Volume 35, Issue 3

Abstract

[

δ30Si–δ18O isotopes and fluid inclusion microthermometry were used to get insight into silica dissolution‐precipitation processes in a cave developed within a (silicified) Neoproterozoic carbonate sequence.

, Abstract

Hypogene dissolution‐precipitation processes strongly affect the petrophysical properties of carbonate rocks and fluid migration pathways in sedimentary basins. In many deep carbonate reservoirs, hypogene cavernous voids are often associated with silicified horizons. The diagenesis of silica in carbonate sequences is still a poorly‐investigated research topic. Studies exploring the complexity of silica dissolution‐precipitation patterns in hypogene cave analogues are therefore fundamental to unravel the diagenetic and speleogenetic processes that may affect this kind of reservoir. In this work, we investigated an exhumed and silicified Neoproterozoic carbonate sequence in Brazil hosting a 1.4 km‐long cave. Quartz mineralization and silicified textures were analyzed with a multidisciplinary approach combining petrography, fluid inclusion microthermometry, silicon‐oxygen stable isotope analyses and U‐Th‐Pb dating of monazite crystals. We found that an early silicification event caused the replacement of the dolostone layers with micro‐crystalline quartz forming chert nodules. This event was likely associated with mixing fluids (ancient Neoproterozoic seawater and hydrothermal solutions sourced from the underlying Mesoproterozoic basement) at relatively low temperatures (ca. 50–100°C) and shallow depth. After the tectonic deformation produced by the Brasiliano orogeny, silica dissolution was promoted by high temperature and alkaline hydrothermal solutions rising from the quartzite basement along deep‐rooted structures. Hypogene hydrothermal alteration promoted the dissolution of the cherty layers and the precipitation of chalcedony and megaquartz. Homogenization temperatures from primary fluid inclusions in megaquartz cement indicate minimum formation temperatures of 165–210°C. Similar temperature estimates (110–200°C) were obtained from the δ30Si and δ18O isotope systematics of quartz precipitated from hydrothermal solutions. The dissolved salts in the fluid inclusions were evaluated as NaCl + CaCl from microthermometric data combined with cryogenic Raman spectroscopy, corresponding to salinity ranging between 17 and 25 wt.%. No reliable age constraints for hydrothermal silica dissolution‐precipitation phases were obtained from monazite U‐Th‐Pb dating. However, our results, interpreted in the regional context of the São Francisco Craton, suggest that the Cambrian tectono‐thermal events could have been amongst the possible drivers for this hypogene process in the basin.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12748
2023-05-19
2024-03-29
Loading full text...

Full text loading...

References

  1. Abraham, K., Hofmann, A., Foley, S. F., Cardinal, D., Harris, C., Barth, M. G., & Andre, L. (2011). Coupled silicon–oxygen isotope fractionation traces Archaean silicification. Earth and Planetary Science Letters, 301, 222–230. https://doi.org/10.1016/J.EPSL.2010.11.002
    [Google Scholar]
  2. Albinson, T., Norman, D. I., Cole, D., & Chomiak, B. (2001). Controls on formation of low‐sulfidation epithermal deposits in Mexico; constraints from fluid inclusion and stable isotope data. Special Publication of the Society of Economic Geologists (U.S.), 8, 1–32.
    [Google Scholar]
  3. Almeida, F. F. M., Brito Neves, B. B., & Dal Rè Carneiro, C. (2000). The origin and evolution of the South American Platform. Earth‐Science Reviews, 50, 77–111. https://doi.org/10.1016/S0012‐8252(99)00072‐0
    [Google Scholar]
  4. Álvaro, J. (2013). Late Ediacaran syn‐rift/post‐rift transition and related fault‐driven hydrothermal systems in the Anti‐Atlas Mountains, Morocco. Basin Research, 25, 348–360. https://doi.org/10.1111/BRE.12003
    [Google Scholar]
  5. Andreychouk, V., Dublyansky, Y. V., Ezhov, Y., & Lisenin, G. (2009). Karst in the Earth's Crust: Its Distribution and Principal Types. University of Silezia—Ukrainian Institute of Speleology and Karstology, 72 pp.
    [Google Scholar]
  6. Audra, P., Laurent, J. Y., Cailhol, N., Bigot, J. Y., Laurent, D., Vanara, N., Cailhol, D., & Cazenave, G. (2022). Hydrodynamic model for independent cold and thermo‐mineral twin springs in a stratified continental karst aquifer, Camou, Arbailles Massif, Pyrénées, France. International Journal of Speleology, 51, 81–91. https://doi.org/10.5038/1827‐806X.51.2.2413
    [Google Scholar]
  7. Auler, A. S. (2017). Hypogene caves and karst of South America. In A.Klimchouk, A. N.Palmer, J.De Waele, A. S.Auler, & P.Audra (Eds.), Hypogene Karst Regions and Caves of the World, Cave and Karst Systems of the World (Vol. 2017). Springer International Publishing. https://doi.org/10.1007/978‐3‐319‐53348‐3
    [Google Scholar]
  8. Bakker, R. J. (2004). Raman spectra of fluid and crystal mixtures in the systems H2O, H2O‐NaCl and H2O‐MgCl2 at low temperatures: Applications to fluid‐inclusion research. Canadian Mineralogist, 42, 1283–1314. https://doi.org/10.2113/gscanmin.42.5.1283
    [Google Scholar]
  9. Balsamo, F., Bezerra, F. H. R., Klimchouk, A. B., Cazarin, C. L., Auler, A. S., Nogueira, F. C., & Pontes, C. (2020). Influence of fracture stratigraphy on hypogene cave development and fluid flow anisotropy in layered carbonates, NE Brazil. Marine and Petroleum Geology, 114, 104207. https://doi.org/10.1016/j.marpetgeo.2019.104207
    [Google Scholar]
  10. Baumgartner, M., & Bakker, R. J. (2010). Raman spectra of ice and salt hydrates in synthetic fluid inclusions. Chemical Geology, 275, 58–66. https://doi.org/10.1016/j.chemgeo.2010.04.014
    [Google Scholar]
  11. Bence, A. E., & Albee, A. L. (1968). Empirical correction factors for the electron microanalysis of silicates and oxides. Journal of Geology, 76, 382–403.
    [Google Scholar]
  12. Bennett, P. C., Melcer, M. E., Siegel, D. I., & Hassett, J. P. (1988). The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C. Geochimica et Cosmochimica Acta, 52, 1521–1530. https://doi.org/10.1016/0016‐7037(88)90222‐0
    [Google Scholar]
  13. Bento dos Santos, T. M., Tassinari, C. C. G., & Fonseca, P. E. (2015). Diachronic collision, slab break‐off and long‐term high thermal flux in the Brasiliano–Pan‐African orogeny: Implications for the geodynamic evolution of the Mantiqueira Province. Precambrian Research, 260, 1–22. https://doi.org/10.1016/J.PRECAMRES.2014.12.018
    [Google Scholar]
  14. Bertotti, G., Audra, P., Auler, A., Bezerra, F. H., de Hoop, S., Pontes, C., Prabhakaran, R., & Lima, R. (2020). The Morro Vermelho hypogenic karst system (Brazil): Stratigraphy, fractures, and flow in a carbonate strike‐slip fault zone with implications for carbonate reservoirs. AAPG Bulletin, 104, 2029–2050. https://doi.org/10.1306/05212019150
    [Google Scholar]
  15. Bobis, R. E. (1994). A review of the description, classification and origin of quartz textures in low sulphidation epithermal veins. Journal of the Geological Society of the Philippines, 49, 15–39.
    [Google Scholar]
  16. Bodnar, R. J. (2003). Reequilibration of Fluid Inclusions. In I.Samson, A.Anderson, & D.Marshall (Eds.), Fluid inclusions: Analysis and Interpretation (pp. 213–230). Mineralogical Association of Canada.
    [Google Scholar]
  17. Brito Neves, B. B., Fuck, R. A., & Martins, M. (2014). The Brasiliano collage in South America: A review. Brazilian Journal of Geology, 44, 493–518.
    [Google Scholar]
  18. Caird, R. A., Pufahl, P. K., Hiatt, E. E., Abram, M. B., Rocha, A. J. D., & Kyser, T. K. (2017). Ediacaran stromatolites and intertidal phosphorite of the Salitre Formation, Brazil: Phosphogenesis during the Neoproterozoic Oxygenation Event. Sedimentary Geology, 350, 55–71. https://doi.org/10.1016/j.sedgeo.2017.01.005
    [Google Scholar]
  19. Camprubí, A., & Albinson, T. (2007). Epithermal deposits in México—Update of current knowledge and an empirical reclassification. Special Paper of the Geological Society of America, 422, 377–415. https://doi.org/10.1130/2007.2422(14)
    [Google Scholar]
  20. Cazarin, C. L., Bezerra, F. H. R., Borghi, L., Santos, R. V., Favoreto, J., Brod, J. A., Auler, A. S., & Srivastava, N. K. (2019). The conduit‐seal system of hypogene karst in Neoproterozoic carbonates in northeastern Brazil. Marine and Petroleum Geology, 101, 90–107. https://doi.org/10.1016/j.marpetgeo.2018.11.046
    [Google Scholar]
  21. Cazarin, C. L., van der Velde, R., Santos, R. V., Reijmer, J. J. G., Bezerra, F. H. R., Bertotti, G., La Bruna, V., Silva, D. C. C., de Castro, D. L., Srivastava, N. K., & Barbosa, P. F. (2021). Hydrothermal activity along a strike‐slip fault zone and host units in the São Francisco Craton, Brazil—Implications for fluid flow in sedimentary basins. Precambrian Research, 365, 106365. https://doi.org/10.1016/J.PRECAMRES.2021.106365
    [Google Scholar]
  22. Chakrabarti, R., Knoll, A. H., Jacobsen, S. B., & Fischer, W. W. (2012). Si isotope variability in Proterozoic cherts. Geochimica et Cosmochimica Acta, 91, 187–201. https://doi.org/10.1016/J.GCA.2012.05.025
    [Google Scholar]
  23. Choquette, P. W., & Pray, L. C. (1970). Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bulletin, 54, 207–250.
    [Google Scholar]
  24. Clayton, R. N., O'Neil, J. R., & Mayeda, T. K. (1972). Oxygen isotope exchange between quartz and water. Journal of Geophysical Research, 77, 3057–3067.
    [Google Scholar]
  25. Cui, H., Kaufman, A. J., Xiao, S., Zhou, C., & Liu, X. M. (2017). Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane‐derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chemical Geology, 450, 59–80. https://doi.org/10.1016/j.chemgeo.2016.12.010
    [Google Scholar]
  26. D'Angelo, T., Barbosa, M. S. C., & Danderfer Filho, A. (2019). Basement controls on cover deformation in eastern Chapada Diamantina, northern São Francisco Craton, Brazil: Insights from potential field data. Tectonophysics, 772, 228231. https://doi.org/10.1016/j.tecto.2019.228231
    [Google Scholar]
  27. De Luca, P. H. V., Matias, H., Carballo, J., Sineva, D., Pimentel, G. A., Tritlla, J., Esteban, M., Loma, R., Alonso, J. L. A., Jiménez, R. P., Pontet, M., Martinez, P. B., & Vega, V. (2017). Breaking barriers and paradigms in presalt exploration: The Pão de Açúcar discovery (Offshore Brazil). AAPG Memoir, 113, 177–193. https://doi.org/10.1306/13572007M1133686
    [Google Scholar]
  28. Dong, G., Morrison, G., & Jaireth, S. (1995). Quartz textures in epithermal veins, Queensland—classification, origin, and implication. Economic Geology, 90, 1841–1856. https://doi.org/10.2113/gsecongeo.90.6.1841
    [Google Scholar]
  29. Dong, S., You, D., Guo, Z., Guo, C., & Chen, D. (2018). Intense silicification of Ordovician carbonates in the Tarim Basin: Constraints from fluid inclusion Rb–Sr isotope dating and geochemistry of quartz. Terra Nova, 30, 406–413. https://doi.org/10.1111/ter.12356
    [Google Scholar]
  30. Dove, P. M. (1995). Kinetic and thermodynamic controls on silica reactivity in weathering environments. In A. F.White & S. L.Brantley (Eds.), Reviews in mineralogy 31, Chemical weathering rates of silicate minerals (pp. 235–291). De Gruyter & Co..
    [Google Scholar]
  31. Dove, P. M., & Nix, C. J. (1997). The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz. Geochimica et Cosmochimica Acta, 61(16), 3329–3340. https://doi.org/10.1016/S0016‐7037(97)00217‐2
    [Google Scholar]
  32. Dubessy, J., Buschaert, S., Lamb, W., Pironon, J., & Thiéry, R. (2001). Methane‐bearing aqueous fluid inclusions: Raman analysis, thermodynamic modelling and application to petroleum basins. Chemical Geology, 173, 193–205. https://doi.org/10.1016/S0009‐2541(00)00275‐8
    [Google Scholar]
  33. Dublyansky, Y. V. (1990). Zakonomernosti formirovaniya i modelirovaniye gidrotermokarsta (Particularities of the development and modeling of hydrothermal karst). Nauka, 151 pp.
    [Google Scholar]
  34. Dublyansky, Y. V. (1995). Speleogenetic history of the Hungarian hydrothermal karst. Environmental Geology, 25, 24–35.
    [Google Scholar]
  35. Fernández‐Ibáñez, F., Jones, G. D., Mimoun, J. G., Bowen, M. G., Simo, J. A. T., Marcon, V., & Esch, W. L. (2022). Excess permeability in the Brazil pre‐Salt: Non matrix types, concepts, diagnostic indicators, and reservoir implications. AAPG Bulletin, 106, 701–738. https://doi.org/10.1306/10042120171
    [Google Scholar]
  36. Fernández‐Ibáñez, F., Nolting, A., Breithaupt, C. I., Darby, B., Mimoun, J., & Henares, S. (2022). The properties of faults in the Brazil pre‐salt: A reservoir characterization perspective. Marine and Petroleum Geology, 146, 105955. https://doi.org/10.1016/J.MARPETGEO.2022.105955
    [Google Scholar]
  37. Ferreira, A. C., Dantas, E. L., Fuck, R. A., Nedel, I. M., & Reimold, W. U. (2021). Multiple stages of migmatite generation during the Archean to Proterozoic crustal evolution in the Borborema Province, Northeast Brazil. Gondwana Research, 90, 314–334.
    [Google Scholar]
  38. Ferreira, V. P., Sial, A. N., & Jardim de Sà, E. F. (1998). Geochemical and isotopic signatures of Proterozoic granites in terranes of the Borborema structural province, northeast Brazil. Journal of South American Earth Sciences, 11(5), 439–455.
    [Google Scholar]
  39. Girard, J. P., & San Miguel, G. (2017). Evidence of high temperature hydrothermal regimes in the pre‐salt series, Kwanza Basin, offshore Angola. In American Association of Petroleum Geologists Annual Convention and Exhibition (Houston, Texas, USA, Abstracts).
  40. Goldscheider, N., Mádl‐Szőnyi, J., Erőss, A., & Schill, E. (2010). Thermal water resources in carbonate rock aquifers. Hydrogeology Journal, 18, 1303–1318.
    [Google Scholar]
  41. Goldstein, R. H. (2003). Petrographic analysis of fluid inclusions. In I.Samson, A.Anderson, & D.Marshall (Eds.), Fluid inclusions: Analysis and Interpretation (pp. 1–45). Mineralogical Association of Canada.
    [Google Scholar]
  42. Goldstein, R. H., & Reynolds, T. J. (1994). Systematics of fluid inclusions in diagenetic minerals. Society for Sedimentary Geology Short Course 31, 199 pp.
    [Google Scholar]
  43. Gomes, A. S. R., Coelho, C. E. S., & Misi, A. (2000). Fluid inclusion investigation of the neoproterozoic lead‐zinc sulfide deposit of Nova Redenção, Bahia, Brazil. Revista Brasileira de Geociencias, 30, 315–317. https://doi.org/10.25249/0375‐7536.2000302315317
    [Google Scholar]
  44. Grare, A., Lacombe, O., Mercadier, J., Benedicto, A., Guilcher, M., Trave, A., Ledru, P., & Robbins, J. (2018). Fault zone evolution and development of a structural and hydrological barrier: The quartz breccia in the Kiggavik area (Nunavut, Canada) and its control on uranium mineralization. Minerals, 8, 1–28. https://doi.org/10.3390/min8080319
    [Google Scholar]
  45. Guimarães, I. P., Da Silva Filho, A. F., Almeida, C. N., Van Schmus, W. R., Araújo, J. M. M., Melo, S. C., & Melo, E. B. (2004). Brasiliano (Pan‐African) granitic magmatism in the Pajeú‐Paraíba belt, Northeast Brazil: An isotopic and geochronological approach. Precambrian Research, 135, 23–53. https://doi.org/10.1016/J.PRECAMRES.2004.07.004
    [Google Scholar]
  46. Guimarães, J. T., Misi, A., Pedreira, A. J., & Dominguez, J. M. L. (2011). The Bebedouro formation, Una Group, Bahia (Brazil). Geological Society of London Memoirs, 36, 503–508. https://doi.org/10.1144/M36.47
    [Google Scholar]
  47. Heck, P. R., Huberty, J. M., Kita, N. T., Ushikubo, T., Kozdon, R., & Valley, J. W. (2011). SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations. Geochimica et Cosmochimica Acta, 75, 5879–5894.
    [Google Scholar]
  48. Hedenquist, J. W., Arribas, R. A., & Gonzalez‐Urien, E. (2000). Exploration for epithermal gold deposits. Reviews in Economic Geology, 13, 245–277.
    [Google Scholar]
  49. Hemond, C., Arndt, N. T., Lichtenstein, U., Hofmann, A. W., Oskarsson, N., & Steinthorsson, S. (1993). The heterogeneous Iceland plume: Nd Sr O isotopes and trace element constraints. Journal of Geophyscal Research: Solid Earth, 98, 15833–15850.
    [Google Scholar]
  50. Hesse, R. (1989). Silica diagenesis: Origin of inorganic and replacement cherts. Earth‐Science Reviews, 26, 253–284. https://doi.org/10.1016/0012‐8252(89)90024‐X
    [Google Scholar]
  51. Japsen, P., Bonow, J. M., Green, P. F., Cobbold, P. R., Chiossi, D., Lilletveit, R., Magnavita, L. P., & Pedreira, A. J. (2012). Episodic burial and exhumation history of NE Brazil after opening of the south Atlantic. GSA Bulletin, 124, 800–816. https://doi.org/10.1130/B30515.1
    [Google Scholar]
  52. Kato, T. (2005). New accurate Bence‐Albee α‐factors for oxides and silicates calculated from the PAP correction procedure. Geostandards and Geoanalytical Research, 29, 83–94.
    [Google Scholar]
  53. Kleine, B. I., Stefánsson, A., Halldórsson, S. A., Whitehouse, M. J., & Jónasson, K. (2018). Silicon and oxygen isotopes unravel quartz formation processes in the Icelandic crust. Geochemical Perspectives Letters, 7, 5–11. https://doi.org/10.7185/geochemlet.1811
    [Google Scholar]
  54. Klimchouk, A. (2007). Hypogene speleogenesis: Hydrogeological and morphometric perspective. National Cave and Karst Research Institute, 106 pp.
    [Google Scholar]
  55. Klimchouk, A. (2019). Speleogenesis, hypogenic. In W. B.White, D. C.Culver, & T.Pipan (Eds.), Encyclopedia of caves (3rd ed., pp. 974–988). Academic Press.
    [Google Scholar]
  56. Klimchouk, A., Auler, A. S., Bezerra, F. H. R., Cazarin, C. L., Balsamo, F., & Dublyansky, Y. (2016). Hypogenic origin, geologic controls, and functional organization of a giant cave system in Precambrian carbonates, Brazil. Geomorphology, 253, 385–405. https://doi.org/10.1016/j.geomorph.2015.11.002
    [Google Scholar]
  57. Knauth, L. P. (1979). A model for the origin of chert in limestone. Geology, 7(6), 274–277.
    [Google Scholar]
  58. Kornilov, V. F. (1978). The temperature regime of formation of the mercury–antimony mineralization (Southern Kirghizia). In N. P.Ermakov (Ed.), Thermobarogeochemistry of the earth's crust (pp. 155–161). Nauka.
    [Google Scholar]
  59. Kyle, J. R., & Misi, A. (1997). Origin of Zn‐Pb‐Ag sulfide mineralization within upper proterozoic phosphate‐rich carbonate strata, Irêce Basin, Bahia, Brazil. International Geology Review, 39, 383–399.
    [Google Scholar]
  60. La Bruna, V., Bezerra, F. H. R., Souza, V. H. P., Maia, R. P., Auler, A. S., Araújo, R. E. B., Cazarin, C. L., Rodrigues, M. A. F., Vieira, L. C., & Sousa, M. O. L. (2021). High‐permeability zones in folded and faulted silicified carbonate rocks—Implications for karstified carbonate reservoirs. Marine and Petroleum Geology, 128, 105046. https://doi.org/10.1016/j.marpetgeo.2021.105046
    [Google Scholar]
  61. Ledevin, M., Arndt, N., Chauvel, C., Jaillard, E., & Simionovici, A. (2019). The sedimentary origin of black and white banded cherts of the Buck Reef, Barberton, South Africa. Geosciences, 9, 17–24. https://doi.org/10.3390/geosciences9100424
    [Google Scholar]
  62. Leven, J. A. (1961). Problems of origin of optical‐quality fluorite from deposits of the Zeravshan–Gissar Mountains. Transactions of the Samarkand University, 16, 35–51.
    [Google Scholar]
  63. Lima, B. E. M., & De Ros, L. F. (2019). Deposition, diagenetic and hydrothermal processes in the Aptian Pre‐Salt lacustrine carbonate reservoirs of the northern Campos Basin, offshore Brazil. Sedimentary Geology, 383, 55–81. https://doi.org/10.1016/j.sedgeo.2019.01.006
    [Google Scholar]
  64. Lima, B. E. M., Tedeschi, L. R., Pestilho, A. L. S., Santos, R. V., Vazquez, J. C., Guzzo, J. V. P., & De Ros, L. F. (2020). Deep‐burial hydrothermal alteration of the Pre‐Salt carbonate reservoirs from northern Campos Basin, offshore Brazil: Evidence from petrography, fluid inclusions, Sr, C and O isotopes. Marine and Petroleum Geology, 113, 104143. https://doi.org/10.1016/j.marpetgeo.2019.104143
    [Google Scholar]
  65. Liu, C., Ma, J., Zhang, L., Wang, C., & Liu, J. (2022). Protracted formation of nodular cherts in marine platform: New insights from the Middle Permian Chihsian carbonate successions, South China. Carbonates and Evaporites, 37, 1–19. https://doi.org/10.1007/S13146‐022‐00757‐6/FIGURES/10
    [Google Scholar]
  66. Lovering, T. S., Tweto, O., & Loweing, T. G. (1978). Ore deposits of the Gilman District, Eagle Country, Colorado. U.S. Geological Survey Professional Paper, 1017, 90 pp.
    [Google Scholar]
  67. Magalhães, A. J. C., Raja Gabaglia, G. P., Scherer, C. M. S., Bállico, M. B., Guadagnin, F., Bento Freire, E., Silva Born, L. R., & Catuneanu, O. (2016). Sequence hierarchy in a Mesoproterozoic interior sag basin: From basin fill to reservoir scale, the Tombador Formation, Chapada Diamantina Basin, Brazil. Basin Research, 28, 393–432. https://doi.org/10.1111/BRE.12117
    [Google Scholar]
  68. Maliva, R. G., Knoll, A. H., & Simonson, B. M. (2005). Secular change in the Precambrian silica cycle: Insights from chert petrology. GSA Bulletin, 117, 835–845. https://doi.org/10.1130/B25555.1
    [Google Scholar]
  69. Maliva, R. G., & Siever, R. (1989). Nodular chert formation in carbonate rocks. Journal of Geology, 97, 421–433.
    [Google Scholar]
  70. Marchesini, B., Garofalo, P. S., Menegon, L., Mattila, J., & Viola, G. (2019). Fluid‐mediated, brittle‐ductile deformation at seismogenic depth—Part 1: Fluid record and deformation history of fault veins in a nuclear waste repository (Olkiluoto Island, Finland). Solid Earth, 10, 809–838. https://doi.org/10.5194/se‐10‐809‐2019
    [Google Scholar]
  71. Marin, J. (2009). Composition isotopique de l'oxygène et du silicium dans les cherts Précambriens: Implications Paléo‐environnementales (PhD thesis). Institut National Polythechnique de Lorraine, 402 pp.
    [Google Scholar]
  72. Marin‐Carbonne, J., Faure, F., Chaussidon, M., Jacob, D., & Robert, F. (2013). A petrographic and isotopic criterion of the state of preservation of Precambrian cherts based on the characterization of the quartz veins. Precambrian Research, 231, 290–300.
    [Google Scholar]
  73. Marin‐Carbonne, J., Robert, F., & Chaussidon, M. (2014). The silicon and oxygen isotope compositions of Precambrian cherts: A record of oceanic paleo‐temperatures?Precambrian Research, 247, 223–234. https://doi.org/10.1016/j.precamres.2014.03.016
    [Google Scholar]
  74. Misi, A., Batista, J., & Teixeira, G. (2012). Mapa Metalogenético Digital do Estado da Bahia e Principais Províncias Minerais. Série Publicações Especiais, 11.
    [Google Scholar]
  75. Misi, A., Iyer, S. S. S., Coelho, C. E. S., Tassinari, C. C. G., Franca‐Rocha, W. J. S., Cunha, I. D. A., Gomes, A. S. R., de Oliveira, T. F., Teixeira, J. B. G., & Filho, V. M. C. (2005). Sediment hosted lead–zinc deposits of the Neoproterozoic Bambuí Group and correlative sequences, São Francisco craton, Brazil: A review and a possible metallogenic evolution model. Ore Geology Reviews, 26, 263–304.
    [Google Scholar]
  76. Misi, A., Kaufman, A. J., Azmy, K., & Dardenne, M. A. (2011). Neoproterozoic successions of the São Francisco craton, Brazil: The Bambuí, Una, Vazante and Vaza Barris/Miaba groups and their glaciogenic deposits. Geological Society of London Memoirs, 36, 509–522. https://doi.org/10.1144/M36.48
    [Google Scholar]
  77. Misi, A., Kaufman, A. J., Veizer, J., Powis, K., Azmy, K., Boggiani, P. C., Gaucher, C., Teixeira, J. B. G., Sanches, A. L., & Iyer, S. S. (2007). Chemostratigraphic correlation of Neoproterozoic successions in South America. Chemical Geology, 237, 22–45. https://doi.org/10.1016/j.chemgeo.2006.06.019
    [Google Scholar]
  78. Misi, A., & Veizer, J. (1998). Neoproterozoic carbonate sequences of the Una Group, Irêce Basin, Brazil: Chemostratigraphy, age and correlations. Precambrian Research, 89, 87–100. https://doi.org/10.1016/S0301‐9268(97)00073‐9
    [Google Scholar]
  79. Mitsiuk, B. N. (1974). Vzaimodeistvie kremnezema s vodoy v hydrotermalnych usloviach (Interaction between silica and water in hydrothermal conditions). Naukova Dumka, 86 pp.
    [Google Scholar]
  80. Moncada, D., Baker, D., & Bodnar, R. J. (2017). Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag‐Au mineralization in the La Luz area, Guanajuato Mining District, México. Ore Geology Reviews, 89, 143–170. https://doi.org/10.1016/j.oregeorev.2017.05.024
    [Google Scholar]
  81. Moncada, D., Mutchler, S., Nieto, A., Reynolds, T. J., Rimstidt, J. D., & Bodnar, R. J. (2012). Mineral textures and fluid inclusion petrography of the epithermal Ag–Au deposits at Guanajuato, Mexico: Application to exploration. Journal of Geochemical Exploration, 114, 20–35. https://doi.org/10.1016/J.GEXPLO.2011.12.001
    [Google Scholar]
  82. Montanari, D., Minissale, A., Doveri, M., Gola, G., Trumpy, E., Santilano, A., & Manzella, A. (2017). Geothermal resources within carbonate reservoirs in western Sicily (Italy): A review. Earth‐Science Reviews, 169, 180–201. https://doi.org/10.1016/J.EARSCIREV.2017.04.016
    [Google Scholar]
  83. Montel, J. M., Foret, S., Veschambre, M., Nicollet, C., & Provost, A. (1996). Electron microprobe dating of monazite. Chemical Geology, 131(1–4), 37–53.
    [Google Scholar]
  84. Moraes Filho, O., & Leal, R. A. (1990). Lead‐zinc‐silver search in the municipal district of Nova Redenção (BA). In Anais 36° Congresso Brasileiro de Geologia 1990 (pp. 1487–1501). Natal.
    [Google Scholar]
  85. Neves, S. P., Lages, G. A., Brasilino, R. G., & Miranda, A. W. A. (2015). Paleoproterozoic accretionary and collisional processes and the build‐up of the Borborema Province (NE Brazil): Geochronological and geochemical evidence from the Central Domain. Journal of South American Earth Sciences, 58, 165–187. https://doi.org/10.1016/J.JSAMES.2014.06.009
    [Google Scholar]
  86. Neves, S. P., Teixeira, C. M. L., Silva, V. L., & Bruguier, O. (2022). Protracted (>60 Myrs) thermal evolution of a Neoproterozoic metasedimentary sequence from eastern Borborema Province (NE Brazil): Thermal and rheological implications for orogenic development. Precambrian Research, 377, 106709. https://doi.org/10.1016/J.PRECAMRES.2022.106709
    [Google Scholar]
  87. Oakes, C. S., Bodnar, R. J., & Simonson, J. M. (1990). The system NaCl–CaCl2–H2O: I. The ice liquidus at 1 atm total pressure. Geochimica et Cosmochimica Acta, 54, 603–610.
    [Google Scholar]
  88. Onac, B. P., & Forti, P. (2011). Minerogenetic mechanisms occurring in the cave environment: An overview. International Journal of Speleology, 40, 79–98. https://doi.org/10.5038/1827‐806X.40.2.1
    [Google Scholar]
  89. Packard, J. J., Al‐Aasm, I., & Samson, I. (2001). A Devonian hydrothermal chert reservoir: The 225 bcf Parkland field, British Columbia, Canada. AAPG Bulletin, 85(1), 51–84.
    [Google Scholar]
  90. Palinkaš, S. S., Hofstra, A. H., Percival, T. J., Šoštarkć, S. B., Palinkaš, L., Bermanec, V., Pecskay, Z., & Boev, B. (2018). Comparison of the Allchar Au‐As‐Sb‐Tl deposit, Republic of Macedonia, with Carlin‐Type Gold Deposits. In J. L.Muntean (Ed.), Diversity in Carlin‐Style Gold Deposits, reviews in economic geology (Vol. 20, pp. 353–363). Society of Economic Geologists.
    [Google Scholar]
  91. Parry, W. T., Jasumback, M., & Wilson, P. N. (2002). Clay mineralogy of phyllic and intermediate argillic alteration at Bingham, Utah. Economic Geology, 97(2), 221–239. https://doi.org/10.2113/GSECONGEO.97.2.221
    [Google Scholar]
  92. Passchier, C. W., & Trouw, R. A. (2005). Microtectonics. Springer Science & Business Media.
    [Google Scholar]
  93. Peters, K. E., Curry, D. J., & Kacewicz, M. (2012). An overview of basin and petroleum system modeling: Definitions and concepts. In K. E.Peters, D. J.Curry, & M.Kacewicz (Eds.), Basin modeling: New horizons in research and applications (Vol. 4, pp. 1–16). AAPG Hedberg Series.
    [Google Scholar]
  94. Pisani, L., Antonellini, M., Bezerra, F. H. R., Carbone, C., Auler, A. S., Audra, P., La Bruna, V., Bertotti, G., Balsamo, F., Pontes, C. C. C., & De Waele, J. (2022). Silicification, flow pathways, and deep‐seated hypogene dissolution controlled by structural and stratigraphic variability in a carbonate‐siliciclastic sequence (Brazil). Marine and Petroleum Geology, 139, 105611. https://doi.org/10.1016/J.MARPETGEO.2022.105611
    [Google Scholar]
  95. Plan, L., Tschegg, C., De Waele, J., & Spötl, C. (2012). Corrosion morphology and cave wall alteration in an Alpine sulfuric acid cave (Kraushöhle, Austria). Geomorphology, 169–170, 45–54. https://doi.org/10.1016/J.GEOMORPH.2012.04.006
    [Google Scholar]
  96. Poitrasson, F., Chenery, S., & Shepherd, T. J. (2000). Electron microprobe and LA‐ICP‐MS study of monazite hydrothermal alteration: Implications for U‐Th‐Pb geochronology and nuclear ceramics. Geochimica et Cosmochimica Acta, 64, 3283–3297. https://doi.org/10.1016/S0016‐7037(00)00433‐6
    [Google Scholar]
  97. Pollock, S. G. (1987). Chert formation in an Ordovician volcanic arc. Journal of Sedimentary Petrology, 57(1), 75–87.
    [Google Scholar]
  98. Pontes, C. C. C., Bezerra, F. H. R., Bertotti, G., La Bruna, V., Audra, P., De Waele, J., Auler, A. S., Balsamo, F., De Hoop, S., & Pisani, L. (2021). Flow pathways in multiple‐direction fold hinges: Implications for fractured and karstified carbonate reservoirs. Journal of Structural Geology, 146, 104324. https://doi.org/10.1016/j.jsg.2021.104324
    [Google Scholar]
  99. Poros, Z., Jagniecki, E., Luczaj, J., Kenter, J., Gal, B., Correa, T. S., Ferreira, E., McFadden, K. A., Elifritz, A., Heumann, M., Johnston, M., & Matt, V. (2017). Origin of silica in pre‐salt carbonates, Kwanza Basin, Angola. In American Association of Petroleum Geologists Annual Convention and Exhibition, Houston, Texas (USA).
  100. Rimstidt, J. D. (1997). Quartz solubility at low temperatures. Geochimica et Cosmochimica Acta, 61, 2553–2558.
    [Google Scholar]
  101. Robert, F., & Chaussidon, M. (2006). A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature, 443, 969–972.
    [Google Scholar]
  102. Roedder, E. (1984). Fluid inclusions. In Reviews in mineralogy (Vol. 12, p. 646). Mineralogical Society of America.
    [Google Scholar]
  103. Roedder, E., & Bodnar, R. J. (1997). Fluid inclusion studies of hydrothermal ore deposits. In H. L.Barnes (Ed.), Geochemistry of hydrothermal ore deposits (pp. 657–697). Wiley.
    [Google Scholar]
  104. Rye, R. O. (2005). A review of the stable‐isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chemical Geology, 215, 5–36. https://doi.org/10.1016/j.chemgeo.2004.06.034
    [Google Scholar]
  105. Samson, I. M., & Walker, R. T. (2000). Cryogenic raman spectroscopic studies in the system NaCl‐CaCl2‐H2O and implications for low‐temperature phase behavior in aqueous fluid inclusions. Canadian Mineralogist, 38, 35–43. https://doi.org/10.2113/gscanmin.38.1.35
    [Google Scholar]
  106. Sander, M. V., & Black, J. E. (1988). Crystallization and recrystallization of growth‐zoned vein quartz crystals from epithermal systems; implications for fluid inclusion studies. Economic Geology, 83, 1052–1060.
    [Google Scholar]
  107. Santana, A., Chemale, F., Scherer, C., Guadagnin, F., Pereira, C., & Santos, J. O. S. (2021). Paleogeographic constraints on source area and depositional systems in the Neoproterozoic Irecê Basin, São Francisco Craton. Journal of South American Earth Sciences, 109, 103330. https://doi.org/10.1016/j.jsames.2021.103330
    [Google Scholar]
  108. Saunders, J. A. (1994). Silica and gold textures in bonanza ores of the sleeper deposit, Humboldt County, Nevada: Evidence for colloids and implications for epithermal ore‐forming processes. Economic Geology, 89, 628–638. https://doi.org/10.2113/gsecongeo.89.3.628
    [Google Scholar]
  109. Sauro, F., De Waele, J., Onac, B. P., Galli, E., Dublyansky, Y., Baldoni, E., & Sanna, L. (2014). Hypogenic speleogenesis in quartzite: The case of Corona ‘e Sa Craba Cave (SW Sardinia, Italy). Geomorphology, 211, 77–88. https://doi.org/10.1016/j.geomorph.2013.12.031
    [Google Scholar]
  110. Seitz, S., Baumgartner, L. P., Bouvier, A. S., Putlitz, B., & Vennemann, T. (2017). Quartz reference materials for oxygen isotope analysis by SIMS. Geostandards and Geoanalytical Research, 41, 69–75.
    [Google Scholar]
  111. Shanmugan, G., & Higgins, J. B. (1988). Porosity enhancement from chert dissolution beneath Neocomian unconformity: Ivishak Formation, North Slope, Alaska. AAPG Bulletin, 72(5), 523–535.
    [Google Scholar]
  112. Shimizu, T. (2014). Reinterpretation of quartz textures in terms of hydrothermal fluid evolution at the Koryu Au‐Ag deposit, Japan. Economic Geology, 109, 2051–2065.
    [Google Scholar]
  113. Sial, A. N., & Ferreira, V. P. (2016). Magma associations in Ediacaran granitoids of the Cachoeirinha–Salgueiro and Alto Pajeú terranes, northeastern Brazil: Forty years of studies. Journal of South American Earth Sciences, 68, 113–133. https://doi.org/10.1016/J.JSAMES.2015.10.005
    [Google Scholar]
  114. Sial, A. N., Gaucher, C., Misi, A., Boggiani, P. C., De Alvarenga, C. J. S., Ferreira, V. P., Pimentel, M. M., Pedreira, J. A., Warren, L. V., Fernández‐Ramírez, R., Geraldes, M., Pereira, N. S., Chiglino, L., & Dos Santos Cezario, W. (2016). Correlations of some Neoproterozoic carbonate‐dominated successions in South America based on high‐resolution chemostratigraphy. Brazilian Journal of Geology, 46(3), 439–388. https://doi.org/10.1590/2317‐4889201620160079
    [Google Scholar]
  115. Sibley, D. F., & Gregg, J. M. (1987). Classification of dolomite rock textures. Journal of Sedimentary Research, 57, 967–975. https://doi.org/10.1306/212F8CBA‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  116. Siever, R. (1962). Silica solubility, 0°C–200°C, and the diagenesis of siliceous sediments. Journal of Geology, 70, 127–150.
    [Google Scholar]
  117. Siever, R., & Woodford, N. (1973). Sorption of silica by clay minerals. Geochimica et Cosmochimica Acta, 37, 1851–1880.
    [Google Scholar]
  118. Silva, M. G., Neves, J. P., Klein, E., Bento, R. V., & Dias, V. M. (2006). Principais processos envolvidos na gênese das mineralizações de Sn, Au, Ba, quartzo rutilado e diamante, na região do Espinhaço‐Chapada Diamantina, Bahia. In Anais 43° Congresso Brasileiro de Geologia 2006 (p. 381). Aracaju.
    [Google Scholar]
  119. Simmons, S. F., White, N. C., & John, D. A. (2005). Geological characteristics of epithermal precious and base metal deposits. In J. W.Hedenquist, J. F. H.Thompson, R. J.Goldfarb, & J. P.Richards (Eds.), Economic geology: One hundredth anniversary volume 1905–2005 (pp. 485–522). Society of Economic Geologists.
    [Google Scholar]
  120. Souza, V. H. P., Bezerra, F. H. R., Vieira, L. C., Cazarin, C. L., & Brod, J. A. (2021). Hydrothermal silicification confined to stratigraphic layers: Implications for carbonate reservoirs. Marine and Petroleum Geology, 124, 104818. https://doi.org/10.1016/j.marpetgeo.2020.104818
    [Google Scholar]
  121. Spötl, C., Dublyansky, Y., Koltai, G., & Cheng, H. (2021). Hypogene speleogenesis and paragenesis in the Dolomites. Geomorphology, 382, 107667. https://doi.org/10.1016/J.GEOMORPH.2021.107667
    [Google Scholar]
  122. Steele‐MacInnis, M., Bodnar, R. J., & Naden, J. (2011). Numerical model to determine the composition of H2O–NaCl–CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochimica et Cosmochimica Acta, 75, 21–40.
    [Google Scholar]
  123. Stefánsson, A., Hilton, D. R., Sveinbjörnsdóttir, Á. E., Torssander, P., Heinemeier, J., Barnes, J. D., Ono, S., Halldórsson, S. A., Fiebig, J., & Arnórsson, S. (2017). Isotope systematics of Icelandic thermal fluids. Journal of Volcanology and Geothermal Research, 337, 146–164. https://doi.org/10.1016/J.JVOLGEORES.2017.02.006
    [Google Scholar]
  124. Strugale, M., & Cartwright, J. (2022). Tectono‐stratigraphic evolution of the rift and post‐rift systems in the Northern Campos Basin, offshore Brazil. Basin Research, 2022, 1–33. https://doi.org/10.1111/BRE.12674
    [Google Scholar]
  125. Teboul, P. A., Durlet, C., Girard, J. P., Dubois, L., San Miguel, G., Virgone, A., Gaucher, E. C., & Camoin, G. (2019). Diversity and origin of quartz cements in continental carbonates: Example from the Lower Cretaceous rift deposits of the South Atlantic margin. Applied Geochemistry, 100, 22–41. https://doi.org/10.1016/J.APGEOCHEM.2018.10.019
    [Google Scholar]
  126. Teixeira, J. B. G., da Silva, M. D. G., Misi, A., Cruz, S. C. P., & da Silva Sá, J. H. (2010). Geotectonic setting and metallogeny of the northern São Francisco craton, Bahia, Brazil. Journal of South American Earth Sciences, 30, 71–83. https://doi.org/10.1016/j.jsames.2010.02.001
    [Google Scholar]
  127. Teixeira, J. B. G., Misi, A., & Silva, M. G. (2007). Supercontinent evolution and the Proterozoic metallogeny of South America. Gondwana Research, 11, 346–361. https://doi.org/10.1016/j.gr.2006.05.009
    [Google Scholar]
  128. Temovski, M., Rinyu, L., Futó, I., Molnár, K., Túri, M., Demény, A., Otoničar, B., Dublyansky, Y., Audra, P., Polyak, V., Asmerom, Y., & Palcsu, L. (2022). Combined use of conventional and clumped carbonate stable isotopes to identify hydrothermal isotopic alteration in cave walls. Scientific Reports, 121(12), 1–16. https://doi.org/10.1038/s41598‐022‐12929‐4
    [Google Scholar]
  129. Trice, R. (2005). Challenges and insights in optimising oil production form Middle Eastern karst reservoirs. In SPE Middle East Oil and Gas Show and Conference, Kingdom of Bahrain, March 2005, SPE‐93679‐MS. https://doi.org/10.2118/93679‐MS
  130. Trindade, R. I. F., D'Agrella‐Filho, M., Babinski, M., & Neves, B. B. (2004). Paleomagnetism and geochronology of the Bebedouro cap carbonate: Evidence for continental scale Cambrian remagnetization in the São Francisco Craton, Brazil. Precambrian Research, 128, 83–103.
    [Google Scholar]
  131. Tsykin, R. A. (1989). Paleokarst of the Union of Soviet Socialistic Republics. In P.Bosák, D. C.Ford, J.Głazek, & I.Horáček (Eds.), Paleokarst: A systematic and regional review (pp. 253–295). Vidala Academia.
    [Google Scholar]
  132. van den Boorn, S. H. J. M., van Bergen, M. J., Vroon, P. Z., de Vries, S. T., & Nijman, W. (2010). Silicon isotope and trace element constraints on the origin of ∼3.5 Ga cherts: Implications for Earth Archaean marine environments. Geochimica et Cosmochimica Acta, 74, 1077–1103.
    [Google Scholar]
  133. Wei, D., Gao, Z., Fan, T., Niu, Y., & Guo, R. (2021). Volcanic events‐related hydrothermal dolomitisation and silicification controlled by intra‐cratonic strike‐slip fault systems: Insights from the northern slope of the Tazhong Uplift, Tarim Basin, China. Basin Research, 33, 2411–2434. https://doi.org/10.1111/BRE.12562
    [Google Scholar]
  134. Wray, R. A., & Sauro, F. (2017). An updated global review of solutional weathering processes and forms in quartz sandstones and quartzites. Earth‐Science Reviews, 171, 520–557. https://doi.org/10.1016/j.earscirev.2017.06.008
    [Google Scholar]
  135. You, D., Han, J., Hu, W., Qian, Y., Chen, Q., Xi, B., & Ma, H. (2018). Characteristics and formation mechanisms of silicified carbonate reservoirs in well SN4 of the Tarim Basin. Energy Exploration and Exploitation, 36, 820–849. https://doi.org/10.1177/0144598718757515
    [Google Scholar]
  136. Zhang, R. (1986). Sulfur isotopes and pyrite‐anhydrite equilibria in a volcanic basin hydrothermal system of the middle to lower Yangtze River Valley. Economic Geology, 81, 32–45.
    [Google Scholar]
  137. Zhou, X., Chen, D., Qing, H., Qian, Y., & Wang, D. (2014). Submarine silica‐rich hydrothermal activity during the earliest Cambrian in the Tarim basin, northwest China. International Geology Review, 56, 1906–1918. https://doi.org/10.1080/00206814.2014.968885
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12748
Loading
/content/journals/10.1111/bre.12748
Loading

Data & Media loading...

Keyword(s): fluid flow; hydrothermal karst; silica dissolution; silicified reservoirs

Most Cited This Month Most Cited RSS feed