Volume 35, Issue 3

Abstract

[

Detachment structure in the Porcupine Basin, West of Ireland. (a) Location, (b) 2D view and (c) 3D view. The Porcupine detachment studied in 3D displays corrugations and faults footwall cutoffs ridges that give insights on the kinematics of its development.

, Abstract

Low‐angle detachments are fundamental crustal structures found in many extensional systems and plate tectonic boundaries, including onshore extensional basins, rifted margins and mid‐oceanic ridges. Direct observations of the complete geometry of extensional detachments are rare so that aspects of our understanding of their development and evolution rely mainly on proxy observations and numerical simulations. A high‐resolution 3D seismic reflection survey Offshore West of Ireland images a complete corrugated extensional detachment, from its steep oceanward breakaway faults to its back‐rotated domal crest. The detachment surface, the P reflector, developed during the Jurassic hyperextension of the Porcupine Basin and is preserved in its slip position. It covers 95 × 35 km area and has a N‐S elongate domal shape, at right angles to the prevailing extension direction, with a crest at ca. 6.3 s two‐way travel time. It is overlain by a syn‐rift sequence offset by steep frontal faults that pass eastward into shallower, predominantly west‐dipping highly listric faults that merge downwards with the detachment. The detachment has pronounced E‐W corrugations parallel to the basin opening direction, and N‐S lineaments that correspond with the footwall cutoff lines of overlying Jurassic faults. The most significant N‐S lineaments correspond with changes in dip of the detachment. We propose that the geometry of P can be explained by a conceptual model in which the detachment was assembled from initially steep faults that developed at the front of P and back‐rotated to form listric faults during extension, with punctuated oceanward propagation of the segments of the detachment. Comparisons with 2D profiles and 3D surfaces of published detachments suggest that our conceptual model may be applicable to other detachments that accommodate extreme extension at other rifted margins and at mid‐oceanic slow and ultra‐slow spreading ridges.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12745
2023-05-19
2024-03-28
Loading full text...

Full text loading...

References

  1. Bayrakci, G., Minshull, T., Sawyer, D., Reston, T. J., Klaeschen, D., Papenberg, C., Ranero, C., Bull, J. M., Davy, R. G., Shillington, D. J., Perez‐Gussinye, M., & Morgan, J. K. (2016). Fault‐controlled hydration of the upper mantle during continental rifting. Nature Geoscience, 9, 384–388. https://doi.org/10.1038/NGEO2671
    [Google Scholar]
  2. Bickert, M., Lavier, L., & Cannat, M. (2020). How do detachment faults form at ultraslow mid‐ocean ridges in a thick axial lithosphere?Earth and Planetary Science Letters, 533, 116048. https://doi.org/10.1016/j.epsl.2019.116048
    [Google Scholar]
  3. Boddupalli, B., Minshull, T. A., Bayrakci, G., Lymer, G., Klaeschen, D., & Reston, T. J. (2022). Insights into exhumation and mantle hydration processes at the deep Galicia margin from a 3D high‐resolution seismic velocity model. Journal of Geophysical Research: Solid Earth, 127, e2021JB023220. https://doi.org/10.1029/2021JB023220
    [Google Scholar]
  4. Boillot, G., & Winterer, E. L. (1988). Drilling on the Galicia margin: Retrospect and prospect. Proceedings of the Ocean Drilling Program Scientific Results, 103, 809–828.
    [Google Scholar]
  5. Buck, W. R. (1988). Flexural rotation of normal faults. Tectonics, 7, 959–973. https://doi.org/10.1029/TC007i005p00959
    [Google Scholar]
  6. Calvès, G., Torvela, T., Huuse, M., & Dinkelman, M. G. (2012). New evidence for the origin of the Porcupine median volcanic ridge: Early cretaceous volcanism in the Porcupine Basin, Atlantic margin of Ireland. Geochemistry, Geophysics, Geosystems, 13, Q06001. https://doi.org/10.1029/2011GC003852
    [Google Scholar]
  7. Cann, J. R., Blackman, D. K., Smith, D. K., McAllister, E., Janssen, B., Mello, S., Avgerinos, E., Pascoe, A. R., & Escartin, J. (1997). Corrugated slip surfaces formed at North Atlantic ridge‐transform intersections. Nature, 385, 329–332. https://doi.org/10.1038/385329a0
    [Google Scholar]
  8. Chen, C., Watremez, L., Prada, M., Minshull, T. A., Edwards, R. A., O'Reilly, B. M., Reston, T. J., Wagner, G., Gaw, V., Klaeschen, D., & Shannon, P. M. (2018). From continental hyperextension to seafloor spreading: New insights on the Porcupine Basin from wide‐angle seismic data. Journal of Geophysical Research: Solid Earth, 123, 8312–8330. https://doi.org/10.1029/2018JB016375
    [Google Scholar]
  9. Choi, E., Buck, W. R., Lavier, L. C., & Petersen, K. D. (2013). Using core complex geometry to constrain fault strength. Geophysical Research Letters, 40, 3863–3867. https://doi.org/10.1002/grl.50732
    [Google Scholar]
  10. deMartin, B., Sohn, R. A., Canales, J. P., & Humphris, S. E. (2007). Kinematics and geometry of active detachment faulting beneath the trans‐Atlantic Geotraverse (TAG) hydrothermal field on the mid‐Atlantic ridge. Geology, 35, 711–714. https://doi.org/10.1130/G23718A.1
    [Google Scholar]
  11. Deng, H., Ren, J., Pang, X., Rey, P. F., McClay, K. R., Watkinson, I. M., Zheng, J., & Luo, P. (2020). South China Sea documents the transition from wide continental rift to continental break up. Nature Communications, 11, 4583. https://doi.org/10.1038/s41467‐020‐18448‐y
    [Google Scholar]
  12. Diamantis, K., Exarhakos, G., Migiros, G., & Gartzos, E. (2016). Evaluating the Triaxial Charac‐ teristics of Ultamafic rocks from Central Greece using the physical, dynamic and mechanical properties. Open Access Library Journal, 3, e3214. https://doi.org/10.4236/oalib.1103214
    [Google Scholar]
  13. Escartin, J., Mevel, C., Petersen, S., Bonnemains, D., Cannat, M., Andreani, M., Augustin, N., Bezos, A., Chavagnac, V., Choi, Y., & Godard, M. (2017). Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20N and 13°30N, mid Atlantic ridge). Geochemistry, Geophysics, Geosystems, 18(4), 1451–1482. https://doi.org/10.1002/2016GC006775
    [Google Scholar]
  14. Gagnevin, D., Haughton, D. W., Whiting, L., & Saqab, M. M. (2017). Geological and geophysical evidence for a mafic igneous intrusion origin of the Porcupine arch, offshore Ireland. Journal of the Geological Society, London, 175, 210–228. https://doi.org/10.1144/jgs2017‐041
    [Google Scholar]
  15. Haughton, G. A., Hayman, N. W., Searle, R. C., Le Bas, T., & Murton, B. J. (2019). Volcanic‐tectonic structure of the mount dent oceanic core complex in the ultraslow mid‐Cayman spreading center determined from detailed seafloor investigation. Geochemistry, Geophysics, Geosystems, 20, 1298–1318. https://doi.org/10.1029/2018GC008032
    [Google Scholar]
  16. Lavier, L., Buck, W. R., & Poliakov, A. N. B. (1999). Self‐consistent rolling‐hinge model for the evolution of large‐offset low‐angle normal faults. Geology, 27(12), 1127–1130. https://doi.org/10.1130/0091‐7613(1999)027<1127:SCRHMF>2.3.CO;2
    [Google Scholar]
  17. Lavier, L. L., & Manatschal, G. (2006). A mechanism to thin the continental lithosphere at magma‐poor margins. Nature, 440, 324–328. https://doi.org/10.1038/nature04608
    [Google Scholar]
  18. Liu, Z., Pérez‐Gussinyé, M., Rüpke, L., Muldashev, I. A., Minshull, T. A., & Bayrakci, G. (2022). Lateral coexistence of ductile and brittle deformation shapes magma‐poor distal margins: An example from the West Iberia‐Newfoundland margins. Earth and Planetary Science Letters, 578, 117288. https://doi.org/10.1016/j.epsl.2021.117288
    [Google Scholar]
  19. Lymer, G., Cresswell, D. J., Reston, T. J., Bull, J. M., Sawyer, D. S., Morgan, J. K., Stevenson, C., Causer, A., Minshull, T. A., & Shillington, D. J. (2019). 3D development of detachment faulting during continental breakup. Earth and Planetary Science Letters, 515, 90–99. https://doi.org/10.1016/j.epsl.2019.03.018
    [Google Scholar]
  20. Lymer, G., & Reston, T. J. (2022). The west Iberian margin: Past and current research concepts and future challenges. In G.Peron‐Pinvidic (Ed.), Continental rifted margins 2. John Wiley & Sons. https://doi.org/10.1002/9781119986959.ch1
    [Google Scholar]
  21. MacLeod, C. J., Searle, R. C., Murton, B. J., Casey, J. F., Mallows, C., Unsworth, S. C., Achenbach, K. L., & Harris, M. (2009). Life cycle of oceanic core complexes. Earth and Planetary Science Letters, 287, 333–344. https://doi.org/10.1016/j.epsl.2009.08.016
    [Google Scholar]
  22. Merlin Energy Resources Consortium . (2020). The standard stratigraphic nomenclature of offshore Ireland: An integrated Lithostratigraphic, biostratigraphic and sequence stratigraphic framework. Project Atlas. Petroleum Affairs Division, Department of Communications, Climate Action & Environment, Special Publication 1/21. http://www.gov.ie/en/publication/d4923‐the‐standard‐stratigraphic‐nomenclature‐of‐ireland/
    [Google Scholar]
  23. Mizera, M., Little, T. A., Biemiller, J., Ellis, S., Webber, S., & Norton, K. P. (2019). Structural and geomorphic evidence for rolling‐hinge style deformation of an active continental low‐angle normal fault, SE Papua New Guinea. Tectonics, 38, 1556–1583. https://doi.org/10.1029/2018TC005167
    [Google Scholar]
  24. Morris, A. R., Gee, J. S., Pressling, N., John, B. E., MacLeod, C. J., Grimes, C. B., & Searle, R. C. (2009). Footwall rotation in an oceanic core complex quantified using reoriented integrated ocean drilling program core samples. Earth and Planetary Science Letters, 287, 217–228. https://doi.org/10.1016/j.epsl.2009.08.007
    [Google Scholar]
  25. National Oceanic and Atmospheric Administration . (2022). https://www.ncei.noaa.gov/maps/bathymetry/
  26. Naylor, D., Shannon, P. M., & Murphy, N. (2002). Porcupine–Goban region—A standard structural nomenclature system. Petroleum Affairs Divisions, Special Publication, 1/02, Department of the Marine and Natural Resources.
    [Google Scholar]
  27. Neuharth, D., Brune, S., Wrona, T., Glerum, A., Braun, J., & Yuan, X. (2022). Evolution of rift systems and their fault networks in response to surface processes. Preprint, Earth ArXiv Repository. https://doi.org/10.31223/X5Q333
    [Google Scholar]
  28. Olive, J.‐A., Parnell‐Turner, R., Escartin, J., Smith, D. K., & Petersen, S. (2019). Controls on the seafloor exposure of detachment fault surfaces. Earth and Planetary Science Letters, 506(2019), 381–387. https://doi.org/10.1016/j.epsl.2018.11.001
    [Google Scholar]
  29. O'Reilly, B. M., Hauser, F., Ravaut, C., Shannon, P. M., & Readman, P. W. (2006). Crustal thinning, mantle exhumation and serpentinization in the Porcupine Basin, offshore Ireland: Evidence from wide‐angle seismic data. Journal of the Geological Society, London, 163, 775–787. https://doi.org/10.1144/0016‐76492005‐079
    [Google Scholar]
  30. Parnell‐Turner, R., Sohn, R. A., Peirce, C., Reston, T. J., MacLeod, C. J., Searle, R. C., & Simão, N. M. (2020). Seismicity trends and detachment fault structure at 13°N, mid‐Atlantic ridge. Geology, 49, 320–324. https://doi.org/10.1130/G48420.1
    [Google Scholar]
  31. Paulatto, M., Canales, J. P., Dunn, R. A., & Sohn, R. A. (2015). Heterogeneous and asymmetric crustal accretion: New constraints from multibeam bathymetry and potential field data from the rainbow area of the mid‐Atlantic ridge (36°15′N). Geochemistry, Geophysics, Geosystems, 16, 2994–3014. https://doi.org/10.1002/2015GC005743
    [Google Scholar]
  32. Peirce, C., Robinson, A. H., Funnell, M. J., Searle, R. C., MacLeod, C. J., & Reston, T. J. (2020). Magmatism versus serpentinization crustal structure along the 13N segment at the mid‐Atlantic ridge. Geophysical Journal International, 221, 981–1001.
    [Google Scholar]
  33. Pérez‐Gussinyé, M., & Reston, T. J. (2001). Rheological evolution during extension at nonvolcanic rifted margins: Onset of serpentinization and development of detachments leading to continental breakup. Journal of Geophysical Research, 106(B3), 3961–3975. https://doi.org/10.1029/2000JB900325
    [Google Scholar]
  34. Prada, M., Watremez, L., Chen, C., O'Reilly, B. M., Minshull, T. A., Reston, T. J., Shannon, P. M., Klaeschen, D., Wagner, G., & Gaw, V. (2017). Crustal strain‐dependent serpentinisation in the Porcupine Basin, offshore Ireland. Earth and Planetary Science Letters, 474, 148–156. https://doi.org/10.1016/j.epsl.2017.06.040
    [Google Scholar]
  35. Ranero, C. R., & Pérez‐Gussinyé, M. (2010). Sequential faulting explains the asymmetry and extension discrepancy of conjugate margins. Nature, 468, 294–300. https://doi.org/10.1038/nature09520
    [Google Scholar]
  36. Readman, P. W., O'Reilly, B. M., Shannon, P. M., & Naylor, D. (2005). The deep structure of the Porcupine Basin, offshore Ireland, from gravity and magnetic studies. In A. G.Doré & B. A.Vining (Eds.), Petroleum geology: North‐West Europe and global perspectives—Proceedings of the 6th Petroleum Geology Conference (Vol. 6, pp. 1047–1056). Geological Society, London. https://doi.org/10.1144/0061047
    [Google Scholar]
  37. Reston, T. (2018). Flipping detachments: The kinematics of ultraslow spreading ridges. Earth and Planetary Science Letters, 503, 144–157. https://doi.org/10.1016/j.epsl.2018.09.032
    [Google Scholar]
  38. Reston, T. (2020). On the rotation and frictional lock‐up of normal faults: Explaining the dip distribution of normal fault earthquakes and resolving the low‐angle normal fault paradox. Tectonophysics, 790, 228550. https://doi.org/10.1016/j.tecto.2020.228550
    [Google Scholar]
  39. Reston, T. J., Gaw, V., Pennell, J., Klaeschen, D., Stubenrauch, A., & Walker, I. (2004). Extreme crustal thinning in the south Porcupine Basin and the nature of the Porcupine median high: Implications for the formation of non‐volcanic rifted margins. Journal of the Geological Society, London, 161, 783–798. https://doi.org/10.1144/0016‐764903‐036
    [Google Scholar]
  40. Reston, T. J., Leythaeuser, T., Booth‐Rea, G., Sawyer, D., Klaeschen, D., & Long, C. (2007). Movement along a low‐angle normal fault: The S reflector west of Spain. Geochemistry, Geophysics, Geosystems, 8(6), 14. https://doi.org/10.1029/2006GC001437
    [Google Scholar]
  41. Reston, T. J., Pennell, J., Stubenrauch, J., Walker, I., & Perez‐Gussinye, M. (2001). Detachment faulting, mantle serpentinization, and serpentinite‐mud volcanism beneath the Porcupine Basin, southwest of Ireland. Geology, 29, 587–590.
    [Google Scholar]
  42. Reston, T. J., & Ranero, C. R. (2011). The 3‐D geometry of detachment faulting at mid‐ocean ridges. Geochemistry, Geophysics, Geosystems, 12(7), 19. https://doi.org/10.1029/2011GC003666
    [Google Scholar]
  43. Schuba, N. C., Gray, G. G., Morgan, J. K., Sawyer, D. S., Shillington, D. J., Reston, T. J., Bull, J. M., & Jordan, B. E. (2018). A low‐angle detachment fault revealed: Three‐dimensional images of the S‐reflector fault zone along the Galicia passive margin. Earth and Planetary Science Letters, 492, 232–238. https://doi.org/10.1016/j.epsl.2018.04.012
    [Google Scholar]
  44. Smith, D. K., Schouten, H., Dick, H. J. B., Cann, J. R., Salters, V., Marschall, H. R., Ji, F., Yoerger, D., Sanfilippo, A., Parnell‐Turner, R., Palmiotto, C., Zheleznov, A., Bai, H., Junkin, W., Urann, B., Dick, S., Sulanowska, M., Lemmond, P., & Curry, S. (2014). Development and evolution of detachment faulting along 50 km of the mid‐Atlantic ridge near 16.5° N. Geochemistry, Geophysics, Geosystems, 15, 4692–4711. https://doi.org/10.1002/2014GC005563
    [Google Scholar]
  45. Tate, M., White, N., & Conroy, J. J. (1993). Lithospheric extension and magmatism in the Porcupine Basin west of Ireland. Journal of Geophysical Research, 98, 13905–13923. https://doi.org/10.1029/93JB00890
    [Google Scholar]
  46. Tomar, G., O'Reilly, B. M., Prada, M., Hardy, R., Bean, C. J., Singh, S. C., & Bérdi, L. (2022). Crustal and uppermost mantle structure of the Porcupine Basin west of Ireland from seismic and gravity methods. Marine and Petroleum Geology, 140, 105652. https://doi.org/10.1016/j.marpetgeo.2022.105652
    [Google Scholar]
  47. Watremez, L., Prada, M., Minshull, T., O'Reilly, B., Chen, C., Reston, T., Shannon, P. M., Wagner, G., Gaw, V., Klaeschen, D., Edwards, R., & Lebedev, S. (2016). Deep structure of the Porcupine Basin from wide‐angle seismic data. Geological Society, London, Petroleum Geology Conference Series, 8, 199–209. https://doi.org/10.1144/PGC8.26
    [Google Scholar]
  48. Webber, S., Little, T. A., Norton, K. P., Österle, J., Mizera, M., Seward, D., & Holden, G. (2020). Progressive back‐warping of a rider block atop an actively exhuming, continental low‐angle normal fault. Journal of Structural Geology, 130, 103906. https://doi.org/10.1016/j.jsg.2019.103906
    [Google Scholar]
  49. Wernicke, B. (2009). The detachment era (1977–1982) and its role in revolutionizing continental tectonics. In U.Ring & B.Wernicke (Eds.), Extending a continent: Architecture, rheology and heat budget (Vol. 321, pp. 1–8). Geological Society, London, Special Publications. https://doi.org/10.1144/SP321.1
    [Google Scholar]
  50. Whiting, L., Haughton, P. D. W., & Shannon, P. M. (2021). From rifting to hyperextension: Upper Jurassic–lower cretaceous tectono‐stratigraphy of the Porcupine Basin, Irish Atlantic margin. Basin Research, 33, 1662–1696. https://doi.org/10.1111/bre.12530
    [Google Scholar]
  51. Whitney, D. L., Teyssier, C., Rey, P., & Buck, W. R. (2013). Continental and oceanic core complexes. Geological Society of America Bulletin, 125, 273–298. https://doi.org/10.1130/B30754.1
    [Google Scholar]
  52. Ye, Q., Mei, L., Jiang, D., Xu, X., Delogkos, E., Zhang, L., & Camanni, G. (2022). 3‐D structure and development of a metamorphic core complex in the northern South China Sea rifted margin. Journal of Geophysical Research, 127(2), e2021JB022595. https://doi.org/10.1029/2021JB022595
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12745
Loading
/content/journals/10.1111/bre.12745
Loading

Data & Media loading...

Keyword(s): 3D seismic reflection; corrugations; detachment; hyperextension; North Atlantic Ocean; Porcupine Basin; rifting

Most Cited This Month Most Cited RSS feed