
  61. Horn, B. L. D., Goldberg, K., & Schultz, C. L. (2018). Interpretation of massive sandstones in ephemeral fluvial settings: A case study from the upper Candelária sequence (upper Triassic, Paraná Basin, Brazil). Journal of South American Earth Sciences, 81, 108–121.
    [Google Scholar]
  62. Horton, B. K. (2018). Tectonic regimes of the central and southern Andes: Responses to variations in plate coupling during subduction. Tectonics, 37(2), 402–429.
    [Google Scholar]
  63. Horton, B. K., & Fuentes, F. (2016). Sedimentary record of plate coupling and decoupling during growth of the Andes. Geology, 44(8), 647–650.
    [Google Scholar]
  64. Horton, B. K., Fuentes, F., Boll, A., Starck, D., Ramirez, S. G., & Stockli, D. F. (2016). Andean stratigraphic record of the transition from backarc extension to orogenic shortening: A case study from the northern Neuquén Basin, Argentina. Journal of South American Earth Sciences, 71, 17–40.
    [Google Scholar]
  65. Howell, J. A., Schwarz, E., Spalletti, L. A., & Veiga, G. D. (2005). The Neuquén basin: An overview. Geological Society of London, Special Publications, 252(1), 1–14.
    [Google Scholar]
  66. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi‐Dickinson point‐counting method. Journal of Sedimentary Research, 54(1), 103–116.
    [Google Scholar]
  67. Jarrard, R. D. (1986). Relations among subduction parameters. Reviews of Geophysics, 24(2), 217–284.
    [Google Scholar]
  68. Junkin, W. D., & Gans, P. B. (2019). Stratigraphy and geochronology of the Nacientes del Teno and Río Damas formations: Insights into middle to late Jurassic Andean volcanism. Geosphere, 15(2), 450–479.
    [Google Scholar]
  69. Kelly, S. B., & Olsen, H. (1993). Terminal fans—A review with reference to Devonian examples. Sedimentary Geology, 85, 339–374.
    [Google Scholar]
  70. Kietzmann, D. A., Llanos, M. P. I., & Martínez, M. K. (2018). Astronomical Calibration of the Tithonian–Berriasian in the Neuquén Basin, Argentina: A Contribution from the Southern Hemisphere to the Geologic Time Scale. In M.Montenari (Ed.), Stratigraphy & timescales (Vol. 3, pp. 327–355). Academic Press.
    [Google Scholar]
  71. Kietzmann, D. A., Palma, R. M., & Llanos, M. P. I. (2015). Cyclostratigraphy of an orbitally‐driven Tithonian–Valanginian carbonate ramp succession, southern Mendoza, Argentina: Implications for the Jurassic–cretaceous boundary in the Neuquén Basin. Sedimentary Geology, 315, 29–46.
    [Google Scholar]
  72. Kietzmann, D. A., & Vennari, V. V. (2013). Sedimentología y estratigrafía de la Formación Vaca Muerta (Tithoniano‐Berriasiano) en el área del cerro Domuyo, norte de Neuquén, Argentina. Andean Geology, 40(1), 41–65.
    [Google Scholar]
  73. Kleiman, L. E., & Japas, M. S. (2009). The Choiyoi volcanic province at 34 S–36 S (San Rafael, Mendoza, Argentina): Implications for the late Palaeozoic evolution of the southwestern margin of Gondwana. Tectonophysics, 473(3–4), 283–299.
    [Google Scholar]
  74. Klohn, C. (1960). Geología de la Cordillera de los Andes de Chile Central, provincia de Santiago, O'Higgins, Colchagua y Curicoó. Instituto Investigaciones Geológicas Boletín, 8, 1–95.
    [Google Scholar]
  75. Lallemand, S., Heuret, A., & Boutelier, D. (2005). On the relationships between slab dip, back‐arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochemistry, Geophysics, Geosystems, 6(9), Q09006.
    [Google Scholar]
  76. Leanza, H. A. (2003). Las sedimentitas huitrinianas y rayosianas (Cretácico Inferior) en el ámbito central y meridional de la Cuenca Neuquina, Argentina. Servicio Geológico Minero Argentino, Serie Contribuciones Técnicas‐Geología, 2, 1–31.
    [Google Scholar]
  77. Leanza, H. A. (2009). Las principales discordancias del Mesozoico de la Cuenca Neuquina según observaciones de superficie. Revista del Museo Argentino de Ciencias Naturales, 11(2), 145–184.
    [Google Scholar]
  78. Leanza, H. A., Hugo, C. A., Repol, D., González, R., Danieli, J. C., & Lizuaín, A. (2001). Hoja Geológica 3969‐I Zapala. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales.
    [Google Scholar]
  79. Leanza, H. A., Llambías, E. J., & Carbone, O. (2005). Unidades estratigráficas limitadas por discordancias en los depocentros de la cordillera del Viento y la sierra de Chacaico durante los inicios de la cuenca Neuquina (p. 13). Actas VI Congreso de exploración de hidrocarburos.
    [Google Scholar]
  80. Leeder, M. R. (1999). Sedimentology and sedimentary basins. Blackwell.
    [Google Scholar]
  81. Legarreta, L., & Gulisano, C. A. (1989). Análisis estratigráfico secuencial de la Cuenca Neuquina (Triásico Superior‐Terciario Inferior). In G.Chebli & L.Spalletti (Eds.), Cuencas Sedimentarias Argentinas (Vol. 6, pp. 221–243). Serie Correlación Geológica.
    [Google Scholar]
  82. Legarreta, L., & Uliana, M. A. (1991). Jurassic‐cretaceous marine oscillations and geometry of back‐arc basin fill, central argentine Andes. In D. I. M.McDonald (Ed.), Sedimentation, tectonics and Eustasy Sea‐level changes at active margins (Vol. 12, pp. 429–450). International Association of Sedimentologists, Special Publication.
    [Google Scholar]
  83. Legarreta, L., & Uliana, M. A. (1996). The Jurassic succession in west‐Central Argentina: Stratal patterns, sequences and paleogeographic evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 120(3–4), 303–330.
    [Google Scholar]
  84. Lena, L., López‐Martínez, R., Lescano, M., Aguire‐Urreta, B., Concheyro, A., Vennari, V., Naipauer, M., Samankassou, E., Pimentel, M., Ramos, V. A., & Schaltegger, U. (2019). High‐precision U–Pb ages in the early Tithonian to early Berriasian and implications for the numerical age of the Jurassic–cretaceous boundary. Solid Earth, 10(1), 1–14.
    [Google Scholar]
  85. Llambías, E. J., Leanza, H. A., & Carbone, O. (2007). Evolución tectono‐magmática durante el Pérmico al Jurásico Temprano en la cordillera del Viento (37 05 S–37 15 S): nuevas evidencias geológicas y geoquímicas del inicio de la cuenca Neuquina. Revista de la Asociación Geológica Argentina, 62(2), 217–235.
    [Google Scholar]
  86. Llambıas, E. J., Quenardelle, S., & Montenegro, T. (2003). The Choiyoi group from Central Argentina: A subalkaline transitional to alkaline association in the craton adjacent to the active margin of the Gondwana continent. Journal of South American Earth Sciences, 16(4), 243–257.
    [Google Scholar]
  87. Lo Forte, G. L. (1996). Los depósitos jurásicos de la Alta Cordillera de Mendoza. In V. A.Ramos (Ed.), Geología de la región del Aconcagua, provincias de San Juan y Mendoza (pp. 179–230). Dirección Nacional del Servicio Geológico, Subsecretaría de Minería de la Nación.
    [Google Scholar]
  88. Lovecchio, J. P., Rohais, S., Joseph, P., Bolatti, N. D., Kress, P. R., Gerster, R., & Ramos, V. A. (2018). Multistage rifting evolution of the Colorado basin (offshore Argentina): Evidence for extensional settings prior to the South Atlantic opening. Terra Nova, 30(5), 359–368.
    [Google Scholar]
  89. Lovecchio, J. P., Rohais, S., Joseph, P., Bolatti, N. D., & Ramos, V. A. (2020). Mesozoic rifting evolution of SW Gondwana: A poly‐phased, subduction‐related, extensional history responsible for basin formation along the Argentinean Atlantic margin. Earth‐Science Reviews, 203, 103138.
    [Google Scholar]
  90. Ludwig, K. R. (2003). Isoplot 3.00: A geochronological toolkit for Microsoft excel. Berkeley Geochronology Center Special Publication, 4, 70.
    [Google Scholar]
  91. Marchal, D., Manceda, R., Domínguez, R. F., & Sattler, F. (2020). Structural geology: Tectonic history, macrostructures, regional fault map, fault systems, second‐order structures, and impact of the inheritance. In D.Minisini, M.Fantín, M.Lanusse Noguera, & H. A.Leanza (Eds.), Integrated geology of unconventionals: The case of the Vaca Muerta play, Argentina (Vol. 121, pp. 99–140). American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  92. Mardones, V., Peña, M., Pairoa, S., Ammirati, J. B., & Leisen, M. (2021). Architecture, kinematics, and tectonic evolution of the principal cordillera of the Andes in Central Chile (ca. 33.5°S): Insights from detrital zircon U‐Pb geochronology and Seismotectonics implications. Tectonics, 40(7), e2020TC006499.
    [Google Scholar]
  93. Maretto, H., & Pangaro, F. (2005). Edad de formación de algunas de las grandes estructuras del engolfamiento de la Cuenca Neuquina: actividad tectónica durante la depositación de la Fm. Actas VI Congreso de exploración y Desarrollo de Hidrocarburos.
    [Google Scholar]
  94. Marrett, R. A., & Allmendinger, R. W. (1990). Kinematic analysis of fault‐slip data. Journal of Structural Geology, 12, 973–986.
    [Google Scholar]
  95. Martos, F. E., Fennell, L. M., Brisson, S., Palmieri, G., Naipauer, M., & Folguera, A. (2020). Tectonic evolution of the northern Malargüe fold and Thrust Belt, Mendoza province, Argentina. Journal of South American Earth Sciences, 103, 102711.
    [Google Scholar]
  96. Martos, F. E., Fennell, L. M., Naipauer, M., & Folguera, A. (2022). Evolución tectónica del segmento norte de la faja plegada y corrida de Malargüe (34° 30′S) (pp. 1227–1228). Actas XXI Congreso Geológico Argentino.
    [Google Scholar]
  97. McClay, K. R. (1990). Extensional fault systems in sedimentary basins: A review of analogue model studies. Marine and Petroleum Geology, 7(3), 206–233.
    [Google Scholar]
  98. Mescua, J. F., Giambiagi, L. B., & Bechis, F. (2008). Evidencias de tectónica extensional en el Jurásico tardío (Kimeridgiano) del suroeste de la provincia de Mendoza. Revista de la Asociación Geológica Argentina, 63(4), 512–519.
    [Google Scholar]
  99. Mescua, J. F., Giambiagi, L. B., Tassara, A., Gimenez, M., & Ramos, V. A. (2014). Influence of pre‐Andean history over Cenozoic foreland deformation: Structural styles in the Malargüe fold‐and‐thrust belt at 35 S, Andes of Argentina. Geosphere, 10(3), 585–609.
    [Google Scholar]
  100. Mescua, J. F., Suriano, J., Schencman, L. J., Giambiagi, L. B., Sruoga, P., Balgord, E., & Bechis, F. (2020). Controls on deposition of the Tordillo formation in southern Mendoza (34°–36°S): Implications for the Kimmeridgian tectonic setting of the Neuquén Basin. In D.Kietzmann & A.Folguera (Eds.), Opening and closure of the Neuquén Basin in the southern Andes (pp. 127–157). Springer Earth System Sciences.
    [Google Scholar]
  101. Miall, A. D. (1977). A review of the braided‐river depositional environment. Earth‐Science Reviews, 13(1), 1–62.
    [Google Scholar]
  102. Miall, A. D. (1996). The geology of fluvial deposits: Sedimentary Facies, basin analysis and petroleum geology. Springer‐Verlag.
    [Google Scholar]
  103. Micucci, E., Bande, A., Starck, D., & Veiga, R. (2018). El jurásico del Dorso de los Chihuidos, contribución a su conocimiento (pp. 437–460). Actas X Congreso de Exploración y Desarrollo de Hidrocarburos.
    [Google Scholar]
  104. Mosquera, A., & Ramos, V. A. (2006). Intraplate deformation in the Neuquén embayment. In S. M.Kay & V. A.Ramos (Eds.), Evolution of an Andean margin: A tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S lat) (Vol. 407, pp. 97–124). Geological Society of America, Special Paper.
    [Google Scholar]
  105. Mpodozis, C., & Ramos, V. A. (1989). The Andes of Chile and Argentina. In G. E.Ericksen, M. T.Cañas Pinochet, & J. A.Reinemund (Eds.), Geology of the Andes and its relation to hydrocarbon and mineral resources (Vol. 11, pp. 59–90). Circum‐Pacific Council for Energy and Mineral Resources Earth Science Series.
    [Google Scholar]
  106. Naipauer, M., Morabito, E. G., Marques, J. C., Tunik, M., Vera, E. A. R., Vujovich, G. I., Pimentel, M., & Ramos, V. A. (2012). Intraplate late Jurassic deformation and exhumation in western Central Argentina: Constraints from surface data and U–Pb detrital zircon ages. Tectonophysics, 524, 59–75.
    [Google Scholar]
  107. Naipauer, M., & Ramos, V. A. (2016). Changes in source areas at Neuquén Basin: Mesozoic evolution and tectonic setting based on U–Pb ages on zircons. In A.Folguera, M.Naipauer, L.Sagripanti, M.Ghiglione, D.Orts, & L.Giambiagi (Eds.), Growth of the southern Andes (pp. 33–61). Springer Earth System Sciences.
    [Google Scholar]
  108. Naipauer, M., Tapia, F., Mescua, J. F., Farías, M., Pimentel, M., & Ramos, V. A. (2015). Detrital and volcanic zircon U‐Pb ages from southern Mendoza (Argentina): An insight on the source regions in the northern part of Neuquén Basin. Journal of South American Earth Sciences, 64(2), 434–451.
    [Google Scholar]
  109. Naipauer, M., Tunik, M., Marques, J. C., Rojas Vera, E., Vujovich, G., Pimentel, M., & Ramos, V. A. (2015). U–Pb detrital zircon ages of upper Jurassic continental successions: Implications for the provenance and absolute age of the Jurassic–cretaceous boundary in the Neuquén Basin. In S. A.Sepúlveda, L. B.Giambiagi, S. M.Moreiras, L.Pinto, M.Tunik, G. D.Hoke, & M.Farías (Eds.), Geodynamic processes in the Andes of Central Chile and Argentina (Vol. 399, pp. 131–154). Geological Society of London, Special Publications.
    [Google Scholar]
  110. Narciso, V., Santamaría, G., & Zanettini, J. C. M. (2004). Hoja Geológica 3769‐I, Barrancas. Provincias de Mendoza y Neuquén. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino.
    [Google Scholar]
  111. Nicol, A., Watterson, J., Walsh, J. J., & Childs, C. (1996). The shapes, major axis orientations and displacement patterns of fault surfaces. Journal of Structural Geology, 18(2–3), 235–248.
    [Google Scholar]
  112. Owen, G., Moretti, M., & Alfaro, P. (2011). Recognizing triggers for soft‐sediment deformation: Current understanding and future directions. Sedimentary Geology, 235(3–4), 133–140.
    [Google Scholar]
  113. Pángaro, F., Ramos, V. A., & Godoy, E. (1996). La faja plegada y corrida de la Cordillera Principal de Argentina y Chile a la latitud del Cerro Palomares (33 35'S). Actas XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, 2, 315–324.
    [Google Scholar]
  114. Parra, M., Mora, A., Jaramillo, C., Strecker, M. R., Sobel, E. R., Quiroz, L., Rueda, M., & Torres, V. (2009). Orogenic wedge advance in the northern Andes: Evidence from the Oligocene‐Miocene sedimentary record of the Medina Basin, eastern cordillera, Colombia. Geological Society of America Bulletin, 121(5–6), 780–800.
    [Google Scholar]
  115. Ploszkiewicz, J. V., Orchuela, I. A., Vaillard, J., & Viñes, R. F. (1984). Compresión y desplazamiento lateral en la zona de falla Huincul, estructuras asociadas, Provincia del Neuquén. Actas IX Congreso Geológico Argentino, 2, 163–169.
    [Google Scholar]
  116. Ramos, V. A. (1977). Estructura de la Provincia de Neuquén. In E. O.Rolleri (Ed.), Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del VII Congreso Geológico Argentino (pp. 9–24). Asociación Geológica Argentina.
    [Google Scholar]
  117. Ramos, V. A. (1981). Descripción geológica de la Hoja 33c, Los Chihuidos Norte. Servicio Geológico Nacional.
    [Google Scholar]
  118. Ramos, V. A. (1985). El Mesozoico de la Alta Cordillera de Mendoza: Reconstrucción tectónica de sus facies. Actas IV Congreso Geológico Chileno, 1, 104–118.
    [Google Scholar]
  119. Ramos, V. A. (2010). The tectonic regime along the Andes: Present‐day and Mesozoic regimes. Geological Journal, 45(1), 2–25.
    [Google Scholar]
  120. Ramos, V. A., & Folguera, A. (2005). Tectonic evolution of the Andes of Neuquén: Constraints derived from the magmatic arc and foreland deformation. Geological Society, London, Special Publications, 252(1), 15–35.
    [Google Scholar]
  121. Ramos, V. A., Jordan, T. E., Allmendinger, R. W., Mpodozis, C., Kay, S. M., Cortés, J. M., & Palma, M. (1986). Paleozoic terranes of the central Argentine‐Chilean Andes. Tectonics, 5(6), 855–880.
    [Google Scholar]
  122. Rojas Vera, E. R., Mescua, J., Folguera, A., Becker, T. P., Sagripanti, L., Fennell, L., Orts, D., & Ramos, V. A. (2015). Evolution of the Chos Malal and Agrio fold and thrust belts, Andes of Neuquén: Insights from structural analysis and apatite fission track dating. Journal of South American Earth Sciences, 64, 418–433.
    [Google Scholar]
  123. Rossel, P., Echaurren, A., Ducea, M. N., Maldonado, P., & Llanos, K. (2020). Jurassic segmentation of the early Andean magmatic province in southern Central Chile (35–39°S): Petrological constrains and tectonic drivers. Lithos, 364, 105510.
    [Google Scholar]
  124. Rossel, P., Oliveros, V., Mescua, J. F., Tapia, F., Ducea, M. N., Calderón, S., Charrier, R., & Hoffman, D. (2014). The upper Jurassic volcanism of the Río Damas‐Tordillo formation (33°–35.5°S): Insights on petrogenesis, chronology, provenance and tectonic implications. Andean Geology, 41(3), 529–557.
    [Google Scholar]
  125. Rovere, E. I., Caselli, A., Tourun, S., Leanza, H. A., Hugo, C. A., Folguera, A., Escosteguy, L., Geuna, S., González, R., Colombino, J., & Danieli, J. C. (2004). Hoja Geológica 3772‐IV, Andacollo, provincia del Neuqúen. Instituto de Geología y Recursos Minerales. Servicio Geológico Minero Argentino.
    [Google Scholar]
  126. Russo, R. M., & Silver, P. G. (1996). Cordillera formation, mantle dynamics, and the Wilson cycle. Geology, 24(6), 511–514.
    [Google Scholar]
  127. Sadler, S. P., & Kelly, S. B. (1993). Fluvial processes and cyclicity in terminal fan deposits: An example from the late Devonian of Southwest Ireland. Sedimentary Geology, 85, 375–386.
    [Google Scholar]
  128. Sagripanti, L., Folguera, A., Giménez, M., Vera, E. R., Fabiano, J. J., Molnar, N., Fennell, L., & Ramos, V. A. (2014). Geometry of middle to late Triassic extensional deformation pattern in the cordillera del Viento (southern Central Andes): A combined field and geophysical study. Journal of Iberian Geology, 40(2), 349–366.
    [Google Scholar]
  129. Sánchez, N., Turienzo, M., Lebinson, F., Araujo, V., Coutand, I., & Dimieri, L. (2015). Structural style of the Chos Malal fold and thrust belt, Neuquén basin, Argentina: Relationship between thick‐and thin‐skinned tectonics. Journal of South American Earth Sciences, 64, 399–417.
    [Google Scholar]
  130. Sanguinetti, A. S. (1989). Volcanismo neojurásico‐neocomiano de la Quebrada de Vargas, Alta Cordillera de Mendoza. Revista de la Asociación Geológica Argentina, 44(1–4), 381–393.
    [Google Scholar]
  131. Sato, A. M., Llambías, E. J., Basei, M. A., & Castro, C. E. (2015). Three stages in the late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins. Journal of South American Earth Sciences, 63, 48–69.
    [Google Scholar]
  132. Schlische, R. W. (1991). Half‐graben basin filling models: New constraints on continental extensional basin development. Basin Research, 3(3), 123–141.
    [Google Scholar]
  133. Scholz, C. H., & Contreras, J. C. (1998). Mechanics of continental rift architecture. Geology, 26(11), 967–970.
    [Google Scholar]
  134. Scivetti, N., & Franzese, J. R. (2019). Late Triassic‐late Jurassic subsidence analysis in Neuquén Basin central area. Journal of South American Earth Sciences, 94, 102230.
    [Google Scholar]
  135. Silvestro, J., & Zubiri, M. (2008). Convergencia oblicua: modelo estructural alternativo para la Dorsal Neuquina (39°S)‐Neuquén. Revista de la Asociación Geológica Argentina, 63(1), 49–64.
    [Google Scholar]
  136. Spalletti, L. A., Arregui, C. D., Veiga, G. D., Leanza, H. A., Carbone, O., Danielli, J. C., & Vallés, J. M. (2011). La Formación Tordillo y equivalentes (Jurásico Tardío) en la Cuenca Neuquina. In H. A.Leanza, C.Arregui, O.Carbone, J. C.Daniela, & J. M.Vallés (Eds.), Geología y Recursos Naturales de la Provincia del Neuquén. Relatorio del XVIII Congreso Geológico Argentino (pp. 99–111). Asociación Geológica Argentina.
    [Google Scholar]
  137. Spalletti, L. A., & Limarino, C. O. (2017). The Choiyoi magmatism in south western Gondwana: Implications for the end‐permian mass extinction‐a review. Andean Geology, 44(3), 328–338.
    [Google Scholar]
  138. Spalletti, L. A., & Piñol, F. C. (2005). From alluvial fan to playa: An upper Jurassic ephemeral fluvial system, Neuquén Basin, Argentina. Gondwana Research, 8(3), 363–383.
    [Google Scholar]
  139. Spalletti, L. A., Queralt, I., Matheos, S. D., Colombo, F., & Maggi, J. (2008). Sedimentary petrology and geochemistry of siliciclastic rocks from the upper Jurassic Tordillo formation (Neuquén Basin, western Argentina): Implications for provenance and tectonic setting. Journal of South American Earth Sciences, 25(4), 440–463.
    [Google Scholar]
  140. Spalletti, L. A., & Veiga, G. D. (2007). Variability of continental depositional systems during lowstand sedimentation: An example from the Kimmeridgian of the Neuquén Basin, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 14(2), 85–104.
    [Google Scholar]
  141. Sruoga, P., Etcheverría, M., Cegarra, M., Rubinstein, N. A., & Mescua, J. F. (2011). Engranaje lateral entre las Formaciones Tordillo y Río Damas en la Cordillera Principal de Mendoza (34° 45′ S). Actas XVIII Congreso Geológico Argentino, 4–6.
    [Google Scholar]
  142. Stipanicic, P. N. (1969). El avance en los conocimientos del Jurásico argentino a partir del esquema de Groeber. Revista de la Asociación Geológica Argentina, 24(4), 367–388.
    [Google Scholar]
  143. Stipanicic, P. N., & Rodrigo, F. (1970). El diastrofismo jurásico en Argentina y Chile. Actas IV Jornadas Geológicas Argentinas, 2, 353–368.
    [Google Scholar]
  144. Tapia, F., Muñoz, M., Farías, M., Charrier, R., & Astaburuaga, D. (2020). Middle Jurassic‐late cretaceous paleogeography of the Western margin of the Neuquén Basin (34° 30′–36°S). In D.Kietzmann & A.Folguera (Eds.), Opening and closure of the Neuquén Basin in the southern Andes (pp. 269–301). Springer Earth System Sciences.
    [Google Scholar]
  145. Tunbridge, I. P. (1981). Sandy high‐energy flood sedimentation—Some criteria for recognition, with an example from the Devonian of SW England. Sedimentary Geology, 28(2), 79–95.
    [Google Scholar]
  146. Tunik, M., Folguera, A., Naipauer, M., Pimentel, M., & Ramos, V. A. (2010). Early uplift and orogenic deformation in the Neuquén Basin: constraints on the Andean uplift from U–Pb and Hf isotopic data of detrital zircons. Tectonophysics, 489(1–4), 258–273.
    [Google Scholar]
  147. Turnbridge, I. P. (1984). Facies model for a sandy ephemeral stream and clay playa complex; the middle Devonian Trentishoe formation of North Devon, UK. Sedimentology, 31, 697–715.
    [Google Scholar]
  148. Uliana, M. A., & Biddle, K. T. (1988). Mesozoic‐Cenozoic paleogeographic and geodynamic evolution of southern South America. Revista Brasileira de Geociencias, 18(2), 172–190.
    [Google Scholar]
  149. Veiga, G. D., Howell, J. A., & Strömbäck, A. (2005). Anatomy of a mixed marine‐non‐marine lowstand wedge in a ramp setting. The record of a Barremian‐Aptian complex relative sea‐level fall in the Central Neuquén Basin, Argentina. Geological Society of London, Special Publications, 252(1), 139–162.
    [Google Scholar]
  150. Vennari, V. V., Lescano, M., Naipauer, M., Aguirre‐Urreta, B., Concheyro, A., Schaltegger, U., Armstrong, R., Pimentel, M., & Ramos, V. A. (2014). New constraints on the Jurassic–cretaceous boundary in the high Andes using high‐precision U–Pb data. Gondwana Research, 26(1), 374–385.
    [Google Scholar]
  151. Vergani, G. D., Tankard, A. J., Belotti, H. J., & Welsink, H. J. (1995). Tectonic evolution and paleogeography of the Neuquen Basin, Argentina. In A. J.Tankard, R.Suárez, & H. J.Welsink (Eds.), Petroleum basins of South America (Vol. 62, pp. 383–402). American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  152. Vergara, M., Levi, B., Nystrom, J., & Cancino, A. (1995). Jurassic and early cretaceous Island arc volcanism, extension, and subsidence in the coast range of Central Chile. Geological Society of America Bulletin, 107, 1427–1440.
    [Google Scholar]
  153. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479–1493.
    [Google Scholar]
  154. Vermeesch, P. (2021). Maximum depositional age estimation revisited. Geoscience Frontiers, 12(2), 843–850.
    [Google Scholar]
  155. Vicente, J. C. (2005). Dynamic paleogeography of the Jurassic Andean basin: Pattern of transgression and localisation of main straits through the magmatic arc. Revista de la Asociación Geológica Argentina, 60, 221–250.
    [Google Scholar]
  156. Vicente, J. C. (2006). Dynamic paleogeography of the Jurassic Andean basin: Pattern of regression and general considerations on main features. Revista de la Asociación Geológica Argentina, 61(3), 408–437.
    [Google Scholar]
  157. Vicente, J. C., & Leanza, H. A. (2009). El frente de corrimiento andino al nivel de los cerros Penitentes y Visera (alta Cordillera de Mendoza): aspectos cronológicos y cartográficos. Revista de la Asociación Geológica Argentina, 65(1), 97–110.
    [Google Scholar]
  158. Walsh, J. J., & Watterson, J. (1989). Displacement gradients on fault surfaces. Journal of Structural Geology, 11(3), 307–316.
    [Google Scholar]
  159. Whitmeyer, S. J., Pyle, E. J., Pavlis, T. L., Swanger, W., & Roberts, L. (2019). Modern approaches to field data collection and mapping: Digital methods, crowdsourcing, and the future of statistical analyses. Journal of Structural Geology, 125, 29–40.
    [Google Scholar]
  160. Worthington, R. P., & Walsh, J. J. (2017). Timing, growth and structure of a reactivated basin‐bounding fault. Geological Society, London, Special Publications, 439(1), 511–531.
    [Google Scholar]
  161. Wright, V. P. (1988). Paleokarsts and paleosols as indicators of paleoclimate and porosity evolution: A case study from the carboniferous of South Wales. In N. P.James & P. W.Choquette (Eds.), Paleokarst (pp. 329–341). Springer.
    [Google Scholar]
  162. Zappettini, E., Méndez, V., & Zanettini, J. C. (1987). Metasedimentitas mesopaleozoicas en el noroeste de la Provincia del Neuquén. Revista de la Asociación Geológica Argentina, 42(1–2), 206–207.
    [Google Scholar]
  163. Zavala, C., Arcuri, M., Di Meglio, M., Zorzano, A., & Otharán, G. (2020). Jurassic uplift along the Huincul arch and its consequences in the stratigraphy of the Cuyo and Lotena groups. Neuquén Basin, Argentina. In D.Kietzmann & A.Folguera (Eds.), Opening and closure of the Neuquén Basin in the southern Andes (pp. 53–74). Springer Earth System Sciences.
    [Google Scholar]
  164. Zavala, C., & Freije, H. (2002). Cuñas clásticas jurásicas vinculadas a la Dorsal de Huincul. Un ejemplo del área de Picún Leufú, Cuenca Neuquina, Argentina (p. 14). Actas V Congreso de exploración y desarrollo de Hidrocarburos.
    [Google Scholar]
  165. Ziegler, P. A., & Cloetingh, S. (2004). Dynamic processes controlling evolution of rifted basins. Earth‐Science Reviews, 64(1–2), 1–50.
    [Google Scholar]
  166. Zöllner, W., & Amos, A. J. (1973). Descripción geológica de la hoja 32b, Chos Malal. Provincia del Neuquén. Servicio Geológico Nacional.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12744
Loading
/content/journals/10.1111/bre.12744
Loading

Data & Media loading...

Keyword(s): extensional basin; Kimmeridgian; normal faulting; southern Central Andes; Tordillo Formation; U–Pb geochronology

Most Cited This Month Most Cited RSS feed