1887
Volume 35, Issue 3
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

Deformation on shale‐rich continental margins is commonly associated with thin‐skinned extension above mobile shales. Normal faulting and shale mobilization are widespread on such margins, being associated with and controlled by progradation and gravitational failure of deltaic sedimentary wedges. However, due to uncertainties in seismically imaging mobile shales, our understanding of problems like how base mobile‐shale controls deformation, and the shape, size, and distribution of shale structures remains poorly understood. Here, we use 3D seismic reflection data from the platform region of the Tarakan Basin, offshore eastern Indonesia to investigate the temporal and spatial evolution of thin‐skinned deformation of the Neogene sedimentary section. Our detailed seismic interpretation reveals up to 74 km long, concave‐ and convex‐into‐the‐basin normal faults, dipping both basinward (eastwards) and locally landward (westwards), which detach downwards on a basal mobile shale (Early‐Middle Miocene). The base of the mobile‐shale unit dips gently (<17°) seaward, although older (Eocene‐Early Miocene), rift‐related normal faults originate local structural highs deforming the base of mobile shales. Our isochore (thickness map) analysis shows that supra‐shale normal faulting commenced in the Middle Miocene and was accompanied by the formation of hanging‐wall rollover folds and associated crestal grabens, with the subsequent along‐ and across strike migration of the deformation related to the nucleation, lateral linkage and reactivation of individual fault systems. Updip growth normal faulting was also accompanied by the downslope flow of mobile shale, accompanied by parallel and perpendicular variations of the differential loading in the delta system, and local contraction and mobile‐shale upbuilding, resulting in the growth of large, margin‐parallel shale anticlines further downdip. The growth faults and anticlines are locally overlain by up to 5 km tall mud pipes and volcanoes. We suggest that variations in the rate of sedimentary loading, mobile‐shale flow, fault growth and gravitational failure of the delta system above a seaward‐dipping, but locally rugose base mobile‐shale surface, controlled Neogene deformation in the Tarakan Basin. We also demonstrate how variations in the trend and dip of the base mobile‐shale surface influence the position, timing of formation and evolution of supra‐shale normal faults and their associated depocentres along shale‐rich, deltaic margins.

,

3D seismic identifications of thin‐skinned deformation above a basal mobile shale, and their implications on platform region of Tarakan Basin.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12747
2023-05-19
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/bre/35/3/bre12747.html?itemId=/content/journals/10.1111/bre.12747&mimeType=html&fmt=ahah

References

  1. Abdulah, F. A., Akbarsyah, M. S. A. A., & Yuniardi, Y. Y. (2016). Clay mineral effect in sandstone reservoir toward usage of fluid drilling type. Study case—Lisa field, Tarakan Basin. 78th EAGE Conference and Exhibition 2016, 1–5. https://doi.org/10.3997/2214‐4609.201600787
    [Google Scholar]
  2. Achmad, Z., & Samuel, L. (1984). Stratigraphy and depositional cycles in the N.E. Kalimantan Basin. Paper presented at the Indonesian Petroleum Association, 13th Annual Convention and Exhibition Jakarta, Indonesia.
    [Google Scholar]
  3. Advokaat, E. L., Marshall, N. T., Li, S., Spakman, W., Krijgsman, W., & van Hinsbergen, D. J. J. (2018). Cenozoic rotation history of Borneo and Sundaland, SE Asia revealed by paleomagnetism, seismic tomography, and kinematic reconstruction. Tectonics, 37, 2486–2512. https://doi.org/10.1029/2018TC005010
    [Google Scholar]
  4. Ahmed, B., McClay, K., Scarselli, N., & Bilal, A. (2022). New insights on the gravity‐driven deformation of late Albian—Early Turonian stacked delta collapse systems in the Ceduna sub‐basin, Bight Basin, southern margin of Australia. Tectonophysics, 823, 229184. https://doi.org/10.1016/j.tecto.2021.229184
    [Google Scholar]
  5. Back, S., & Morley, C. K. (2016). Growth faults above shale—Seismic‐scale outcrop analogues from the Makran foreland, SW Pakistan. Marine and Petroleum Geology, 70, 144–162. https://doi.org/10.1016/j.marpetgeo.2015.11.008
    [Google Scholar]
  6. Balaguru, A. (2008). Tectonic evolution, sedimentation and chronostratigraphic chart of Sabah, Malaysia. European Association of Geoscientists & Engineers, PGCE 2008, cp‐258‐00078. https://doi.org/10.3997/2214‐4609‐pdb.258.P28
    [Google Scholar]
  7. Balaguru, A., & Hall, R. (2009). Tectonic evolution and sedimentation of Sabah, North Borneo, Malaysia. Paper presented at the AAPG international and exhibition Cape Town, South Africa.
    [Google Scholar]
  8. Balaguru, A., Nichols, G., & Hall, R. (2003). The origin of the ‘circular basins’ of Sabah, Malaysia. Bulletin of the Geological Society of Malaysia, 46, 335–351.
    [Google Scholar]
  9. Biantoro, E., Kusuma, M. I., & Rotinsulu, L. F. (1996). Tarakan sub‐basin growth faults, north‐East Kalimantan: Their roles in previous hydrocarbon entrapment. Indonesian Petroleum Association, 25th Annual Convention Proceedings, 1, 175–189.
    [Google Scholar]
  10. Bonini, M. (2012). Mud volcanoes: Indicators of stress orientation and tectonic controls. Earth‐Science Reviews, 115(3), 121–152. https://doi.org/10.1016/j.earscirev.2012.09.002
    [Google Scholar]
  11. Bonini, M., & Mazzarini, F. (2010). Mud volcanoes as potential indicators of regional stress and pressurized layer depth. Tectonophysics, 494(1), 32–47. https://doi.org/10.1016/j.tecto.2010.08.006
    [Google Scholar]
  12. Briggs, S. E., Davies, R. J., Cartwright, J. A., & Morgan, R. (2006). Multiple detachment levels and their control on fold styles in the compressional domain of the deepwater West Niger Delta. Basin Research, 18(4), 435–450. https://doi.org/10.1111/j.1365‐2117.2006.00300.x
    [Google Scholar]
  13. Brondijk, J. F. (1962). A reclassification of a part of the Setap shale formation as the Temburong formation. British Territories in Borneo: Annual Report of the Geological Survey, 56–60.
    [Google Scholar]
  14. Brun, J.‐P., & Mauduit, T. P. O. (2008). Rollovers in salt tectonics: The inadequacy of the listric fault model. Tectonophysics, 457(1), 1–11. https://doi.org/10.1016/j.tecto.2007.11.038
    [Google Scholar]
  15. Brun, J.‐P., & Mauduit, T. P. O. (2009). Salt rollers: Structure and kinematics from analogue modelling. Marine and Petroleum Geology, 26(2), 249–258. https://doi.org/10.1016/j.marpetgeo.2008.02.002
    [Google Scholar]
  16. Cartwright, J. A., Trudgill, B. D., & Mansfield, C. S. (1995). Fault growth by segment linkage: An explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 17(9), 1319–1326. https://doi.org/10.1016/0191‐8141(95)00033‐a
    [Google Scholar]
  17. Chakhmakhchev, A., & Rushworth, P. (2010). Global overview of recent exploration investment in deepwater—New discoveries, plays and exploration potential. Paper presented at the AAPG Convention, Calgary, Alberta, Canada.
    [Google Scholar]
  18. Chima, K. I., Granjeon, D., Do Couto, D., Leroux, E., Gorini, C., Rabineau, M., & Mora‐Glukstad, M. (2022). Tectono‐stratigraphic evolution of the offshore western Niger Delta from the cretaceous to present: Implications of delta dynamics and paleo‐topography on gravity‐driven deformation. Basin Research, 34(1), 25–49. https://doi.org/10.1111/bre.12609
    [Google Scholar]
  19. Cohen, H. A., & McClay, K. (1996). Sedimentation and shale tectonics of the northwestern Niger Delta front. Marine and Petroleum Geology, 13(3), 313–328. https://doi.org/10.1016/0264‐8172(95)00067‐4
    [Google Scholar]
  20. CoreLab . (2007). Core laboratories Indonesia regional datasets. https://corelab.com/irs/cms/docs/Indonesia_Regional_Datasets_Sept2007.pdf
    [Google Scholar]
  21. Cullen, A. (2014). Nature and significance of the west Baram and Tinjar lines, NW Borneo. Marine and Petroleum Geology, 51, 197–209. https://doi.org/10.1016/j.marpetgeo.2013.11.010
    [Google Scholar]
  22. Cullen, A., Reemst, P., Henstra, G., Gozzard, S., & Ray, A. (2010). Rifting of the South China Sea: New perspectives. Petroleum Geoscience, 16(3), 273–282. https://doi.org/10.1144/1354‐079309‐908
    [Google Scholar]
  23. Damuth, J. E. (1994). Neogene gravity tectonics and depositional processes on the deep Niger Delta continental margin. Marine and Petroleum Geology, 11(3), 320–346. https://doi.org/10.1016/0264‐8172(94)90053‐1
    [Google Scholar]
  24. Dawers, N. H., Anders, M. H., & Scholz, C. H. (1993). Growth of normal faults: Displacement‐length scaling. Geology, 21(12), 1107–1110. https://doi.org/10.1130/0091‐7613(1993)021<1107:gonfdl>2.3.co;2
    [Google Scholar]
  25. Dula, W. F., Jr. (1991). Geometric models of listric normal faults and rollover folds. AAPG Bulletin, 75(10), 1609–1625. https://doi.org/10.1306/0C9B29B1‐1710‐11D7‐8645000102C1865D
    [Google Scholar]
  26. Elsley, G. R., & Tieman, H. (2010). A comparison of Prestack depth and Prestack time imaging of the Paktoa complex, Canadian Beaufort MacKenzie Basin. In L. J.Wood (Ed.), Shale tectonics (Vol. 93, pp. 79–90). American Association of Petroleum Geologists, Memoir. https://doi.org/10.1306/13231309M933419
    [Google Scholar]
  27. Erdi, A., & Jackson, C. A.‐L. (2021). What controls salt‐detached contraction in the translational domain of the outer Kwanza Basin, offshore Angola?Basin Research, 33(3), 1880–1905. https://doi.org/10.1111/bre.12539
    [Google Scholar]
  28. Erdi, A., & Jackson, C. A.‐L. (2022). Salt‐detached strike‐slip faulting, outer Kwanza Basin, offshore Angola. Tectonics, 41, e2022TC007428. https://doi.org/10.1029/2022TC007428
    [Google Scholar]
  29. Espurt, N., Callot, J.‐P., Totterdell, J., Struckmeyer, H., & Vially, R. (2009). Interactions between continental breakup dynamics and large‐scale delta system evolution: Insights from the cretaceous Ceduna delta system, Bight Basin, southern Australian margin. Tectonics, 28(6), TC6002. https://doi.org/10.1029/2009TC002447
    [Google Scholar]
  30. Evamy, B. D., Haremboure, J., Kamerling, P., Knaap, W. A., Molloy, F. A., & Rowlands, P. H. (1978). Hydrocarbon habitat of tertiary Niger Delta. AAPG Bulletin, 62(1), 1–39. https://doi.org/10.1306/C1EA47ED‐16C9‐11D7‐8645000102C1865D
    [Google Scholar]
  31. Fagin, S. (1996). The fault shadow problem: Its nature and elimination. The Leading Edge, 15(9), 1005–1013. https://doi.org/10.1190/1.1437403
    [Google Scholar]
  32. Fazlikhani, H., & Back, S. (2012). Temporal and lateral variation in the development of growth faults and growth strata in western Niger Delta, Nigeria. AAPG Bulletin, 96(4), 595–614. https://doi.org/10.1306/08291111023
    [Google Scholar]
  33. Fazlikhani, H., & Back, S. (2015a). The influence of differential sedimentary loading and compaction on the development of a deltaic rollover. Marine and Petroleum Geology, 59, 136–149. https://doi.org/10.1016/j.marpetgeo.2014.08.005
    [Google Scholar]
  34. Fazlikhani, H., & Back, S. (2015b). The influence of pre‐existing structure on the growth of syn‐sedimentary normal faults in a deltaic setting, Niger Delta. Journal of Structural Geology, 73, 18–32. https://doi.org/10.1016/j.jsg.2015.01.011
    [Google Scholar]
  35. Fazlikhani, H., Back, S., Kukla, P. A., & Fossen, H. (2017). Interaction between gravity‐driven listric normal fault linkage and their hanging‐wall rollover development: A case study from the western Niger Delta, Nigeria. Geological Society, London, Special Publications, 439(1), 169–186. https://doi.org/10.1144/SP439.20
    [Google Scholar]
  36. Fernández‐Ibáñez, F., & Soto, J. I. (2017). Pore pressure and stress regime in a thick extensional basin with active shale diapirism (western Mediterranean). AAPG Bulletin, 101(2), 233–264. https://doi.org/10.1306/07131615228
    [Google Scholar]
  37. Francis, A. (2018). A simple guide to seismic depth conversion: Part I. GeoExpro, 15, 24.
    [Google Scholar]
  38. Franke, D., Barckhausen, U., Heyde, I., Tingay, M., & Ramli, N. (2008). Seismic images of a collision zone offshore NW Sabah/Borneo. Marine and Petroleum Geology, 25(7), 606–624. https://doi.org/10.1016/j.marpetgeo.2007.11.004
    [Google Scholar]
  39. Garfunkel, Z. (1984). Large‐scale submarine rotational slumps and growth faults in the eastern Mediterranean. Marine Geology, 55(3), 305–324. https://doi.org/10.1016/0025‐3227(84)90074‐4
    [Google Scholar]
  40. Gawthorpe, R. L., Fraser, A. J., & Collier, R. E. L. (1994). Sequence stratigraphy in active extensional basins: Implications for the interpretation of ancient basin‐fills. Marine and Petroleum Geology, 11(6), 642–658. https://doi.org/10.1016/0264‐8172(94)90021‐3
    [Google Scholar]
  41. Ge, H., Jackson, M. P. A., & Vendeville, B. C. (1997). Kinematics and dynamics of salt tectonics driven by progradation. AAPG Bulletin, 81(3), 398–423. https://doi.org/10.1306/522B4361‐1727‐11D7‐8645000102C1865D
    [Google Scholar]
  42. GEBCO Bathymetric Compilation Group . (2020). The GEBCO_2020 grid—A continuous terrain model of the global oceans and land. http://www.gebco.net
    [Google Scholar]
  43. Graves, J. E., & Swauger, D. A. (1997). Petroleum systems of the Sandakan Basin, Philippines. In J. V. C.Howes & R. A.Noble (Eds.), Petroleum systems of SE Asia and Australasia (pp. 799–813). Indonesian Petroleum Association.
    [Google Scholar]
  44. Groshong, R. H., Jr. (2006). 3‐D structural geology. A practical guide to quantitative surface and subsurface map interpretation (2nd ed., p. 400). Springer‐Verlag. https://doi.org/10.1007/978‐3‐540‐31055‐6
    [Google Scholar]
  45. Hall, R. (2012). Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570–571, 1–41. https://doi.org/10.1016/j.tecto.2012.04.021
    [Google Scholar]
  46. Hall, R. (2013). Contraction and extension in northern Borneo driven by subduction rollback. Journal of Asian Earth Sciences, 76, 399–411. https://doi.org/10.1016/j.jseaes.2013.04.010
    [Google Scholar]
  47. Hall, R. (2019). The subduction initiation stage of the Wilson cycle. In Wilson, R. A., Houseman, G. A., McCaffrey, K. J. W., Doré, A. G., & Buiter, S. J. H. (Eds.), Fifty years of the Wilson cycle concept in plate tectonics (Vol. 470, pp. 415–437). Geological Society, London, Special Publications. https://doi.org/10.1144/SP470.3
    [Google Scholar]
  48. Hall, R., & Nichols, G. J. (2002). Cenozoic sedimentation and tectonics in Borneo: Climatic influences on orogenesis. In S. J.Jones & L.Frostick (Eds.), Sediment flux to basins: Causes, controls and consequences (Vol. 191, pp. 5–22). Geological Society, London, Special Publication. https://doi.org/10.1144/GSL.SP.2002.191.01.02
    [Google Scholar]
  49. Hansen, J. P. V., Cartwright, J. A., Huuse, M., & Clausen, O. R. (2005). 3D seismic expression of fluid migration and mud remobilization on the Gjallar ridge, offshore mid‐Norway. Basin Research, 17(1), 123–139. https://doi.org/10.1111/j.1365‐2117.2005.00257.x
    [Google Scholar]
  50. Harding, T. P. (1990). Identification of wrench faults using subsurface structural data: Criteria and pitfalls. AAPG Bulletin, 74(10), 1590–1609. https://doi.org/10.1306/0C9B2533‐1710‐11D7‐8645000102C1865D
    [Google Scholar]
  51. Heriyanto, N., Satoto, W., & Sardjono, S. (1992). An overview of hydrocarbon maturity and its migration aspects in Bunyu Island, Tarakan Basin. Paper presented at the Indonesian Petroleum Association, 21st Annual Convention and Exhibition Jakarta, Indonesia.
    [Google Scholar]
  52. Hidayati, S., Guritno, E., Argenton, A., Ziza, W., & Del Campana, I. (2007). Re‐visited structural framework of the Tarakan Sub‐Basin Northeast Kalimantan‐Indonesia. Paper presented at the Proceedings, Indonesian Petroleum Association, 31st Annual Convention and Exhibition.
    [Google Scholar]
  53. Hongbin, X., & Suppe, J. (1992). Origin of rollover. AAPG Bulletin, 76(4), 509–529. https://doi.org/10.1306/BDFF8858‐1718‐11D7‐8645000102C1865D
    [Google Scholar]
  54. Hudec, M. R., & Soto, J. I. (2021). Piercement mechanisms for mobile shales. Basin Research, 33, 2862–2882. https://doi.org/10.1111/bre.12586
    [Google Scholar]
  55. Hutchison, C. S. (1996). The ‘Rajang accretionary prism’ and ‘Lupar line’ problem of Borneo. In R.Hall & D. J.Blundell (Eds.), Tectonic evolution of SE Asia (Vol. 106, pp. 247–261). Geological Society, London, Special Publication. https://doi.org/10.1144/GSL.SP.1996.106.01.16
    [Google Scholar]
  56. Hutchison, C. S. (2005). Geology of north‐west Borneo: Sarawak, Brunei and Sabah. Elsevier.
    [Google Scholar]
  57. Imber, J., Childs, C., Nell, P. A. R., Walsh, J. J., Hodgetts, D., & Flint, S. (2003). Hanging wall fault kinematics and footwall collapse in listric growth fault systems. Journal of Structural Geology, 25(2), 197–208. https://doi.org/10.1016/s0191‐8141(02)00034‐2
    [Google Scholar]
  58. Ings, S. J., & Beaumont, C. (2010). Continental margin shale tectonics: Preliminary results from coupled fluid‐mechanical models of large‐scale delta instability. Journal of the Geological Society, 167(3), 571–582. https://doi.org/10.1144/0016‐76492009‐052
    [Google Scholar]
  59. Jackson, C. A. L., Bell, R. E., Rotevatn, A., & Tvedt, A. B. M. (2017). Techniques to determine the kinematics of synsedimentary normal faults and implications for fault growth models. In C.Childs, R. E.Holdsworth, C. A.‐L.Jackson, T.Manzocchi, J. J.Walsh, & G.Yielding (Eds.), The geometry and growth of normal faults (Vol. 439, pp. 187–217). Geological Society, London, Special Publications. https://doi.org/10.1144/sp439.22
    [Google Scholar]
  60. Jackson, M. P. A., & Hudec, M. R. (2017). Salt tectonics: Principles and practice. Cambridge University Press.
    [Google Scholar]
  61. Jamaludin, S. N. F., Sautter, B., Pubellier, M., & Beg, M. A. (2021). The succession of upper Eocene‐upper Miocene limestone growth and corresponding tectonic events in Luconia shelf, Sarawak, Malaysia. Frontiers in Earth Science, 9, 588629. https://doi.org/10.3389/feart.2021.588629
    [Google Scholar]
  62. Johnson, P. W., & Hansen, K. (1987). Method for calibrating stacking velocities for use in time‐depth conversion. Paper presented at the Offshore Technology Conference. https://doi.org/10.4043/5403‐MS
    [Google Scholar]
  63. Kessler, F. L., & Jong, J. (2017). The roles and implications of several prominent unconformities in Neogene sediments of the greater Miri area, NW Sarawak. Warta Geologi, 43(4), 1–8.
    [Google Scholar]
  64. Kopf, A. J. (2002). Significance of mud volcanism. Reviews of Geophysics, 40(2), 2‐1–2‐52. https://doi.org/10.1029/2000RG000093
    [Google Scholar]
  65. Krisnabudhi, A., Sapiie, B., Riyanto, A. M., Gunawan, A., & Rizky, F. F. (2022). Mesozoic‐Cenozoic stratigraphy and tectonic development of the southern great Tarakan Basin, Northeast Borneo, Indonesia. Rudarsko‐geološko‐naftni zbornik, 37(1), 123–138. https://doi.org/10.17794/rgn.2022.1.11
    [Google Scholar]
  66. Lacoste, A., Vendeville, B. C., Mourgues, R., Loncke, L., & Lebacq, M. (2012). Gravitational instabilities triggered by fluid overpressure and downslope incision—Insights from analytical and analogue modelling. Journal of Structural Geology, 42, 151–162. https://doi.org/10.1016/j.jsg.2012.05.011
    [Google Scholar]
  67. Lentini, M. R., & Darman, H. (1996). Aspects of the Neogene tectonic history and hydrocarbon geology of the Tarakan Basin. Paper presented at the Indonesian Petroleum Association, 25th Annual Convention and Exhibition, Indonesia.
    [Google Scholar]
  68. Levell, B. K. (1987). The nature and significance of regional unconformities in the hydrocarbon–bearing Neogene sequence offshore West Sabah. Geological Society of Malaysia, 21, 55–90.
    [Google Scholar]
  69. Li, C., Luo, X., Zhang, L., Fan, C., Xu, C., Liu, A., Li, H., Li, J., & Lei, Y. (2022). New understanding of overpressure responses and pore pressure prediction: Insights from the effect of clay mineral transformations on mudstone compaction. Engineering Geology, 297, 106493. https://doi.org/10.1016/j.enggeo.2021.106493
    [Google Scholar]
  70. Li, J., & Mitra, S. (2020). Seismic models of detachment and faulted detachment folds. Marine and Petroleum Geology, 117, 104385. https://doi.org/10.1016/j.marpetgeo.2020.104385
    [Google Scholar]
  71. Liu, Z., Wang, H., Hantoro, W. S., Sathiamurthy, E., Colin, C., Zhao, Y., & Li, J. (2012). Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay peninsula, Borneo, and Sumatra). Chemical Geology, 291, 1–12. https://doi.org/10.1016/j.chemgeo.2011.11.015
    [Google Scholar]
  72. Lunt, P., & Madon, M. (2017). Onshore to offshore correlation of northern Borneo; a regional perspective. Bulletin of the Geological Society of Malaysia, 64(1), 101–122. https://doi.org/10.7186/bgsm64201710
    [Google Scholar]
  73. Lunt, P. (2019). A new view of integrating stratigraphic and tectonic analysis in South China Sea and north Borneo basins. Journal of Asian Earth Sciences, 177, 220–239. https://doi.org/10.1016/j.jseaes.2019.03.009
    [Google Scholar]
  74. Madon, M., Kim, C. L., & Wong, R. (2013). The structure and stratigraphy of deepwater Sarawak, Malaysia: Implications for tectonic evolution. Journal of Asian Earth Sciences, 76, 312–333. https://doi.org/10.1016/j.jseaes.2013.04.040
    [Google Scholar]
  75. Mandl, G., & Crans, W. (1981). Gravitational gliding in deltas. In K. R.McClay & N. J.Price (Eds.), Thrust and nappe tectonics (Vol. 9, pp. 41–54). Geological Society, London, Special Publications. https://doi.org/10.1144/GSL.SP.1981.009.01.05
    [Google Scholar]
  76. Mansfield, C. S., & Cartwright, J. (1996). High resolution fault displacement mapping from three‐dimensional seismic data: Evidence for dip linkage during fault growth. Journal of Structural Geology, 18(2–3), 249–263. https://doi.org/10.1016/S0191‐8141(96)80048‐4
    [Google Scholar]
  77. Maulin, H.B., Sapiie, B., & Gunawan, I. (2019). The Neogene deformation, unconformity surfaces and uplift features in delta tectonics, Tarakan Sub Basin. Proceedings, Indonesian Petroleum Association, Forty‐Third Annual Convention & Exhibition, September 2019, Paper No. IPA19‐G‐191.
    [Google Scholar]
  78. Maulin, H. B., Sapiie, B., & Gunawan, I. (2021). Analisis Sesar Tumbuh Pada Sistem Tektonik Delta Tersier di Subcekungan Tarakan, Kalimantan Utara. Bulletin of Geology, 5(2), 570–579.
    [Google Scholar]
  79. McClay, K., Dooley, T., & Zamora, G. (2003). Analogue models of delta systems above ductile substrates. In P.Van Rensbergen, R. R.Hillis, A. J.Maltman, & C. K.Morley (Eds.), Subsurface sediment mobilization (Vol. 216, pp. 411–428). Geological Society, London, Special Publications. https://doi.org/10.1144/GSL.SP.2003.216.01.27
    [Google Scholar]
  80. McClay, K. R. (1990). Extensional fault systems in sedimentary basins: A review of analogue model studies. Marine and Petroleum Geology, 7(3), 206–233. https://doi.org/10.1016/0264‐8172(90)90001‐W
    [Google Scholar]
  81. McGrath, A. G., & Davison, I. (1995). Damage zone geometry around fault tips. Journal of Structural Geology, 17(7), 1011–1024. https://doi.org/10.1016/0191‐8141(94)00116‐H
    [Google Scholar]
  82. Mitchum, R. M., Jr., Vail, P. R., & Sangree, J. B. (1977). Seismic stratigraphy and global changes of sea level, part 6: Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In C. E.Payton (Ed.), Seismic stratigraphy—Applications to hydrocarbon exploration (Vol. 26, pp. 117–133). American Association of Petroleum Geologists, Memoir. https://doi.org/10.1306/M26490C8
    [Google Scholar]
  83. Morley, C. K. (2002). Evolution of large normal faults: Evidence from seismic reflection data. AAPG Bulletin, 86(6), 961–978. https://doi.org/10.1306/61EEDBFC‐173E‐11D7‐8645000102C1865D
    [Google Scholar]
  84. Morley, C. K. (2003a). Mobile shale related deformation in large deltas developed on passive and active margins. In P.Van Rensbergen, R. R.Hillis, A. J.Maltman, & C. K.Morley (Eds.), Subsurface sediment mobilization (Vol. 216, pp. 335–357). Geological Society, London, Special Publications. https://doi.org/10.1144/GSL.SP.2003.216.01.22
    [Google Scholar]
  85. Morley, C. K. (2003b). Outcrop examples of mudstone intrusions from the Jerudong anticline, Brunei Darussalam and inferences for hydrocarbon reservoirs. Geological Society, London, Special Publications, 216(1), 381–394. https://doi.org/10.1144/GSL.SP.2003.216.01.25
    [Google Scholar]
  86. Morley, C. K. (2007). Development of crestal normal faults associated with deepwater fold growth. Journal of Structural Geology, 29(7), 1148–1163. https://doi.org/10.1016/j.jsg.2007.03.016
    [Google Scholar]
  87. Morley, C. K., & Guerin, G. (1996). Comparison of gravity‐driven deformation styles and behavior associated with mobile shales and salt. Tectonics, 15(6), 1154–1170. https://doi.org/10.1029/96TC01416
    [Google Scholar]
  88. Morley, C. K., King, R., Hillis, R., Tingay, M., & Backe, G. (2011). Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: A review. Earth‐Science Reviews, 104(1), 41–91. https://doi.org/10.1016/j.earscirev.2010.09.010
    [Google Scholar]
  89. Morley, C. K., & Westaway, R. (2006). Subsidence in the super‐deep Pattani and Malay basins of Southeast Asia: A coupled model incorporating lower‐crustal flow in response to post‐rift sediment loading. Basin Research, 18, 51–84. https://doi.org/10.1111/j.1365‐2117.2006.00285.x
    [Google Scholar]
  90. Morley, R. J., Hasan, S. S., Morley, H. P., Jais, J. H. M., Mansor, A., Aripin, M. R., Nordin, M. H., & Rohaizar, M. H. (2021). Sequence biostratigraphic framework for the Oligocene to Pliocene of Malaysia: High‐frequency depositional cycles driven by polar glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 561, 110058. https://doi.org/10.1016/j.palaeo.2020.110058
    [Google Scholar]
  91. Morley, R. J., Morley, H. P., & Swiecicki, T. (2017). Constructing Neogene palaeogeographical maps for the Sunda region. Proceedings of the South East Asia Petroleum Exploration Society (SEAPEX) Conference, April 2017.
    [Google Scholar]
  92. Moss, S. J., Carter, A., Baker, S., & Hurford, A. J. (1998). A late Oligocene tectono‐volcanic event in East Kalimantan and the implications for tectonics and sedimentation in Borneo. Journal of the Geological Society, 155(1), 177–192. https://doi.org/10.1144/gsjgs.155.1.0177
    [Google Scholar]
  93. Mourgues, R., Lecomte, E., Vendeville, B., & Raillard, S. (2009). An experimental investigation of gravity‐driven shale tectonics in progradational delta. Tectonophysics, 474(3), 643–656. https://doi.org/10.1016/j.tecto.2009.05.003
    [Google Scholar]
  94. Netherwood, R., & Wight, A. (1992). Structurally‐controlled, linear reefs in a Pliocene delta‐front setting, Tarakan Basin, Northeast Kalimantan. Paper presented at the Carbonate Rocks and Reservoirs of Indonesia: A Core Workshop.
    [Google Scholar]
  95. Noon, S., Harrington, J., and Darman, H. (2003). The Tarakan Basin, East Kalimantan: Proven Neogene fluvio‐deltaic, prospective deep‐water and Paleogene plays in a regional stratigraphic context. Proceedings, Indonesian Petroleum Association, Twenty‐Ninth Annual Convention & Exhibition, October 2003, Paper No. IPA03‐G‐136.
    [Google Scholar]
  96. Nur' Aini, S., Hall, R. & Elders, C. (2005). Basement architecture and sedimentary fill of the north Makassar Straits Basin. Proceedings, Indonesian Petroleum Association, 30th Annual Convention & Exhibition, August 2005, Paper No. IPA05‐G‐161.
    [Google Scholar]
  97. Putra, P. R., Tasiyat, S. B., & Ramadhan, A. M. (2017). Pore pressure prediction and its relationship to structural style in offshore Tarakan Sub‐Basin, Northeast Kalimantan. Paper presented at the Indonesian Petroleum Association, 41st Annual Convention and Exhibition, Jakarta, Indonesia, Paper No. IPA17‐523‐G.
    [Google Scholar]
  98. Ramberg, H. (1981). The role of gravity in orogenic belts. Geological Society, London, Special Publications, 9, 125–140. https://doi.org/10.1144/GSL.SP.1981.009.01.11
    [Google Scholar]
  99. Rangin, C., & Silver, E. (1991). Neogene tectonic evolution of the Celebes‐Sulu basins: New insights from leg 124 drilling. In E. A.Silver, C.Rangin, & M. T.von Breymann (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 124, pp. 51–63). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.124.122.1991
    [Google Scholar]
  100. Rosary, D., Nicaksana, A. B., & Wilkinson, J.K. (2014). A correlation of climate stratigraphy with biostratigraphy to confirm stratigraphic units in the Sebatik Area. Proceedings, Indonesian Petroleum Association, 38th Annual Convention & Exhibition, May 2014, Paper No. IPA14‐G‐258.
    [Google Scholar]
  101. Rouby, D., Nalpas, T., Jermannaud, P., Robin, C., Guillocheau, F., & Raillard, S. (2011). Gravity driven deformation controlled by the migration of the delta front: The Plio‐Pleistocene of the eastern Niger Delta. Tectonophysics, 513(1), 54–67. https://doi.org/10.1016/j.tecto.2011.09.026
    [Google Scholar]
  102. Rowan, M. G. (2020). Salt‐ and shale‐detached gravity‐driven failure of continental margins. In N.Scarselli, J.Adam, & D.Chiarella (Eds.), Regional geology and tectonics: Principles of geologic analysis (Vol. 1, 2nd ed., pp. 205–234). Elsevier. https://doi.org/10.1016/B978‐0‐444‐64134‐2.00010‐9
    [Google Scholar]
  103. Santos Betancor, I., & Soto, J. I. (2015). 3D geometry of a shale‐cored anticline in the western South Caspian Basin (offshore Azerbaijan). Marine and Petroleum Geology, 67, 829–851. https://doi.org/10.1016/j.marpetgeo.2015.06.012
    [Google Scholar]
  104. Sapiie, B., Furqan, T. A., Septama, E., Wardaya, P. D., & Gunawan, I. (2021) Mechanism of gravity‐driven deformation using sandbox modeling: A case study of the Tarakan Sub‐Basin, East Kalimantan. Paper presented at the Indonesian Petroleum Association, 45th Annual Convention and Exhibition Jakarta, Indonesia, September 2021, Paper No. IPA21‐G‐286.
    [Google Scholar]
  105. Sapin, F., Ringenbach, J.‐C., Rives, T., & Pubellier, M. (2012). Counter‐regional normal faults in shale‐dominated deltas: Origin, mechanism and evolution. Marine and Petroleum Geology, 37(1), 121–128. https://doi.org/10.1016/j.marpetgeo.2012.05.001
    [Google Scholar]
  106. Satyana, A. H. (2015). Rifting history of the Makassar Straits: New constraints from wells penetrating the basement and oils discovered in Eocene section‐implications for further exploration of West Sulawesi Offshore. Proceedings, Indonesian Petroleum Association 39th Annual Convention & Exhibition, May 2015, Paper No. IPA15‐G‐104.
    [Google Scholar]
  107. Satyana, A. H., Nugroho, D., & Surantoko, I. (1999). Tectonic controls on the hydrocarbon habitats of the Barito, Kutei, and Tarakan basins, eastern Kalimantan, Indonesia: Major dissimilarities in adjoining basins. Journal of Asian Earth Sciences, 17, 99–122. https://doi.org/10.1016/S0743‐9547(98)00059‐2
    [Google Scholar]
  108. Schlüter, H. U., Hinz, K., & Block, M. (1996). Tectono‐stratigraphic terranes and detachment faulting of the South China Sea and Sulu Sea. Marine Geology, 130(1), 39–78. https://doi.org/10.1016/0025‐3227(95)00137‐9
    [Google Scholar]
  109. Situmorang, B. (1982). The formation of the Makassar Basin as determined from subsidence curves. Proceedings, Indonesian Petroleum Association 11th Annual Convention & Exhibition, June 1982.
    [Google Scholar]
  110. Soto, J. I., Fernández‐Ibáñez, F., Talukder, A. R., & Martínez‐García, P. (2010). Miocene shale tectonics in the northern Alboran Sea (Western Mediterranean). In L. J.Wood (Ed.), Shale tectonics (Vol. 93, pp. 119–144). American Association of Petroleum Geologists, Memoirs. https://doi.org/10.1306/13231312M933422
    [Google Scholar]
  111. Soto, J. I., Heidari, M., & Hudec, M. R. (2021). Proposal for a mechanical model of mobile shales. Scientific Reports, 11(1), 23785. https://doi.org/10.1038/s41598‐021‐02868‐x
    [Google Scholar]
  112. Soto, J. I., Hudec, M. R., Mondol, N. H., & Heidari, M. (2021). Shale transformations and physical properties—Implications for seismic expression of mobile shales. Earth‐Science Reviews, 220, 103746. https://doi.org/10.1016/j.earscirev.2021.103746
    [Google Scholar]
  113. Spakman, W., & Hall, R. (2010). Surface deformation and slab‐mantle interaction during Banda arc subduction rollback. Nature Geoscience, 3, 562–566. https://doi.org/10.1038/ngeo917
    [Google Scholar]
  114. Sudarmono, D., Maulin, H. B., & Wicaksono, A. (2017). Some new insights to tectonic and stratigraphic evolution of the Tarakan Sub‐Basin, North East Kalimantan, Indonesia. Proceedings, Indonesian Petroleum Association, Forty‐First Annual Convention & Exhibition, May 2017, Paper No. IPA17‐722‐G.
    [Google Scholar]
  115. Sylvester, A. G. (1988). Strike‐slip faults. GSA Bulletin, 100(11), 1666–1703. https://doi.org/10.1130/0016‐7606(1988)100<1666:SSF>2.3.CO;2
    [Google Scholar]
  116. Tearpock, D. J., & Bischke, R. E. (2002). Applied subsurface geological mapping with structural methods (2nd ed., p. 864). Pearson Education.
    [Google Scholar]
  117. Tingay, M. R. P., Hillis, R. R., Swarbrick, R. E., Morley, C. K., & Damit, A. R. (2009). Origin of overpressure and pore‐pressure prediction in the Baram province, Brunei. AAPG Bulletin, 93(1), 51–74. https://doi.org/10.1306/08080808016
    [Google Scholar]
  118. Totterdell, J. M., & Krassay, A. A. (2003). The role of shale deformation and growth faulting in the late cretaceous evolution of the Bight Basin, offshore southern Australia. In P.Van Rensbergen, R. R.Hillis, A. J.Maltman, & C. K.Morley (Eds.), Subsurface sediment mobilization (Vol. 216, pp. 429–442). Geological Society, London, Special Publications. https://doi.org/10.1144/GSL.SP.2003.216.01.28
    [Google Scholar]
  119. Van Bemmelen, R. W. (1949). The geology of Indonesia. The Government Printing Office.
    [Google Scholar]
  120. Van Hattum, M. W. A., Hall, R., Pickard, A. L., & Nichols, G. J. (2013). Provenance and geochronology of Cenozoic sandstones of northern Borneo. Journal of Asian Earth Sciences, 76, 266–282. https://doi.org/10.1016/j.jseaes.2013.02.033
    [Google Scholar]
  121. Van Rensbergen, P., & Morley, C. K. (2000). 3D seismic study of a shale expulsion syncline at the base of the champion delta, offshore Brunei and its implications for the early structural evolution of large delta systems. Marine and Petroleum Geology, 17(8), 861–872. https://doi.org/10.1016/S0264‐8172(00)00026‐X
    [Google Scholar]
  122. Van Rensbergen, P., & Morley, C. K. (2003). Re‐evaluation of mobile shale occurrences on seismic sections of the champion and Baram deltas, offshore Brunei. In P.Van Rensbergen, R. R.Hillis, A. J.Maltman, & C. K.Morley (Eds.), Subsurface sediment mobilization (Vol. 216, pp. 395–409). Geological Society, London, Special Publications. https://doi.org/10.1144/GSL.SP.2003.216.01.26
    [Google Scholar]
  123. Van Rensbergen, P., Morley, C. K., Ang, D. W., Hoan, T. Q., & Lam, N. T. (1999). Structural evolution of shale diapirs from reactive rise to mud volcanism: 3D seismic data from the Baram delta, offshore Brunei Darussalam. Journal of the Geological Society, 156(3), 633–650. https://doi.org/10.1144/gsjgs.156.3.0633
    [Google Scholar]
  124. Walsh, J. J., Bailey, W. R., Childs, C., Nicol, A., & Bonson, C. G. (2003). Formation of segmented normal faults: A 3‐D perspective. Journal of Structural Geology, 25(8), 1251–1262. https://doi.org/10.1016/s0191‐8141(02)00161‐x
    [Google Scholar]
  125. Walsh, J. J., & Watterson, J. (1988). Analysis of the relationship between displacements and dimensions of faults. Journal of Structural Geology, 10(3), 239–247. https://doi.org/10.1016/0191‐8141(88)90057‐0
    [Google Scholar]
  126. Walsh, J. J., Watterson, J., Bailey, W. R., & Childs, C. (1999). Fault relays, bends, and branch‐lines. Journal of Structural Geology, 21(8–9), 1019–1026. https://doi.org/10.1016/S0191‐8141(99)00026‐7
    [Google Scholar]
  127. Watkinson, I. M., & Hall, R. (2017). Fault systems of the eastern Indonesian triple junction: Evaluation of quaternary activity and implications for seismic hazards. In P. R.Cummins & I.Meilano (Eds.), Geohazards in Indonesia: Earth science for disaster risk reduction (Vol. 441, pp. 71–120). The Geological Society of London. https://doi.org/10.1144/SP441.8
    [Google Scholar]
  128. Wight, A. W. R., Hare, L. H., & Reynolds, J. R. (1993). Tarakan Basin, NE Kalimantan, Indonesia: A century of exploration and future hydrocarbon potential. Bulletin of the Geological Society of Malaysia, 33, 263–288. https://doi.org/10.7186/bgsm33199319
    [Google Scholar]
  129. Wu, J. E., McClay, K., & Frankowicz, E. (2015). Niger Delta gravity‐driven deformation above the relict chain and Charcot oceanic fracture zones, gulf of Guinea: Insights from analogue models. Marine and Petroleum Geology, 65, 43–62. https://doi.org/10.1016/j.marpetgeo.2015.03.008
    [Google Scholar]
  130. Wu, S., & Bally, A. W. (2000). Slope tectonics‐comparisons and contrasts of structural styles of salt and shale tectonics of the northern Gulf of Mexico with shale tectonics of offshore Nigeria in gulf of Guinea. In W.Mohriak & M.Talwani (Eds.), Atlantic rifts and continental margins (Vol. 115, pp. 151–172). Geophysical Monograph‐American Geophysical Union.
    [Google Scholar]
  131. Ze, T., & Alves, T. M. (2019). Impacts of data sampling on the interpretation of normal fault propagation and segment linkage. Tectonophysics, 762, 79–96. https://doi.org/10.1016/j.tecto.2019.03.013
    [Google Scholar]
  132. Zhang, J., Wu, S., Hu, G., Yue, D., Xu, Z., Chen, C., Zhang, K., Wang, J., & Wen, S. (2021). Role of shale deformation in the structural development of a deepwater gravitational system in the Niger Delta. Tectonics, 40(5), e2020TC006491. https://doi.org/10.1029/2020TC006491
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12747
Loading
/content/journals/10.1111/bre.12747
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error