1887
Volume 35, Issue 3
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

Significant variations in pore pressure across the Taranaki Basin, New Zealand, are attributed to changes in lithofacies and structure, usefully illustrated in terms of ten areas that we term geopressure provinces, each displaying individual pore pressure trends. Cretaceous to Early Miocene formations in different parts of the basin can be either normally pressured (near or at hydrostatic) or significantly overpressured (up to 28 MPa) at the same depth. Variations in Eocene–Oligocene facies types and thicknesses both within and between geopressure provinces provide first‐order control on the magnitude, distribution and maintenance of overpressure across the basin. Examples of hydraulic compartmentalisation due to sealing faults and stratigraphic architecture are identified within the basin. Deep pore pressure transitions are sealed by diagenetic, structural or stratigraphic mechanisms in different places and are associated with an increase in mudrock volume (reduced permeability) or gas generation. Thus, pore pressure distribution in the Taranaki Basin is controlled by a combination of sediment loading, lithofacies variations, fault zone permeability and structural architecture. This work represents an appraisal of the pore pressure distribution across the whole of a multiphase structurally complex basin, and the approach taken provides a framework for better understanding the distribution of pore fluid pressures and pore fluid migration in other sedimentary basins.

,

The pore pressure distribution in the Taranaki Basin is controlled by a combination of sediment loading, lithofacies variations, fault zone permeability and structural architecture. This work represents an appraisal of the pore pressure distribution across the whole of a multiphase structurally complex basin, and the approach taken provides a framework for better understanding the distribution of pore fluid pressures and pore fluid migration in other sedimentary basins.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12749
2023-05-19
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/bre/35/3/bre12749.html?itemId=/content/journals/10.1111/bre.12749&mimeType=html&fmt=ahah

References

  1. Adams, M., Kelly, C., & Khasi, K. (1989). Mckee‐8 well completion report. PML38086: Ministry of Economic Development Unpublished Petroleum Report 1458.
  2. Badri, M., Sayers, C., Awad, R., & Graziano, A. (2000). A feasibility study for pore‐pressure prediction using seismic velocities in the offshore Nile Delta, Egypt. The Leading Edge, 19(10), 1103–1108. https://doi.org/10.1190/1.1438487
    [Google Scholar]
  3. Baur, J., Sutherland, R., & Stern, T. (2014). Anomalous passive subsidence of deep‐water sedimentary basins: A prearc basin example, southern New Caledonia trough and Taranaki Basin, New Zealand. Basin Research, 26(2), 242–268. https://doi.org/10.1111/bre.12030
    [Google Scholar]
  4. Bilotti, F., & Shaw, J. H. (2005). Deep‐water Niger Delta fold and thrust belt modeled as a critical‐taper wedge: The influence of elevated basal fluid pressure on structural styles. AAPG Bulletin, 89(11), 1475–1491. https://doi.org/10.1306/06130505002
    [Google Scholar]
  5. Birchall, T., Swarbrick, R., & Senger, K. (2019). Naturally occurring underpressure—A global perspective. 2019 AAPG Annual Convention and Exhibition.
  6. Bloch, S. (1994). Case histories—Offshore Mid‐Norway/Taranaki Basin, New Zealand/San Emigdio Area, California. In M. D.Wilson (Ed.), Reservoir quality assessment and prediction in clastic rocks. SEPM Society for Sedimentary Geology. https://doi.org/10.2110/scn.94.30.0357
    [Google Scholar]
  7. Borge, H. (2002). Modelling generation and dissipation of overpressure in sedimentary basins: An example from the Halten Terrace, offshore Norway. Marine and Petroleum Geology, 19, 377–388. https://doi.org/10.1016/S0264‐8172(02)00023‐5
    [Google Scholar]
  8. Bowers, G. L. (2001). Determining an appropriate pore‐pressure estimation strategy. Offshore Technology Conference, 1–14. https://doi.org/10.4043/13042‐MS
  9. Bull, S., Nicol, A., Strogen, D., Kroeger, K. F., & Seebeck, H. S. (2018). Tectonic controls on Miocene sedimentation in the southern Taranaki Basin and implications for New Zealand plate boundary deformation. Basin Research, 31, 253–273. https://doi.org/10.1111/bre.12319
    [Google Scholar]
  10. Burgreen‐Chan, B., Meisling, K. E., & Graham, S. (2016). Basin and petroleum system modelling of the East Coast Basin, New Zealand: A test of overpressure scenarios in a convergent margin. Basin Research, 28(4), 536–567. https://doi.org/10.1111/bre.12121
    [Google Scholar]
  11. Chenrai, P., & Huuse, M. (2017). Pockmark formation by porewater expulsion during rapid progradation in the offshore Taranaki Basin, New Zealand. Marine and Petroleum Geology, 82, 399–413. https://doi.org/10.1016/j.marpetgeo.2017.02.017
    [Google Scholar]
  12. Cobbold, P. R., Mourgues, R., & Boyd, K. (2004). Mechanism of thin‐skinned detachment in the Amazon Fan: Assessing the importance of fluid overpressure and hydrocarbon generation. Marine and Petroleum Geology, 21(8), 1013–1025. https://doi.org/10.1016/j.marpetgeo.2004.05.003
    [Google Scholar]
  13. Couzens‐Schultz, B. A., & Azbel, K. (2014). Predicting pore pressure in active fold e thrust systems: An empirical model for the deepwater Sabah foldbelt. Journal of Structural Geology, 69, 465–480. https://doi.org/10.1016/j.jsg.2014.07.013
    [Google Scholar]
  14. Crowhurst, P. V., Green, P. F., & Kamp, P. J. J. (2002). Appraisal of (U‐Th)/He apatite thermochronology as a thermal history tool for hydrocarbon exploration: An example from the Taranaki Basin, New Zealand. AAPG Bulletin, 86(10), 1801–1819. https://doi.org/10.1306/61EEDD82‐173 E‐11D7‐8645000102C1865D
    [Google Scholar]
  15. Darby, D. (2002). Seal properties, overpressure and stress in the Taranaki and East Coast Basins, New Zealand. 2002 New Zealand Petroleum Conference Proceedings, 2(February), 1–10.
    [Google Scholar]
  16. Darby, D., Haszeldine, R. S., & Couples, G. D. (1996). Pressure cells and pressure seals in the UK Central Graben. Marine and Petroleum Geology, 13(8), 865–878. https://doi.org/10.1016/S0264‐8172(96)00023‐2
    [Google Scholar]
  17. de Bock, J. F., Palmer, J. A., & Lock, R. G. (1990). Tariki Sandstone—Early Oligocene hydrocarbon reservoir, eastern Taranaki, New Zealand. New Zealand Petroleum Conference, 214–224.
    [Google Scholar]
  18. Dewers, T., Eichhubl, P., Ganis, B., Gomez, S., Heath, J., Jammoul, M., Kobos, P., Liu, R., Major, J., Matteo, E., Newell, P., Rinehart, A., Sobolik, S., Stormont, J., Reda Taha, M., Wheeler, M., & White, D. (2018). Heterogeneity, pore pressure, and injectate chemistry: Control measures for geologic carbon storage. International Journal of Greenhouse Gas Control, 68, 203–215. https://doi.org/10.1016/j.ijggc.2017.11.014
    [Google Scholar]
  19. Dickinson, G. (1953). Geological aspects of abnormal reservoir pressures in Gulf Coast Louisiana. AAPG Bulletin, 37(2), 410–432. https://doi.org/10.1306/5CEADC6B‐16BB‐11D7‐8645000102C1865D
    [Google Scholar]
  20. Drews, M. C., Bauer, W., Caracciolo, L., & Stollhofen, H. (2018). Disequilibrium compaction overpressure in shales of the Bavarian foreland Molasse Basin: Results and geographical distribution from velocity‐based analyses. Marine and Petroleum Geology, 92, 37–50. https://doi.org/10.1016/j.marpetgeo.2018.02.017
    [Google Scholar]
  21. Flemings, P. B., & Lupa, J. A. (2004). Pressure prediction in the Bullwinkle Basin through petrophysics and flow modeling (Green Canyon 65, Gulf of Mexico). Marine and Petroleum Geology, 21(10), 1311–1322. https://doi.org/10.1016/j.marpetgeo.2004.09.005
    [Google Scholar]
  22. Giba, M., Nicol, A., & Walsh, J. J. (2010). Evolution of faulting and volcanism in a back‐arc basin and its implications for subduction processes. Tectonics, 29(4).
    [Google Scholar]
  23. Gresko, M., Jordan, D. W., & Thompson, P. R. (1990). A Sequence Stratigraphic Study of the Tangaroa Sandstone, Taranaki Basin, New Zealand. AAPG Annual Convention Conference Preceedings.
  24. Gunter, J. M., & Moore, C. V. (1987). Improved use of wireline testers for reservoir evaluation. Journal of Petroleum Technology, 39(6), 635–644. https://doi.org/10.2118/16481‐PA
    [Google Scholar]
  25. Hansen, R. J., & Kamp, P. J. J. (2004). Late Miocene to early Pliocene stratigraphic record in northern Taranaki Basin: Condensed sedimentation ahead of northern Graben extension and progradation of the modern continental margin. New Zealand Journal of Geology and Geophysics, 47(4), 645–662. https://doi.org/10.1080/00288306.2004.9515081
    [Google Scholar]
  26. Hantschel, T., & Kauerauf, A. I. (2009). Fundamentals of basin and petroleum systems modeling. In Fundamentals of basin and petroleum systems modeling. Springer‐Verlag. https://doi.org/10.1007/978‐3‐540‐72318‐9
    [Google Scholar]
  27. Harrison, W. J., & Summa, L. L. (1991). Paleohydrology of the Gulf of Mexico Basin. American Journal of Science, 291(2), 109–176. https://doi.org/10.2475/ajs.291.2.109
    [Google Scholar]
  28. He, S., & Middleton, M. (2002). Pressure seal and deep overpressure modelling in the Barrow sub‐basin, north west shelf, Australia. Proceedings of The Sedimentary Basins of Western Australia, 3, 531–549.
    [Google Scholar]
  29. Higgs, K. E., Strogen, D. P., Griffin, A., Ilg, B. R., & Arnot, M. J. (2012). Reservoirs of the Taranaki Basin, New Zealand. GNS Science Data Series No. 2012/13a.
  30. Holt, W. E., & Stern, T. A. (1994). Subduction, platform subsidence, and foreland thrust loading: The late Tertiary development of Taranaki Basin, New Zealand. Tectonics, 13(5), 1068–1092. https://doi.org/10.1029/94TC00454
    [Google Scholar]
  31. Hood, S. D., Nelson, C. S., & Kamp, P. J. J. (2003). Lithostratigraphy and depositional episodes of the Oligocene carbonate‐rich Tikorangi formation, Taranaki Basin, New Zealand. New Zealand Journal of Geology and Geophysics, 46(3), 363–386. https://doi.org/10.1080/00288306.2003.9515015
    [Google Scholar]
  32. Hottmann, C. E., & Johnson, R. K. (1965). Estimation of formation pressures from log‐derived shale properties. Journal of Petroleum Technology, 17(6), 717–722. https://doi.org/10.2118/1110‐PA
    [Google Scholar]
  33. Hovadik, J. M., & Larue, D. K. (2010). Stratigraphic and structural connectivity. Geological Society Special Publications, 347(1), 219–242. https://doi.org/10.1144/SP347.13
    [Google Scholar]
  34. Ilg, B. R., Hemmings‐Sykes, S., Nicol, A., Baur, J., Fohrmann, M., Funnell, R., & Milner, M. (2012). Normal faults and gas migration in an active plate boundary, southern Taranaki Basin, offshore New Zealand. AAPG Bulletin, 96(9), 1733–1756. https://doi.org/10.1306/02011211088
    [Google Scholar]
  35. Iliffe, J. E., Robertson, A. G., Ward, G. H. F., Wynn, C., Pead, S. D. M., & Cameron, N. (1999). The importance of fluid pressures and migration to the hydrocarbon prospectivity of the Faeroe‐Shetland White Zone. Petroleum Geology of Northwest Europe; Proceedings of the 5th Conference, 5, 600–611. https://doi.org/10.1144/0050601
    [Google Scholar]
  36. Javanshir, R. J., Riley, G. W., Duppenbecker, S. J., & Abdullayev, N. (2015). Validation of lateral fluid flow in an overpressured sand‐shale sequence during development of Azeri‐Chirag‐Gunashli oil field and Shah Deniz gas field: South Caspian Basin, Azerbaijan. Marine and Petroleum Geology, 59, 593–610. https://doi.org/10.1016/j.marpetgeo.2014.07.019
    [Google Scholar]
  37. Jolley, S. J., Fisher, Q. J., & Ainsworth, R. B. (2010). Reservoir compartmentalization: An introduction. Geological Society, London, Special Publications, 347(1), 1–8. https://doi.org/10.1144/SP347.1
    [Google Scholar]
  38. Kaeng, G. C., Sausan, S., & Satria, A. (2014). Geopressure centroid as pore pressure prediction challenge in Deepwater South East Asia. International Petroleum Technology Conference, 11. https://doi.org/10.2523/IPTC‐18239‐MS
    [Google Scholar]
  39. Kamp, P. J. J., & Green, P. F. (1990). Thermal and tectonic history of selected Taranaki Basin (New Zealand) wells assessed by apatite fission track analysis. American Association of Petroleum Geologists Bulletin, 74(9), 1401–1419. https://doi.org/10.1306/0C9B24E3‐1710‐11D7‐8645000102C1865D
    [Google Scholar]
  40. Kamp, P. J. J., Tripathi, A. R. P., & Nelson, C. S. (2014). Paleogeography of late Eocene to earliest Miocene Te Kuiti group, central‐western North Island, New Zealand. New Zealand Journal of Geology and Geophysics, 57(2), 128–148. https://doi.org/10.1080/00288306.2014.904384
    [Google Scholar]
  41. Kamp, P. J. J., Vonk, A. J., Bland, K. J., Hansen, R. J., Hendy, A. J. W., McIntyre, A. P., Ngatai, M., Cartwright, S. J., Hayton, S., & Nelson, C. S. (2004). Neogene stratigraphic architecture and tectonic evolution of wanganui, king country, and eastern taranaki basins, New Zealand. New Zealand Journal of Geology and Geophysics, 47(4), 625–644. https://doi.org/10.1080/00288306.2004.9515080
    [Google Scholar]
  42. King, P. R., Bland, K. J., & Lever, L. (2009). Opportunities for underground geological storage of CO2 in New Zealand—Report CCS‐08/5—Onshore Taranaki Basin overview. (Issue December).
  43. King, P. R., & Thrasher, G. P. (1996). Cretaceous‐Cenozoic Geology and Petroleum Systems of the Taranaki Basin, New Zealand. Institute of Geological and Nuclear Sciences, Monograph 13, Ministry of Economic Development Petroleum Report 3224.
    [Google Scholar]
  44. Leap Energy . (2014). Leap Energy's New Zealand ArcGIS Geodatabase.
  45. Leclère, H., Cappa, F., Faulkner, D., Fabbri, O., Armitage, P., & Blake, O. (2015). Development and maintenance of fluid overpressures in crustal fault zones by elastic compaction and implications for earthquake swarms. Journal of Geophysical Research: Solid Earth, 120, 4450–4473. https://doi.org/10.1002/2014JB011759
    [Google Scholar]
  46. Lee, J., Swarbrick, R., & O'Connor, S. (2022). Kicks and their significance in pore pressure prediction. Petroleum Geoscience, 28(2), petgeo2021‐061. https://doi.org/10.1144/petgeo2021‐061
    [Google Scholar]
  47. Martin, K. R., Baker, J. C., Hamilton, P. J., & Thrasher, G. P. (1994). Diagenesis and reservoir quality of Palaeocene sandstones in the Kupe south field, Taranaki Basin, New Zealand. AAPG Bulletin, 78(4), 624–643.
    [Google Scholar]
  48. Masalimova, L. U., Lowe, D. R., Sharman, G. R., King, P. R., & Arnot, M. J. (2016). Outcrop characterization of a submarine channel‐lobe complex: The lower mount messenger formation, Taranaki Basin, New Zealand. Marine and Petroleum Geology, 71, 360–390. https://doi.org/10.1016/j.marpetgeo.2016.01.004
    [Google Scholar]
  49. Mattos, N. H., Alves, T. M., & Scully, A. (2018). Structural and depositional controls on Plio‐Pleistocene submarine channel geometry (Taranaki Basin, New Zealand). Basin Research, v31(1), 136–154. https://doi.org/10.1111/bre.12312
    [Google Scholar]
  50. Mitchell, J. S., Mackay, K. A., Neil, H. L., Mackay, E. J., Pallentin, A., & Notman, P. (2012). Undersea New Zealand, 1:5,000,000. NIWA Chart, Miscellaneous Series No. 92.
  51. Morley, C. K., & Naghadeh, D. H. (2017). Tectonic compaction shortening in toe region of isolated listric normal fault, North Taranaki Basin, New Zealand. Basin Research, v30, 424–436. https://doi.org/10.1111/bre.12227
    [Google Scholar]
  52. Morley, C. K., Tingay, M., Hillis, R., & King, R. (2008). Relationship between structural style, overpressures, and modern stress, Baram Delta province, Northwest Borneo. Journal of Geophysical Research, 113(B09410), 1–23. https://doi.org/10.1029/2007JB005324
    [Google Scholar]
  53. Murray, D. (2000). Pohokura‐1 well completion report. New Zealand Petroleum Report Series No. 2491.
  54. Neuzil, C. E., & Pollock, D. W. (1983). Erosional unloading and fluid pressures in hydraulically “tight” rocks. The Journal of Geology, 91(2), 179–193. http://www.jstor.org/stable/30060924
    [Google Scholar]
  55. NZP&M . (2018). New Zealand petroleum exploration data pack. https://data.nzpam.govt.nz/GOLD/system/mainframe.asp
  56. O'Connor, S. A., & Swarbrick, R. E. (2008). Pressure regression, fluid drainage and a hydrodynamically controlled fluid contact in the North Sea, Lower Cretaceous, Britannia Sandstone Formation. Petroleum Geoscience, 14(2), 115–126. https://doi.org/10.1144/1354‐079308‐737
    [Google Scholar]
  57. O'Neill, S. R., Jones, S. J., Kamp, P. J. J., Swarbrick, R. E., & Gluyas, J. G. (2018). Pore pressure and reservoir quality evolution in the deep Taranaki Basin, New Zealand. Marine and Petroleum Geology, 98(April), 815–835. https://doi.org/10.1016/J.MARPETGEO.2018.08.038
    [Google Scholar]
  58. Osborne, M. J., & Swarbrick, R. E. (1997). Mechanisms for generating overpressure in sedimentary basins: A reevaluation. American Association of Petroleum Geologists Bulletin, 81(6), 1023–1041. https://doi.org/10.1306/E4FD2D89‐1732‐11D7‐8645000102C1865D
    [Google Scholar]
  59. Prada, M., Lavoué, F., Saqab, M., O'Reilly, B., Lebedev, S., Walsh, J., & Childs, C. (2018). Across‐axis variations in petrophysical properties of the North Porcupine Basin, offshore Ireland: new insights from long‐streamer traveltime tomography. Basin Research, 31, 59–76. https://doi.org/10.1111/bre.12308
    [Google Scholar]
  60. Ramdhan, A. M., & Goulty, N. R. (2010). Overpressure‐generating mechanisms in the Peciko field, lower Kutai Basin, Indonesia. Petroleum Geoscience, 16(4), 367–376. https://doi.org/10.1144/1354‐079309‐027
    [Google Scholar]
  61. Reilly, C., Nicol, A., Walsh, J. J., & Seebeck, H. (2015). Evolution of faulting and plate boundary deformation in the southern Taranaki Basin, New Zealand. Tectonophysics, 651, 1–18. https://doi.org/10.1016/j.tecto.2015.02.009
    [Google Scholar]
  62. Richards, F. W., Vrolijk, P. J., Gordon, J. D., & Miller, B. R. (2010). Reservoir connectivity analysis of a complex combination trap: Terra Nova field, Jeanne d'Arc Basin, Newfoundland, Canada. Geological Society, London, Special Publications, 347(1), 333–355. https://doi.org/10.1144/SP347.19
    [Google Scholar]
  63. Robertson, J., Goulty, N. R., & Swarbrick, R. E. (2013). Overpressure distributions in Palaeogene reservoirs of the UK Central North Sea and implications for lateral and vertical fluid flow. Petroleum Geoscience, 19(3), 223–236. https://doi.org/10.1144/petgeo2012‐060
    [Google Scholar]
  64. Robertson, J. (2013). Overpressure and lateral drainage in the palaeogene strata of the Central North Sea. Durham University. http://etheses.dur.ac.uk/9452/
    [Google Scholar]
  65. Roure, F., Andriessen, P., Callot, J. P., Faure, J. L., Ferket, H., Gonzales, E., Guilhamhou, N., Lacombe, O., Malandain, J., Sassi, W., Schneider, F., Sweneen, R., & Vilasi, N. (2010). The use of palaeo‐thermo‐barometers and coupled thermal, fluid flow and pore‐fluid pressure modelling for hydrocarbon and reservoir prediction in fold and thrust belts. In G. P.Goffey, J.Craig, T.Needham, & R.Scott (Eds.), Hydrocarbons in contractional belts (pp. 87–114). Geological Society, London, Special Publications. https://doi.org/10.1144/SP348.6
    [Google Scholar]
  66. Salazar, M., Moscardelli, L., & Wood, L. (2018). Two‐dimensional stratigraphic forward modeling, reconstructing high‐relief clinoforms in the northern Taranaki Basin. AAPG Bulletin, 102(12), 2409–2446. https://doi.org/10.1306/04241817235
    [Google Scholar]
  67. Sayers, C. M., Johnson, G. M., & Denyer, G. (2002). Predrill pore‐pressure prediction using seismic data. Geophysics, 67(4), 1286–1292. https://doi.org/10.1190/1.1500391
    [Google Scholar]
  68. Sharman, G. R., Graham, S. A., Masalimova, L. U., Shumaker, L. E., & King, P. R. (2015). Spatial patterns of deformation and paleoslope estimation within the marginal and central portions of a basin‐floor mass‐transport deposit, Taranaki Basin, New Zealand. Geosphere, 11(2), 266–306. https://doi.org/10.1130/GES01126.1
    [Google Scholar]
  69. Shi, W., Xie, Y., Zhenfeng, W., Li, X., & Tong, C. (2013). Characteristics of overpressure distribution and its implication for hydrocarbon exploration in the Qiongdongnan Basin. Journal of Asian Earth Sciences, 66, 150–165. https://doi.org/10.1016/j.jseaes.2012.12.037
    [Google Scholar]
  70. Snell, T., De Paola, N., Van Hunen, J., Nielsen, S., & Collettini, C. (2019). Modelling fluid flow in complex natural fault zones: Implications for natural and human‐induced earthquake nucleation. Earth and Planetary Science Letters, 530, 115869. https://doi.org/10.1016/j.epsl.2019.115869
    [Google Scholar]
  71. Stagpoole, V., & Funnell, R. (2001). Arc magmatism and hydrocarbon generation in the northern Taranaki Basin, New Zealand. Petroleum Geoscience, 7(3), 255–267. https://doi.org/10.1144/petgeo.7.3.255
    [Google Scholar]
  72. Stagpoole, V., Funnell, R., & Nicol, A. (2004). Overview of the structure and associated petroleum prospectivity of the Taranaki fault, New Zealand. PESA Eastern Australian Basins Symposium II, 197–206.
    [Google Scholar]
  73. Stagpoole, V., & Nicol, A. (2008). Regional structure and kinematic history of a large subduction back thrust: Taranaki fault, New Zealand. Journal of Geophysical Research: Solid Earth, 113(1), 1–19. https://doi.org/10.1029/2007JB005170
    [Google Scholar]
  74. Stern, T. A., & Davey, F. J. (1990). Deep seismic expression of a foreland basin: Taranaki Basin, New Zealand. Geology, 18(10), 979–982. https://doi.org/10.1130/0091‐7613(1990)018<0979:DSEOAF>2.3.CO;2
    [Google Scholar]
  75. Strogen, D. P. (2011). Paleogeographic synthesis of the Taranaki Basin and surrounds. GNS Science Report, 2010/53 (Issue June).
  76. Strogen, D. P., Bland, K. J., Bull, S., Fohrmann, M. F., Scott, G. P. L., & Zhu, H. (2014). Regional seismic transects of selected lines from Taranaki Basin. GNS Data Series 7b.
  77. Strogen, D. P., Bland, K. J., Nicol, A., & King, P. R. (2014). Paleogeography of the Taranaki Basin region during the latest Eocene‐Early Miocene and implications for the total drowning of Zealandia. New Zealand Journal of Geology and Geophysics, 57(2), 110–127. https://doi.org/10.1080/00288306.2014.901231
    [Google Scholar]
  78. Strogen, D. P., Seebeck, H., Nicol, A., & King, P. R. (2017). Two‐phase Cretaceous‐Paleocene rifting in the Taranaki Basin region, New Zealand; implications for Gondwana break‐up. Journal of the Geological Society, 174(5), 929–946. https://doi.org/10.1144/jgs2016‐160
    [Google Scholar]
  79. Swarbrick, R. E., & Osborne, M. J. (1996). The nature and diversity of pressure transition zones. Petroleum Geoscience, 2(2), 111–116. https://doi.org/10.1144/petgeo.2.2.111
    [Google Scholar]
  80. Swarbrick, R. E., & Osborne, M. J. (1998). Mechanisms that generate abnormal pressures: An overview. In B. E.Law, G. F.Ulmishek, & V. I.Slavin (Eds.), Abnormal pressures in hydrocarbon environments. American Association of Petroleum Geologists. https://doi.org/10.1306/M70615C2
    [Google Scholar]
  81. Swarbrick, R. E., Osborne, M. J., & Yardley, G. S. (2002). Comparison of overpressure magnitude resulting from the Main generating mechanisms. In A. R.Huffman & G. L.Bowers (Eds.), Pressure regimes in sedimentary basins and their prediction (Vol. 76, pp. 1–12). AAPG Memoir.
    [Google Scholar]
  82. Tingay, M. R. P., Hillis, R. R., Morley, C. K., Swarbrick, R. E., & Drake, S. J. (2005). Present‐day stress orientation in Brunei: A snapshot of ‘prograding tectonics’ in a tertiary delta. Journal of the Geological Society, 162(1), 39–49. http://jgs.lyellcollection.org/content/162/1/39.abstract
    [Google Scholar]
  83. Tingay, M. R. P., Hillis, R. R., Swarbrick, R. E., Morley, C. K., & Damit, A. R. (2007). Vertically transferred' overpressures in Brunei: Evidence for a new mechanism for the formation of high‐magnitude overpressure. Geology, 35(11), 1023. https://doi.org/10.1130/G23906A.1
    [Google Scholar]
  84. Tingay, M. R. P., Morley, C. K., Laird, A., Limpornpipat, O., Krisadasima, K., Pabchanda, S., & Macintyre, H. R. (2013). Evidence for overpressure generation by kerogen‐to‐gas maturation in the northern Malay Basin. AAPG Bulletin, 97(4), 639–672. https://doi.org/10.1306/09041212032
    [Google Scholar]
  85. Tippett, J. M., & Kamp, P. J. J. (1993). Fission track analysis of the Late Cenozoic vertical kinematics of continental pacific crust, South Island, New Zealand. Journal of Geophysical Research: Solid Earth, 98(B9), 16119–16148.
    [Google Scholar]
  86. Traugott, M. (1997). Pore/fracture pressure determinations in deep water. Pipe Line and Gas Industry.
    [Google Scholar]
  87. Tripathi, A. R. P., & Kamp, P. J. J. (2008). Timing of initiation of reverse displacement on the Taranaki Fault, northern Taranaki Basin: Constraints from the on land record (Oligocene Te Kuiti Group). Proceedings of 2008 New Zealand Petroleum Conference, Auckland, New Zealand, 9–12 March 2008, 1–17.
  88. Van Balen, R., & Cloetingh, S. (1994). Tectonic control of the sedimentary record and stress‐induced fluid flow: Constraints from basin modelling. Geological Society, London, Special Publications, 78(1), 9–26.
    [Google Scholar]
  89. van Ruth, P., Hillis, R., Swarbrick, R., & Tingate, P. (2000). Mud weights, transient pressure tests, and the distribution of overpressure in the north west shelf, Australia. Petroleum Exploration Society of Australia (PESEA) Journal, 28, 59–66.
    [Google Scholar]
  90. Voggenreiter, W. R. (1993). Structure and evolution of the Kapuni Anticline, Taranaki Basin, New Zealand: Evidence from the Kapuni 3D seismic survey. New Zealand Journal of Geology and Geophysics, 36(May), 77–94. https://doi.org/10.1080/00288306.1993.9514556
    [Google Scholar]
  91. Wallace, L. M., Kaneko, Y., Hreinsdóttir, S., Hamling, I., Peng, Z., Bartlow, N., Anastasio, E. D., & Fry, B. (2017). Slip enhanced by overlying sedimentary wedge. Nature Geoscience, 10, 765–770. https://doi.org/10.1038/NGEO3021
    [Google Scholar]
  92. Webster, M., O'Connor, S., Pindar, B., & Swarbrick, R. (2011). Overpressures in the Taranaki Basin: Distribution, causes, and implications for exploration. AAPG Bulletin, 95(3), 339–370. https://doi.org/10.1306/06301009149
    [Google Scholar]
  93. Williamson, M. A. (1995). Overpressures and hydrocarbon generation in the sable sub‐basin, offshore Nova Scotia. Basin Research, 7(1), 21–34. https://doi.org/10.1111/j.1365‐2117.1995.tb00092.x
    [Google Scholar]
  94. Wonham, J. P., Cyrot, M., Nguyen, T., Louhouamou, J., & Ruau, O. (2010). Integrated approach to geomodelling and dynamic simulation in a complex mixed siliciclastic‐carbonate reservoir, N'Kossa field, offshore Congo. Geological Society, London, Special Publications, 347(1), 133–163. https://doi.org/10.1144/sp347.10
    [Google Scholar]
  95. Xie, X., Bethke, C. M., Li, S., Liu, X., & Zheng, H. (2001). Overpressure and petroleum generation and accumulation in the Dongying depression of the Bohaiwan Basin, China. Geofluids, 1(4), 257–271. https://doi.org/10.1046/j.1468‐8123.2001.00017.x
    [Google Scholar]
  96. Yan, S., Xinyu, X., Feng, H., Shengfei, Q., & Guoyou, F. U. (2002). Abnormal overpressure distribution and natural gas accumulation in foreland basins, Western China. Chinese Science Bulletin, 47, 71–77.
    [Google Scholar]
  97. Yardley, G. S., & Swarbrick, R. E. (2000). Lateral transfer: A source of additional overpressure?Marine and Petroleum Geology, 17(4), 523–537. https://doi.org/10.1016/S0264‐8172(00)00007‐6
    [Google Scholar]
  98. Zhang, J. (2011). Pore pressure prediction from well logs: Methods, modifications, and new approaches. Earth‐Science Reviews, 108(1–2), 50–63. https://doi.org/10.1016/j.earscirev.2011.06.001
    [Google Scholar]
  99. Zoccarato, C., Minderhoud, P. S. J., & Teatini, P. (2018). The role of sedimentation and natural compaction in a prograding delta: Insights from the mega Mekong delta, Vietnam. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598‐018‐29734‐7
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12749
Loading
/content/journals/10.1111/bre.12749
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): compartmentalisation; lithofacies; overpressure; pore pressure; tectonostratigraphy

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error