1887
Volume 35, Issue 3
  • E-ISSN: 1365-2117
PDF

Abstract

[

The late Miocene–Pliocene northward growth of Tian Shan created an orographic barrier that diverted the moisture‐bearing westerlies and enhanced aridification in the Issyk‐Kul basin. Reorganization of the river systems and enhanced subsidence led to the formation of an internally drained lake in Pliocene. The transition from sandstone to conglomerate (Sharpyl Dak group) deposition, linked to a change in climate and/or tectonic activity, occurred diachronously within the basin.

, Abstract

Uplift of the Tian Shan range modified regional climate during Cenozoic aridification in Central Asia. This study presents facies analyses and Neogene oxygen and carbon isotopic records from magnetostratigraphically dated terrestrial sedimentary sections on the southern side of the intermontane Issyk‐Kul basin in the Kyrgyz Tian Shan and 26Al/10Be isochron burial ages from the southern and eastern sides of the basin. The δ18O and δ13C data show a positive ca. 2‰ shift in values between ca. 8 and 7 Ma and a change from a negative to a positive trend. This change is attributed to the upwind growth of the Kyrgyz, Kungey and Trans Ili (Zaili) ranges, which diverted the westerlies, thereby changing the Issyk‐Kul basin from a windward to a leeward position, enhancing aridification and establishing the modern‐day spring and summer precipitation regime within the basin. Two 4 to 5 Ma 26Al/10Be isochron burial ages constrain the onset of Sharpyl Dak deposition on the eastern side of the basin; southward paleocurrent directions there suggest the eastward growth of the Kungey range in the Pliocene. Increased subsidence on the southern side of the basin and local tectonically induced river system reorganization led to the commencement of lake formation at ca. 5 Ma, followed by a ca. 2 Ma local depositional hiatus. The transition from sandstones of the Chu sedimentary group to conglomerates of the Sharpyl Dak group, marking a change from fluvial‐alluvial deposits to a proximal alluvial fan, is dated at 2.6–2.8 Ma by 26Al/10Be isochron burial dating on the southern side of the basin, driven either by tectonics or Northern Hemisphere glaciation. This study concludes that the late Miocene–Pliocene northward growth of Tian Shan significantly altered environmental conditions within the range, preventing the moisture‐bearing westerlies from reaching the intermontane Issyk‐Kul basin and promoting lake formation and expansion.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12751
2023-05-19
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bre/35/3/bre12751.html?itemId=/content/journals/10.1111/bre.12751&mimeType=html&fmt=ahah

References

  1. Abdrakhmatov, K., Aldazhanov, S., Hager, B., Hamburger, M., Herring, T., Kalabaev, K., Makarov, V., Molnar, P., Panasyuk, S., Prilepin, M., & Reilinger, R. (1996). Relatively recent construction of the Tien Shan inferred from GPS measurements of present‐day crustal deformation rates. Nature, 384(6608), 450–453. https://doi.org/10.1038/384450a0
    [Google Scholar]
  2. Abdrakhmatov, K., Djanuzakov, K. D., & Delvaux, D. (2002). Active tectonics and seismic hazard of the Issyk‐Kul Basin in the Kyrgyz Tian‐Shan. In J.Klerkx & B.Imanackunov (Eds.), Lake Issyk‐Kul: Its natural environment. NATO Science Series, 13. Springer. https://doi.org/10.1007/978‐94‐010‐0491‐6_11
    [Google Scholar]
  3. Abdrakhmatov, K., Weldon, R., Thompson, S. C., Burbank, D. W., Rubin, C., Miller, M., & Molnar, P. (2001). Onset, style and current rate of shortening in the central Tien Shan, Kyrgyz Republic. Russian Geology and Geophysics, 42(10), 1585–1609.
    [Google Scholar]
  4. Abell, J. T., Winckler, G., Anderson, R. F., & Herbert, T. D. (2021). Poleward and weakened westerlies during Pliocene warmth. Nature, 589(7840), 70–75. https://doi.org/10.1038/s41586‐020‐03062‐1
    [Google Scholar]
  5. Aizen, E. M., Aizen, V. B., Melack, J. M., Nakamura, T., & Ohta, T. (2001). Precipitation and atmospheric circulation patterns at mid‐latitudes of Asia. International Journal of Climatology: A Journal of the Royal Meteorological Society, 21(5), 535–556. https://doi.org/10.1002/joc.626
    [Google Scholar]
  6. Aizen, V. B., Aizen, E. M., Joswiak, D. R., Fujita, K., Takeuchi, N., & Nikitin, S. A. (2006). Climatic and atmospheric circulation pattern variability from ice‐core isotope/geochemistry records (Altai, Tien Shan and Tibet). Annals of Glaciology, 43, 49–60. https://doi.org/10.3189/172756406781812078
    [Google Scholar]
  7. Aizen, V. B., Aizen, E. M., Melack, J. M., & Dozier, J. (1997). Climatic and hydrologic changes in the Tien Shan, Central Asia. Journal of Climate, 10(6), 1393–1404. https://doi.org/10.1175/1520‐0442(1997)010<1393:CAHCIT>2.0.CO;2
    [Google Scholar]
  8. Alonso‐Zarza, A. M. (2003). Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth‐Science Reviews, 60(3–4), 261–298. https://doi.org/10.1016/S0012‐8252(02)00106‐X
    [Google Scholar]
  9. Alonso‐Zarza, A. M., & Wright, V. P. (2010). Palustrine carbonates. Developments in Sedimentology, 61, 103–131. https://doi.org/10.1016/S0070‐4571(09)06102‐0
    [Google Scholar]
  10. Alonso‐Zarza, A. M., Wright, V. P., Calvo, J. P., & Del Cura, M. G. (1992). Soil‐landscape and climatic relationships in the middle Miocene of the Madrid Basin. Sedimentology, 39(1), 17–35. https://doi.org/10.1111/j.1365‐3091.1992.tb01021.x
    [Google Scholar]
  11. Bakirov, A. B., & Maksumova, R. A. (2001). Geology and evolution of the Tien Shan lithosphere (in Russian). Russian Geology and Geophysics, 42, 1359–1366.
    [Google Scholar]
  12. Balco, G., & Rovey, C. W. (2008). An isochron method for cosmogenic‐nuclide dating of buried soils and sediments. American Journal of Science, 308(10), 1083–1114. https://doi.org/10.2475/10.2008.02
    [Google Scholar]
  13. Balco, G., Stone, J. O., Lifton, N. A., & Dunai, T. J. (2008). A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology, 3, 174–195. https://doi.org/10.1016/j.quageo.2007.12.001
    [Google Scholar]
  14. Baldwin, J., & Vecchi, G. (2016). Influence of the Tian Shan on arid extratropical Asia. Journal of Climate, 29(16), 5741–5762. https://doi.org/10.1175/JCLI‐D‐15‐0490.1
    [Google Scholar]
  15. Bazhenov, M. L., Burtman, V. S., & Dvorova, A. V. (1999). Permian paleomagnetism of the Tien Shan fold belt, Central Asia: Post‐collisional rotations and deformation. Tectonophysics, 312(2–4), 303–329. https://doi.org/10.1016/S0040‐1951(99)00181‐X
    [Google Scholar]
  16. Bazhenov, M. L., & Mikolaichuk, A. V. (2004). Structural evolution of Central Asia to the north of Tibet: A synthesis of paleomagnetic and geological data. Geotectonics, 38(5), 379–393.
    [Google Scholar]
  17. Bershaw, J., & Lechler, A. R. (2019). The isotopic composition of meteoric water along altitudinal transects in the Tian Shan of Central Asia. Chemical Geology, 516, 68–78. https://doi.org/10.1016/j.chemgeo.2019.03.032
    [Google Scholar]
  18. Biske, Y. S. (1996). Paleozoic structure and history of southern Tien Shan (p. 187). Saint Petersburg State University (in Russian).
    [Google Scholar]
  19. Biske, Y. S., & Seltmann, R. (2010). Paleozoic Tian‐Shan as a transitional region between the Rheic and Urals‐Turkestan oceans. Gondwana Research, 17(2–3), 602–613. https://doi.org/10.1016/j.gr.2009.11.014
    [Google Scholar]
  20. Bookhagen, B., & Burbank, D. W. (2010). Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research: Earth Surface, 115(F3), 1–25. https://doi.org/10.1029/2009JF001426
    [Google Scholar]
  21. Bookhagen, B., & Strecker, M. R. (2008). Orographic barriers, high‐resolution TRMM rainfall, and relief variations along the eastern Andes. Geophysical Research Letters, 35(6), 1–6. https://doi.org/10.1029/2007GL032011
    [Google Scholar]
  22. Bosboom, R., Mandic, O., Dupont‐Nivet, G., Proust, J. N., Ormukov, C., & Aminov, J. (2017). Late Eocene palaeogeography of the proto‐Paratethys Sea in Central Asia (NW China, southern Kyrgyzstan and SW Tajikistan). Geological Society, London, Special Publications, 427(1), 565–588. https://doi.org/10.1144/SP427.11
    [Google Scholar]
  23. Bosboom, R. E., Abels, H. A., Hoorn, C., van den Berg, B. C., Guo, Z., & Dupont‐Nivet, G. (2014). Aridification in continental Asia after the middle Eocene climatic optimum (MECO). Earth and Planetary Science Letters, 389, 34–42. https://doi.org/10.1016/j.epsl.2013.12.014
    [Google Scholar]
  24. Bosboom, R. E., Dupont‐Nivet, G., Grothe, A., Brinkhuis, H., Villa, G., Mandic, O., Stoica, M., Huang, W., Yang, W., Guo, Z., & Krijgsman, W. (2014). Linking Tarim Basin sea retreat (West China) and Asian aridification in the late Eocene. Basin Research, 26(5), 621–640. https://doi.org/10.1111/bre.12054
    [Google Scholar]
  25. Bougeois, L., Dupont‐Nivet, G., de Rafélis, M., Tindall, J. C., Proust, J. N., Reichart, G. J., de Nooijer, L. J., Guo, Z., & Ormukov, C. (2018). Asian monsoons and aridification response to Paleogene Sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters. Earth and Planetary Science Letters, 485, 99–110. https://doi.org/10.1016/j.epsl.2017.12.036
    [Google Scholar]
  26. Bowman, D., Korjenkov, A., Porat, N., & Czassny, B. (2004). Morphological response to quaternary deformation at an intermontane basin piedmont, the northern Tien Shan, Kyrghyzstan. Geomorphology, 63(1–2), 1–24. https://doi.org/10.1016/j.geomorph.2004.03.007
    [Google Scholar]
  27. Breecker, D. O., Sharp, Z. D., & McFadden, L. D. (2009). Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from Central New Mexico, USA. Geological Society of America Bulletin, 121(3–4), 630–640. https://doi.org/10.1130/B26413.1
    [Google Scholar]
  28. Bullen, M. E., Burbank, D. W., & Garver, J. I. (2003). Building the northern Tien Shan: Integrated thermal, structural, and topographic constraints. The Journal of Geology, 111(2), 149–165. https://doi.org/10.1086/345840
    [Google Scholar]
  29. Bullen, M. E., Burbank, D. W., Garver, J. I., & Abdrakhmatov, K. Y. (2001). Late Cenozoic tectonic evolution of the northwestern Tien Shan: New age estimates for the initiation of mountain building. Geological Society of America Bulletin, 113(12), 1544–1559. https://doi.org/10.1130/0016‐7606(2001)113<1544:LCTEOT>2.0.CO;2
    [Google Scholar]
  30. Burgette, R. J., Weldon, R. J., II, Abdrakhmatov, K. Y., Ormukov, C., Owen, L. A., & Thompson, S. C. (2017). Timing and process of river and lake terrace formation in the Kyrgyz Tien Shan. Quaternary Science Reviews, 159, 15–34. https://doi.org/10.1016/j.quascirev.2017.01.003
    [Google Scholar]
  31. Caves, J. K., Bayshashov, B. U., Zhamangara, A., Ritch, A. J., Ibarra, D. E., Sjostrom, D. J., Mix, H. T., Winnick, M. J., & Chamberlain, C. P. (2017). Late Miocene uplift of the Tian Shan and Altai and reorganization of Central Asia climate. GSA Today, 27(2), 19–26. https://doi.org/10.1130/GSATG305A.1
    [Google Scholar]
  32. Caves, J. K., Moragne, D. Y., Ibarra, D. E., Bayshashov, B. U., Gao, Y., Jones, M. M., Zhamangara, A., Arzhannikova, A. V., Arzhannikov, S. G., & Chamberlain, C. P. (2016). The Neogene de‐greening of Central Asia. Geology, 44(11), 887–890. https://doi.org/10.1130/G38267.1
    [Google Scholar]
  33. Caves, J. K., Sjostrom, D. J., Mix, H. T., Winnick, M. J., & Chamberlain, C. P. (2014). Aridification of Central Asia and uplift of the Altai and Hangay Mountains, Mongolia: Stable isotope evidence. American Journal of Science, 314(8), 1171–1201. https://doi.org/10.2475/08.2014.01
    [Google Scholar]
  34. Caves, J. K., Winnick, M. J., Graham, S. A., Sjostrom, D. J., Mulch, A., & Chamberlain, C. P. (2015). Role of the westerlies in Central Asia climate over the Cenozoic. Earth and Planetary Science Letters, 428, 33–43. https://doi.org/10.1016/j.epsl.2015.07.023
    [Google Scholar]
  35. Caves Rugenstein, J. K., & Chamberlain, C. P. (2018). The evolution of hydroclimate in Asia over the Cenozoic: A stable‐isotope perspective. Earth‐Science Reviews, 185, 1129–1156. https://doi.org/10.1016/j.earscirev.2018.09.003
    [Google Scholar]
  36. Cerling, T. E. (1984). The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71(2), 229–240. https://doi.org/10.1016/0012‐821X(84)90089‐X
    [Google Scholar]
  37. Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., & Ehleringer, J. R. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature, 389(6647), 153–158. https://doi.org/10.1038/38229
    [Google Scholar]
  38. Cerling, T. E., & Quade, J. (1993). Stable carbon and oxygen isotopes in soil carbonates. Climate change in continental isotopic records. Geophysical Monograph, 78, 217–231. https://doi.org/10.1029/GM078p0217
    [Google Scholar]
  39. Chamberlain, C. P., Mix, H. T., Mulch, A., Hren, M. T., Kent‐Corson, M. L., Davis, S. J., Horton, T. W., & Graham, S. A. (2012). The Cenozoic climatic and topographic evolution of the western north American cordillera. American Journal of Science, 312(2), 213–262. https://doi.org/10.2475/02.2012.05
    [Google Scholar]
  40. Chamberlain, C. P., & Poage, M. A. (2000). Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals. Geology, 28(2), 115–118. https://doi.org/10.1130/0091‐7613(2000)28<115:RTPOMB>2.0.CO;2
    [Google Scholar]
  41. Chang, J., Glorie, S., Qiu, N., Min, K., Xiao, Y., & Xu, W. (2021). Late Miocene (10.0∼ 6.0 Ma) rapid exhumation of the Chinese south Tianshan: Implications for the timing of aridification in the Tarim Basin. Geophysical Research Letters, 48(3), e2020GL090623. https://doi.org/10.1029/2020GL090623
    [Google Scholar]
  42. Charreau, J., Blard, P. H., Puchol, N., Avouac, J. P., Lallier‐Vergès, E., Bourlès, D., Braucher, R., Gallaud, A., Finkel, R., Jolivet, M., & Chen, Y. (2011). Paleo‐erosion rates in Central Asia since 9 Ma: A transient increase at the onset of quaternary glaciations?Earth and Planetary Science Letters, 304(1–2), 85–92. https://doi.org/10.1016/j.epsl.2011.01.018
    [Google Scholar]
  43. Charreau, J., Gumiaux, C., Avouac, J. P., Augier, R., Chen, Y., Barrier, L., Gilder, S., Dominguez, S., Charles, N., & Wang, Q. (2009). The Neogene Xiyu formation, a diachronous prograding gravel wedge at front of the Tianshan: Climatic and tectonic implications. Earth and Planetary Science Letters, 287(3–4), 298–310. https://doi.org/10.1016/j.epsl.2009.07.035
    [Google Scholar]
  44. Charreau, J., Kent‐Corson, M. L., Barrier, L., Augier, R., Ritts, B. D., Chen, Y., France‐Lannord, C., & Guilmette, C. (2012). A high‐resolution stable isotopic record from the Junggar Basin (NW China): Implications for the paleotopographic evolution of the Tianshan Mountains. Earth and Planetary Science Letters, 341, 158–169. https://doi.org/10.1016/j.epsl.2012.05.033
    [Google Scholar]
  45. Chen, J., Burbank, D. W., Scharer, K. M., Sobel, E., Yin, J., Rubin, C., & Zhao, R. (2002). Magnetochronology of the upper Cenozoic strata in the southwestern Chinese Tian Shan: Rates of Pleistocene folding and thrusting. Earth and Planetary Science Letters, 195(1–2), 113–130. https://doi.org/10.1016/S0012‐821X(01)00579‐9
    [Google Scholar]
  46. Child, D., Elliott, G., Mifsud, C., Smith, A. M., & Fink, D. (2000). Sample processing for earth science studies at ANTARES. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 172(1–4), 856–860. https://doi.org/10.1016/S0168‐583X(00)00198‐1
    [Google Scholar]
  47. Chmeleff, J., von Blanckenburg, F., Kossert, K., & Jakob, D. (2010). Determination of the 10Be half‐life by multicollector ICP‐MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(2), 192–199. https://doi.org/10.1016/j.nimb.2009.09.012
    [Google Scholar]
  48. Codilean, A. T., & Sadler, P. M. (2021). Tectonic controls on Himalayan denudation?AGU Advances, 2(3), e2021AV000539. https://doi.org/10.1029/2021AV000539
    [Google Scholar]
  49. Corbett, L. B., Bierman, P. R., Rood, D. H., Caffee, M. W., Lifton, N. A., & Woodruff, T. E. (2017). Cosmogenic 26Al/10Be surface production ratio in Greenland. Geophysical Research Letters, 44(3), 1350–1359. https://doi.org/10.1002/2016GL071276
    [Google Scholar]
  50. De Batist, M., Imbo, Y., Vermeesch, P., Klerkx, J., Giralt, S., Delvaux, D., Lignier, V., Beck, C., Kalugin, I., & Abdrakhmatov, K. E. (2002). Bathymetry and sedimentary environments of Lake Issyk‐Kul, Kyrgyz Republic (Central Asia): A large, high‐altitude, tectonic lake. In Lake Issyk‐Kul: Its natural environment (pp. 101–123). Springer. https://doi.org/10.1007/978‐94‐010‐0491‐6_9
    [Google Scholar]
  51. De Grave, J., Glorie, S., Buslov, M. M., Stockli, D. F., McWilliams, M. O., & Batalev, V. Y. (2013). Thermo‐tectonic history of the Issyk‐Kul basement (Kyrgyz northern Tien Shan, Central Asia). Gondwana Research, 23(3), 998–1020. https://doi.org/10.1016/j.gr.2012.06.014
    [Google Scholar]
  52. De Pelsmaeker, E., Glorie, S., Buslov, M. M., Zhimulev, F. I., Poujol, M., Korobkin, V. V., Vanhaecke, F., Vetrov, E. V., & De Grave, J. (2015). Late‐Paleozoic emplacement and Meso‐Cenozoic reactivation of the southern Kazakhstan granitoid basement. Tectonophysics, 662, 416–433. https://doi.org/10.1016/j.tecto.2015.06.014
    [Google Scholar]
  53. Dettman, D. L., Fang, X., Garzione, C. N., & Li, J. (2003). Uplift‐driven climate change at 12 Ma: A long δ18O record from the NE margin of the Tibetan plateau. Earth and Planetary Science Letters, 214(1–2), 267–277. https://doi.org/10.1016/S0012‐821X(03)00383‐2
    [Google Scholar]
  54. Dupont‐Nivet, G., Krijgsman, W., Langereis, C. G., Abels, H. A., Dai, S., & Fang, X. (2007). Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature, 445(7128), 635–638. https://doi.org/10.1038/nature05516
    [Google Scholar]
  55. Erlanger, E. D., Granger, D. E., & Gibbon, R. J. (2012). Rock uplift rates in South Africa from isochron burial dating of fluvial and marine terraces. Geology, 40(11), 1019–1022. https://doi.org/10.1130/G33172.1
    [Google Scholar]
  56. Fan, M., Dettman, D. L., Song, C., Fang, X., & Garzione, C. N. (2007). Climatic variation in the Linxia basin, NE Tibetan plateau, from 13.1 to 4.3 Ma: The stable isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(3–4), 313–328. https://doi.org/10.1016/j.palaeo.2006.11.001
    [Google Scholar]
  57. Fang, X., An, Z., Clemens, S. C., Zan, J., Shi, Z., Yang, S., & Han, W. (2020). The 3.6‐Ma aridity and westerlies history over midlatitude Asia linked with global climatic cooling. Proceedings of the National Academy of Sciences of the United States of America, 117(40), 24729–24734. https://doi.org/10.1073/pnas.1922710117
    [Google Scholar]
  58. Fortuna, A. B. (2016). Paleogene and Neogene paleoclimate in the northern Tian Shan (in Russian). Vestnik IS NAN KR, 1(7), 102–111.
    [Google Scholar]
  59. Fortuna, A. B., Abdieva, S. V., & Korzhenkov, A. M. (2017). The history of flora and vegetation development in the Issyk Kul basin during the Cenozoic (in Russian). Vestnik KRSU, 17(8), 201–205.
    [Google Scholar]
  60. Fortuna, A. B., Kerimbekov, C. K., Kuzikov, S. I., & Mikolaichuk, A. V. (1994). Lithostratigraphic and palynologic data of Cenozoic deposits of Tessik‐Sarybulak depression (in Russian). In O. K.Chediya (Ed.), Geology of Cenozoic and seismotectonics of the Tien Shan (pp. 26–39). Frunse, Ilim.
    [Google Scholar]
  61. Freytet, P., & Verrecchia, E. P. (2002). Lacustrine and palustrine carbonate petrography: An overview. Journal of Paleolimnology, 27(2), 221–237. https://doi.org/10.1023/A:1014263722766
    [Google Scholar]
  62. Frisch, K., Voigt, S., Verestek, V., Appel, E., Albert, R., Gerdes, A., Arndt, I., Raddatz, J., Voigt, T., Weber, Y., & Batenburg, S. J. (2019). Long‐period astronomical forcing of westerlies' strength in Central Asia during Miocene climate cooling. Paleoceanography and Paleoclimatology, 34(11), 1784–1806. https://doi.org/10.1029/2019PA003642
    [Google Scholar]
  63. Frisch, K., Voigt, S., Voigt, T., Hellwig, A., Verestek, V., & Weber, Y. (2019). Extreme aridity prior to lake expansion deciphered from facies evolution in the Miocene Ili Basin, south‐East Kazakhstan. Sedimentology, 66(5), 1716–1745.
    [Google Scholar]
  64. Fujioka, T., Fink, D., & Mifsud, C. (2015). Towards improvement of aluminium assay in quartz for in situ cosmogenic 26Al analysis at ANSTO. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 361, 346–353. https://doi.org/10.1016/j.nimb.2015.07.120
    [Google Scholar]
  65. Garzione, C. N., Dettman, D. L., & Horton, B. K. (2004). Carbonate oxygen isotope paleoaltimetry: Evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 212(1–2), 119–140. https://doi.org/10.1016/j.palaeo.2004.05.020
    [Google Scholar]
  66. Gebhardt, A. C., Naudts, L., De Mol, L., Klerkx, J., Abdrakhmatov, K., Sobel, E. R., & De Batist, M. (2017). High‐amplitude lake‐level changes in tectonically active Lake Issyk‐Kul (Kyrgyzstan) revealed by high‐resolution seismic reflection data. Climate of the Past, 13(1), 73–92. https://doi.org/10.5194/cp‐13‐73‐2017
    [Google Scholar]
  67. Glorie, S., & De Grave, J. (2016). Exhuming the Meso–Cenozoic Kyrgyz Tianshan and Siberian Altai‐Sayan: A review based on low‐temperature thermochronology. Geoscience Frontiers, 7(2), 155–170. https://doi.org/10.1016/j.gsf.2015.04.003
    [Google Scholar]
  68. Graham, S. A., Chamberlain, C. P., Yue, Y., Ritts, B. D., Hanson, A. D., Horton, T. W., Waldbauer, J. R., Poage, M. A., & Feng, X. (2005). Stable isotope records of Cenozoic climate and topography, Tibetan plateau and Tarim basin. American Journal of Science, 305(2), 101–118. https://doi.org/10.2475/ajs.305.2.101
    [Google Scholar]
  69. Granger, D. E., & Muzikar, P. F. (2001). Dating sediment burial with in situ‐produced cosmogenic nuclides: Theory, techniques, and limitations. Earth and Planetary Science Letters, 188(1–2), 269–281. https://doi.org/10.1016/S0012‐821X(01)00309‐0
    [Google Scholar]
  70. Grigina, O. M., & Fortuna, A. B. (1975). Main stages of the vegetation development in the Issyk Kul basin in the Cenozoic (in Russian). In History of lakes and inland seas in arid zone: Thesis (Vol. 4, pp. 79–85). Leningrad.
    [Google Scholar]
  71. Grigina, O. M., & Fortuna, A. B. (1981). Paleogeography of the northern Tian Shan in the Cenozoic (in Russian). Frunse.
    [Google Scholar]
  72. Halsted, C. T., Bierman, P. R., & Balco, G. (2021). Empirical evidence for latitude and altitude variation of the In situ Cosmogenic 26Al/10Be production ratio. Geosciences, 11(10), 402. https://doi.org/10.3390/geosciences11100402
    [Google Scholar]
  73. Heermance, R. V., Chen, J., Burbank, D. W., & Wang, C. (2007). Chronology and tectonic controls of late tertiary deposition in the southwestern Tian Shan foreland, NW China. Basin Research, 19(4), 599–632. https://doi.org/10.1111/j.1365‐2117.2007.00339.x
    [Google Scholar]
  74. Hellwig, A., Voigt, S., Mulch, A., Frisch, K., Bartenstein, A., Pross, J., Gerdes, A., & Voigt, T. (2018). Late Oligocene to early Miocene humidity change recorded in terrestrial sequences in the Ili Basin (South‐Eastern Kazakhstan, Central Asia). Sedimentology, 65(2), 517–539. https://doi.org/10.1111/sed.12390
    [Google Scholar]
  75. Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C., Caballero‐Gill, R., & Kelly, C. S. (2016). Late Miocene global cooling and the rise of modern ecosystems. Nature Geoscience, 9(11), 843–847. https://doi.org/10.1038/ngeo2813
    [Google Scholar]
  76. Hough, B. G., Garzione, C. N., Wang, Z., Lease, R. O., Burbank, D. W., & Yuan, D. (2011). Stable isotope evidence for topographic growth and basin segmentation: Implications for the evolution of the NE Tibetan plateau. Bulletin, 123(1–2), 168–185. https://doi.org/10.1130/B30090.1
    [Google Scholar]
  77. Jia, Y., Wu, H., Zhu, S., Li, Q., Zhang, C., Yu, Y., & Sun, A. (2020). Cenozoic aridification in Northwest China evidenced by paleovegetation evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 557, 109907. https://doi.org/10.1016/j.palaeo.2020.109907
    [Google Scholar]
  78. Kaya, M. Y., Dupont‐Nivet, G., Proust, J. N., Roperch, P., Bougeois, L., Meijer, N., Frieling, J., Fioroni, C., Altiner, S. Ö., Vardar, E., & Barbolini, N. (2019). Paleogene evolution and demise of the proto‐Paratethys Sea in Central Asia (Tarim and Tajik basins): Role of intensified tectonic activity at ca. 41 Ma. Basin Research, 31(3), 461–486. https://doi.org/10.1111/bre.12330
    [Google Scholar]
  79. Kent‐Corson, M. L., Ritts, B. D., Zhuang, G., Bovet, P. M., Graham, S. A., & Chamberlain, C. P. (2009). Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan plateau. Earth and Planetary Science Letters, 282(1–4), 158–166. https://doi.org/10.1016/j.epsl.2009.03.011
    [Google Scholar]
  80. Knudsen, M. F., Nørgaard, J., Grischott, R., Kober, F., Egholm, D. L., Hansen, T. M., & Jansen, J. D. (2020). New cosmogenic nuclide burial‐dating model indicates onset of major glaciations in the Alps during middle Pleistocene transition. Earth and Planetary Science Letters, 549, 116491. https://doi.org/10.1016/j.epsl.2020.116491
    [Google Scholar]
  81. Kohl, C. P., & Nishiizumi, K. (1992). Chemical isolation of quartz for measurement of in‐situ‐produced cosmogenic nuclides. Geochimica et Cosmochimica Acta, 56(9), 3583–3587. https://doi.org/10.1016/0016‐7037(92)90401‐4
    [Google Scholar]
  82. Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., Von Gosstomski, C. L., Kossert, K., Maiti, M., Poutivtsev, M., & Remmert, A. (2010). A new value for the half‐life of 10Be by heavy‐ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(2), 187–191. https://doi.org/10.1016/j.nimb.2009.09.020
    [Google Scholar]
  83. Lal, D. (1991). Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth and Planetary Science Letters, 104(2–4), 424–439. https://doi.org/10.1016/0012‐821X(91)90220‐C
    [Google Scholar]
  84. Lauterbach, S., Witt, R., Plessen, B., Dulski, P., Prasad, S., Mingram, J., Gleixner, G., Hettler‐Riedel, S., Stebich, M., Schnetger, B., Schwalb, A., & Schwarz, A. (2014). Climatic imprint of the mid‐latitude westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years. The Holocene, 24(8), 970–984. https://doi.org/10.1177/0959683614534741
    [Google Scholar]
  85. Leng, M. J., & Marshall, J. D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23(7–8), 811–831. https://doi.org/10.1016/j.quascirev.2003.06.012
    [Google Scholar]
  86. Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., & Ehleringer, J. R. (2006). A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11201–11205. https://doi.org/10.1073/pnas.0604719103
    [Google Scholar]
  87. Li, B., Sun, D., Wang, X., Zhang, Y., Hu, W., Wang, F., Li, Z., Ma, Z., & Liang, B. (2016). δ18O and δ13C records from a Cenozoic sedimentary sequence in the Lanzhou Basin, northwestern China: Implications for palaeoenvironmental and palaeoecological changes. Journal of Asian Earth Sciences, 125, 22–36. https://doi.org/10.1016/j.jseaes.2016.05.010
    [Google Scholar]
  88. Li, H. C., & Ku, T. L. (1997). δ13C–δ18O covariance as a paleohydrological indicator for closed‐basin lakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 133(1–2), 69–80. https://doi.org/10.1016/S0031‐0182(96)00153‐8
    [Google Scholar]
  89. Li, J. X., Yue, L. P., Roberts, A. P., Hirt, A. M., Pan, F., Guo, L., Xu, Y., Xi, R. G., Guo, L., Qiang, X. K., Gai, C. C., Jiang, Z. X., Sun, Z. M., & Liu, Q. S. (2018). Global cooling and enhanced Eocene Asian mid‐latitude interior aridity. Nature Communications, 9(1), 1–8. https://doi.org/10.1038/s41467‐018‐05415‐x
    [Google Scholar]
  90. Licht, A., Dupont‐Nivet, G., Pullen, A., Kapp, P., Abels, H. A., Lai, Z., Guo, Z., Abell, J., & Giesler, D. (2016). Resilience of the Asian atmospheric circulation shown by Paleogene dust provenance. Nature Communications, 7(1), 1–6. https://doi.org/10.1038/ncomms12390
    [Google Scholar]
  91. Liu, W., Liu, Z., An, Z., Sun, J., Chang, H., Wang, N., Dong, J., & Wang, H. (2014). Late Miocene episodic lakes in the arid Tarim Basin, western China. Proceedings of the National Academy of Sciences of the United State of America, 111(46), 16292–16296. https://doi.org/10.1073/pnas.1410890111
    [Google Scholar]
  92. Macaulay, E. A., Sobel, E. R., Mikolaichuk, A., Kohn, B., & Stuart, F. M. (2014). Cenozoic deformation and exhumation history of the central Kyrgyz Tien Shan. Tectonics, 33(2), 135–165. https://doi.org/10.1002/2013TC003376
    [Google Scholar]
  93. Macaulay, E. A., Sobel, E. R., Mikolaichuk, A., Landgraf, A., Kohn, B., & Stuart, F. (2013). Thermochronologic insight into late Cenozoic deformation in the basement‐cored Terskey range, Kyrgyz Tien Shan. Tectonics, 32(3), 487–500. https://doi.org/10.1002/tect.20040
    [Google Scholar]
  94. Macaulay, E. A., Sobel, E. R., Mikolaichuk, A. V., Wack, M., Gilder, S. A., Mulch, A., Fortuna, A. B., Hynek, S., & Apayarov, F. (2016). The sedimentary record of the Issyk Kul basin, Kyrgyzstan: Climatic and tectonic inferences. Basin Research, 28(1), 57–80. https://doi.org/10.1111/bre.12098
    [Google Scholar]
  95. Maksumova, R. A., Djenchuraeva, A. V., & Berezanskii, A. V. (2001). Structure and evolution of the Tien Shan nappe‐folded orogen. Russian Geology and Geophysics, 42, 1367–1374.
    [Google Scholar]
  96. Methner, K., Fiebig, J., Wacker, U., Umhoefer, P., Chamberlain, C. P., & Mulch, A. (2016). Eocene‐Oligocene proto‐cascades topography revealed by clumped (Δ47) and oxygen isotope (δ18O) geochemistry (Chumstick Basin, WA, USA). Tectonics, 35(3), 546–564. https://doi.org/10.1002/2015TC003984
    [Google Scholar]
  97. Miao, Y., Herrmann, M., Wu, F., Yan, X., & Yang, S. (2012). What controlled Mid–Late Miocene long‐term aridification in Central Asia? Global cooling or Tibetan Plateau uplift: A review. Earth‐Science Reviews, 112(3–4), 155–172. https://doi.org/10.1016/j.earscirev.2012.02.003
    [Google Scholar]
  98. Molnar, P., & Tapponnier, P. (1975). Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India‐Eurasia collision. Science, 189(4201), 419–426. https://doi.org/10.1126/science.189.4201.419
    [Google Scholar]
  99. Mulch, A. (2016). Stable isotope paleoaltimetry and the evolution of landscapes and life. Earth and Planetary Science Letters, 433, 180–191. https://doi.org/10.1016/j.epsl.2015.10.034
    [Google Scholar]
  100. Nishiizumi, K. (2004). Preparation of 26Al AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 223, 388–392. https://doi.org/10.1016/j.nimb.2004.04.075
    [Google Scholar]
  101. Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C., & McAninch, J. (2007). Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 258(2), 403–413. https://doi.org/10.1016/j.nimb.2007.01.297
    [Google Scholar]
  102. Norris, T. L., Gancarz, A. J., Rokop, D. J., & Thomas, K. W. (1983). Half‐life of 26Al. Journal of Geophysical Research: Solid Earth, 88(S01), B331–B333. https://doi.org/10.1029/JB088iS01p0B331
    [Google Scholar]
  103. Oberhänsli, H., & Molnar, P. (2012). Climate evolution in Central Asia during the past few million years: A case study from Issyk Kul. Scientific Drilling, 13, 51–57. https://doi.org/10.2204/iodp.sd.13.09.2011
    [Google Scholar]
  104. Omuraliev, M., & Omuralieva, A. (2004). Late Cenozoic tectonics of the Tien Shan. Institute of Seizmology, National Academy of Sciences Kyrgyz Republic, Bishkek.
    [Google Scholar]
  105. Poage, M. A., & Chamberlain, C. P. (2001). Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change. American Journal of Science, 301(1), 1–15. https://doi.org/10.2475/ajs.301.1.1
    [Google Scholar]
  106. Prud'homme, C., Scardia, G., Vonhof, H., Guinoiseau, D., Nigmatova, S., Fiebig, J., Gerdes, A., Janssen, R., & Fitzsimmons, K. E. (2021). Central Asian modulation of northern hemisphere moisture transfer over the late Cenozoic. Communications Earth & Environment, 2(1), 1–8. https://doi.org/10.1038/s43247‐021‐00173‐z
    [Google Scholar]
  107. Quade, J., Breecker, D. O., Daëron, M., & Eiler, J. (2011). The paleoaltimetry of Tibet: An isotopic perspective. American Journal of Science, 311(2), 77–115. https://doi.org/10.2475/02.2011.01
    [Google Scholar]
  108. Quade, J., Leary, R., Dettinger, M. P., Orme, D., Krupa, A., DeCelles, P. G., Kano, A., Kato, H., Waldrip, R., Huang, W., & Kapp, P. (2020). Resetting southern Tibet: The serious challenge of obtaining primary records of Paleoaltimetry. Global and Planetary Change, 191, 103194. https://doi.org/10.1016/j.gloplacha.2020.103194
    [Google Scholar]
  109. Ramstein, G., Fluteau, F., Besse, J., & Joussaume, S. (1997). Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature, 386(6627), 788–795. https://doi.org/10.1038/386788a0
    [Google Scholar]
  110. Ricketts, R. D., Johnson, T. C., Brown, E. T., Rasmussen, K. A., & Romanovsky, V. V. (2001). The Holocene paleolimnology of Lake Issyk‐Kul, Kyrgyzstan: Trace element and stable isotope composition of ostracodes. Palaeogeography, Palaeoclimatology, Palaeoecology, 176(1–4), 207–227. https://doi.org/10.1016/S0031‐0182(01)00339‐X
    [Google Scholar]
  111. Rosenwinkel, S., Landgraf, A., Schwanghart, W., Volkmer, F., Dzhumabaeva, A., Merchel, S., Rugel, G., Preusser, F., & Korup, O. (2017). Late Pleistocene outburst floods from Issyk Kul, Kyrgyzstan?Earth Surface Processes and Landforms, 42(10), 1535–1548. https://doi.org/10.1002/esp.4109
    [Google Scholar]
  112. Roud, S. C., Wack, M. R., Gilder, S. A., Kudriavtseva, A., & Sobel, E. R. (2021). Miocene to early Pleistocene depositional history and tectonic evolution of the Issyk‐Kul Basin, Central Tian Shan. Geochemistry, Geophysics, Geosystems, 22(4), e2020GC009556. https://doi.org/10.1029/2020GC009556
    [Google Scholar]
  113. Rowley, D. B., & Garzione, C. N. (2007). Stable isotope‐based paleoaltimetry. Annual Review of Earth and Planetary Sciences, 35, 463–508. https://doi.org/10.1146/annurev.earth.35.031306.140155
    [Google Scholar]
  114. Sanyal, P., Bhattacharya, S. K., & Prasad, M. (2005). Chemical diagenesis of Siwalik sandstone: Isotopic and mineralogical proxies from Surai Khola section, Nepal. Sedimentary Geology, 180(1–2), 57–74. https://doi.org/10.1016/j.sedgeo.2005.06.005
    [Google Scholar]
  115. Schaefer, J. M., Codilean, A. T., Willenbring, J. K., Lu, Z.‐T., Keisling, B., Fülöp, R.‐H., & Val, P. (2022). Cosmogenic nuclide techniques. Nature Reviews Methods Primers, 2, 18. https://doi.org/10.1038/s43586‐022‐00096‐9
    [Google Scholar]
  116. Schwarz, A., Turner, F., Lauterbach, S., Plessen, B., Krahn, K. J., Glodniok, S., Mischke, S., Stebich, M., Witt, R., Mingram, J., & Schwalb, A. (2017). Mid‐to late Holocene climate‐driven regime shifts inferred from diatom, ostracod and stable isotope records from Lake son Kol (Central Tian Shan, Kyrgyzstan). Quaternary Science Reviews, 177, 340–356. https://doi.org/10.1016/j.quascirev.2017.10.009
    [Google Scholar]
  117. Selander, J., Oskin, M., Ormukov, C., & Abdrakhmatov, K. (2012). Inherited strike‐slip faults as an origin for basement‐cored uplifts: Example of the Kungey and Zailiskey ranges, northern Tian Shan. Tectonics, 31(4), 1–22. https://doi.org/10.1029/2011TC003002
    [Google Scholar]
  118. Seltmann, R., Konopelko, D., Biske, G., Divaev, F., & Sergeev, S. (2011). Hercynian post‐collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt. Journal of Asian Earth Sciences, 42, 821–838. https://doi.org/10.1016/j.jseaes.2010.08.016
    [Google Scholar]
  119. Sobel, E. R., Chen, J., & Heermance, R. V. (2006). Late Oligocene–Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan: Implications for Neogene shortening rate variations. Earth and Planetary Science Letters, 247(1–2), 70–81. https://doi.org/10.1016/j.epsl.2006.03.048
    [Google Scholar]
  120. Sobel, E. R., Oskin, M., Burbank, D., & Mikolaichuk, A. (2006). Exhumation of basement‐cored uplifts: Example of the Kyrgyz range quantified with apatite fission track thermochronology. Tectonics, 25(2), 1–17. https://doi.org/10.1029/2005TC001809
    [Google Scholar]
  121. Spötl, C., & Vennemann, T. W. (2003). Continuous‐flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Communications in Mass Spectrometry, 17(9), 1004–1006. https://doi.org/10.1002/rcm.1010
    [Google Scholar]
  122. Sun, J., Gong, Z., Tian, Z., Jia, Y., & Windley, B. (2015). Late Miocene stepwise aridification in the Asian interior and the interplay between tectonics and climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 421, 48–59. https://doi.org/10.1016/j.palaeo.2015.01.001
    [Google Scholar]
  123. Swart, P. K. (2015). The geochemistry of carbonate diagenesis: The past, present and future. Sedimentology, 62(5), 1233–1304. https://doi.org/10.1111/sed.12205
    [Google Scholar]
  124. Talbot, M. R. (1990). A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology: Isotope Geoscience Section, 80(4), 261–279. https://doi.org/10.1016/0168‐9622(90)90009‐2
    [Google Scholar]
  125. Tursungasiev, B. T., & Petrov, O. V. (Eds.). (2008). Geological map of Kyrgyzstan of 1:500000 scales. Russian Geological Research Institute (VSEGEI).
    [Google Scholar]
  126. Voigt, S., Weber, Y., Frisch, K., Bartenstein, A., Hellwig, A., Petschick, R., Bahr, A., Pross, J., Koutsodendris, A., Voigt, T., Verestek, V., & Appel, E. (2017). Climatically forced moisture supply, sediment flux and pedogenesis in Miocene mudflat deposits of south‐East Kazakhstan, Central Asia. The Depositional Record, 3(2), 209–232. https://doi.org/10.1002/dep2.34
    [Google Scholar]
  127. von Blanckenburg, F., Belshaw, N. S., & O'Nions, R. K. (1996). Separation of 9Be and cosmogenic 10Be from environmental materials and SIMS isotope dilution analysis. Chemical Geology, 129(1–2), 93–99. https://doi.org/10.1016/0009‐2541(95)00157‐3
    [Google Scholar]
  128. Voskresenskaya, T. N. (2013). Lacustrine sediments and paleogeography in the Issyk Kul basin in the Cenozoic (in Russian). In Sedimentary basins, sedimentary and postsedimentary processes in the geological history (Vol. 1, pp. 180–183). INGG SO RAN.
    [Google Scholar]
  129. Voskresenskaya, T. N., & Leflat, O. N. (2015). Paleogeographic evolution of the Issyk Kul basin during the Pleistocene (in Russian). Vestnik Moskovskogo Universiteta. Seriya 5, Geografiya, 71–77.
    [Google Scholar]
  130. Wack, M. R., Gilder, S. A., Macaulay, E. A., Sobel, E. R., Charreau, J., & Mikolaichuk, A. (2014). Cenozoic magnetostratigraphy and magnetic properties of the southern Issyk‐Kul basin, Kyrgyzstan. Tectonophysics, 629, 14–26. https://doi.org/10.1016/j.tecto.2014.03.030
    [Google Scholar]
  131. Wang, S., Zhang, M., Hughes, C. E., Zhu, X., Dong, L., Ren, Z., & Chen, F. (2016). Factors controlling stable isotope composition of precipitation in arid conditions: An observation network in the Tianshan Mountains, Central Asia. Tellus B: Chemical and Physical Meteorology, 68(1), 26206. https://doi.org/10.3402/tellusb.v68.26206
    [Google Scholar]
  132. Wang, X., Carrapa, B., Sun, Y., Dettman, D. L., Chapman, J. B., Caves Rugenstein, J. K., Clementz, M. T., DeCelles, P. G., Wang, M., Chen, J., Quade, J., Wang, F., Li, Z., Oimuhammadzoda, I., Gadoev, M., Lohmann, G., Zhang, X., & Chen, F. (2020). The role of the westerlies and orography in Asian hydroclimate since the late Oligocene. Geology, 48(7), 728–732. https://doi.org/10.1130/G47400.1
    [Google Scholar]
  133. Wasiljeff, J., Salminen, J. M., Stenman, J., Zhang, Z., & Kaakinen, A. (2022). Oligocene moisture variations as evidenced by an aeolian dust sequence in Inner Mongolia, China. Scientific Reports, 12(1), 1–14. https://doi.org/10.1038/s41598‐022‐09362‐y
    [Google Scholar]
  134. Wilcken, K. M., Codilean, A. T., Fülöp, R.‐H., Kotevski, S., Rood, A. H., Rood, D. H., Seal, A. J., & Simon, K. (2021). Accelerator mass spectrometry of 10Be and 26Al at low nuclide concentrations. Geochronology, 4(1), 339–352. https://doi.org/10.5194/gchron‐2021‐30
    [Google Scholar]
  135. Wilcken, K. M., Fujioka, T., Fink, D., Fülöp, R.‐H., Codilean, A. T., Simon, K., Mifsud, C., & Kotevski, S. (2019). SIRIUS performance: 10Be, 26Al and 36Cl measurements at ANSTO. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 455, 300–304.
    [Google Scholar]
  136. Windley, B. F., Alexeiev, D. V., Xiao, W., Kröner, A., & Badarch, G. (2007). Tectonic models for accretion of the central Asian Orogenic Belt. Journal of the Geological Society, London, 164, 31–47. https://doi.org/10.1144/0016‐76492006‐022
    [Google Scholar]
  137. Worden, R. H., Armitage, P. J., Butcher, A. R., Churchill, J. M., Csoma, A. E., Hollis, C., Lander, H., & Omma, J. E. (2018). Petroleum reservoir quality prediction: Overview and contrasting approaches from sandstone and carbonate communities. Geological Society, London, Special Publications, 435(1), 1–31. https://doi.org/10.1144/SP435.21
    [Google Scholar]
  138. Worden, R. H., & Burley, S. D. (2003). Sandstone diagenesis: The evolution of sand to stone. Sandstone Diagenesis: Recent and Ancient, 4, 3–44. https://doi.org/10.1002/9781444304459.ch
    [Google Scholar]
  139. Yang, W., Jolivet, M., Dupont‐Nivet, G., & Guo, Z. (2014). Mesozoic–Cenozoic tectonic evolution of southwestern Tian Shan: Evidence from detrital zircon U/Pb and apatite fission track ages of the Ulugqat area, Northwest China. Gondwana Research, 26(3–4), 986–1008. https://doi.org/10.1016/j.gr.2013.07.020
    [Google Scholar]
  140. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693. https://doi.org/10.1126/science.1059412
    [Google Scholar]
  141. Zech, R. (2012). A late Pleistocene glacial chronology from the Kitschi‐Kurumdu Valley, Tien Shan (Kyrgyzstan), based on 10Be surface exposure dating. Quaternary Research, 77(2), 281–288. https://doi.org/10.1016/j.yqres.2011.11.008
    [Google Scholar]
  142. Zhao, X., Zhang, H., Lv, H., Lü, Y., Li, X., Liu, K., Zhang, J., & Xiong, J. (2021). Signatures of tectonic‐climatic interaction during the late Cenozoic orogenesis along the northern Chinese Tian Shan. Basin Research, 33(1), 291–311. https://doi.org/10.1111/bre.12466
    [Google Scholar]
  143. Zhuang, G., Hourigan, J. K., Koch, P. L., Ritts, B. D., & Kent‐Corson, M. L. (2011). Isotopic constraints on intensified aridity in Central Asia around 12 Ma. Earth and Planetary Science Letters, 312(1–2), 152–163. https://doi.org/10.1016/j.epsl.2011.10.005
    [Google Scholar]
  144. Zubovich, A. V., Wang, X. Q., Scherba, Y. G., Schelochkov, G. G., Reilinger, R., Reigber, C., Mosienko, O. I., Molnar, P., Michajljow, W., Makarov, V. I., Li, J., Kuzikov, S. I., Herring, T. A., Hamburger, M. W., Hager, B. H., Dang, Y. M., Bragin, V. D., & Beisenbaev, R. T. (2010). GPS velocity field for the Tien Shan and surrounding regions. Tectonics, 29(6), 1–23. https://doi.org/10.1029/2010TC002772
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12751
Loading
/content/journals/10.1111/bre.12751
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error