1887
Volume 35, Issue 3
  • E-ISSN: 1365-2117

Abstract

[

The Tertiary Piedmont Basin (NW Italy) developed on the Alps–Apennines tectonic junction. By the integration of microthermometry, low‐temperature thermochronology and burial history we constrained a paleo‐geothermal gradient of 45 ± 5°C/km. Numerical simulations indicate that the elevated gradient can be best explained by mantle upwelling.

, Abstract

The Tertiary‐Piedmont Basin (NW Italy) is an episutural basin that developed from the late Eocene on the Alps–Apennines tectonic junction. Several coeval geodynamic processes, including the loading and exhumation of the Western Alps, the outward migration of the Apennine accretionary wedge and the opening of the Liguro‐Provençal rift basin, controlled the basin evolution. We integrate fluid‐inclusion microthermometry, low‐temperature thermochronology and burial history with numerical modelling to constrain the palaeo‐geothermal gradients required and evaluate the mechanisms that governed the basin thermal history. Apatite fission‐track and (U‐Th‐Sm)/He analyses of the basal late Eocene turbidites show reset ages of ca. 25 and 20 Ma, respectively, which require temperatures to be >120°C. Homogenization temperatures up to ca. 130°C from fluid inclusion analyses from authigenic minerals confirm the thermochronometric data, supporting a significant post‐depositional heating in the lower sequence of the basin. Stratigraphic reconstructions and decompaction of the basin fill indicate that the maximum burial experienced by the basal strata at 25 Ma is 2.3 ± 0.1 km, which is not sufficient to reset the AFT thermochronometric system when applying a typical geothermal gradient (ca. 20–30°C/km). An elevated geothermal gradient of 45 ± 5°C/km is thus necessary to explain the thermochronometric dates and the elevated thermal signature at shallow depths. 2D numerical simulations indicate that such an elevated palaeo‐geothermal gradient can be best explained by mantle upwelling, consistent with crustal thinning caused by the inception of the Liguro‐Provençal rift basin and related outward migration of the Alpine and Apennine fronts during the Oligocene.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12752
2023-05-19
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/bre/35/3/bre12752.html?itemId=/content/journals/10.1111/bre.12752&mimeType=html&fmt=ahah

References

  1. Albert, H., Larrea, P., Costa, F., et al. (2020). Crystals reveal magma convection and melt transport in dyke‐fed eruptions. Scientific Reports, 10, 11632. https://doi.org/10.1038/s41598‐020‐68421‐4
    [Google Scholar]
  2. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment (3rd ed.). Blackwell Scientific. 619 pp. ISBN 978‐0‐470‐67376
    [Google Scholar]
  3. Amadori, C., Garcia‐Castellanos, D., Toscani, G., Sternai, P., Fantoni, R., Ghielmi, M., & Di Giulio, A. (2018). Restored topography of the Po Plain‐Northern Adriatic Region during the Messinian base‐level drop—Implications for the physiography and compartmentalization of the paleo‐Mediterranean basin. Basin Research, 30(6), 1247–1263. https://doi.org/10.1111/bre.12302. hdl:11571/1221647
    [Google Scholar]
  4. Amadori, C., Ghielmi, M., Mancin, N., & Toscani, G. (2020). The evolution of a coastal wedge in response to Plio‐Pleistocene climate change: The Northern Adriatic cases. Marine and Petroleum Geology, 122, 104675. https://doi.org/10.1016/j.marpetgeo.2020.104675. hdl:11571/1346103
    [Google Scholar]
  5. Amadori, C., Toscani, G., Di Giulio, A., Maesano, F. E., D'Ambrogi, C., Ghielmi, M., & Fantoni, R. (2019). From cylindrical to non‐cylindrical foreland basin: Pliocene–Pleistocene evolution of the Po Plain–Northern Adriatic basin (Italy). Basin Research, 31(5), 991–1015. https://doi.org/10.1111/bre.12369
    [Google Scholar]
  6. Andreoni, G., Galbiati, B., Maccabruni, A., & Vercesi, P. L. (1981). Stratigrafia e paleogeografia dei depositi oligocenici sup.‐miocenici inf. nell'estremità orientale del Bacino Ligure‐Piemontese. Rivista Italiana di Paleontologia e Stratigrafia, 87, 245–282.
    [Google Scholar]
  7. Annen, C. (2011). Implications of incremental emplacement of magma bodies for magma differentiation, thermal aureole dimensions and plutonism–volcanism relationships. Tectonophysics, 500(1‐4), 3–10. https://doi.org/10.1016/j.tecto.2009.04.010
    [Google Scholar]
  8. Annen, C., Scaillet, B., & Sparks, R. (2006). Thermal constraints on the emplacement rate of a large intrusive complex: The Manaslu leucogranite, Nepal Himalaya. Journal of Petrology, 47(1), 71–95. https://doi.org/10.1093/petrology/egi068
    [Google Scholar]
  9. Armstrong, P. A. (2005). Thermochronometers in sedimentary basins. Reviews in Mineralogy and Geochemistry, 58(1), 499–525.
    [Google Scholar]
  10. Armstrong, P. A., & Chapman, D. S. (1998). Beyond surface heat flow: An example from a tectonically active sedimentary basin. Geology, 26(2), 183–186.
    [Google Scholar]
  11. Bache, F., Olivet, J. L., Gorini, C., Aslanian, D., Labails, C., & Rabineau, M. (2010). Evolution of rifted continental margins: The case of the Gulf of Lions (Western Mediterranean Basin). Earth and Planetary Science Letters, 292(3–4), 345–356. https://doi.org/10.1016/j.epsl.2010.02.001
    [Google Scholar]
  12. Bache, F., Olivet, J. L., Gorini, C., Aslanian, D., & Rabineau, M. (2020). Evolution of rifted continental margins: The case of the Gulf of Lions (Western Mediterranean Basin). Earth and Planetary Science Letters, 292(3–4), 345–356. https://doi.org/10.1016/j.epsl.2010.02.001
    [Google Scholar]
  13. Balestrieri, M. L., Abbate, E., & Bigazzi, G. (1996). Insights on the thermal evolution of the Ligurian Apennines (Italy) through fission‐track analysis. Journal of the Geological Society, London, 153, 419–425.
    [Google Scholar]
  14. Barbieri, C., Carrapa, B., Di Giulio, A., Wijbrans, J., & Murrell, G. R. (2003). Provenance of Oligocene synorogenic sediments of the Ligurian Alps (NW Italy): Inferences on belt age and cooling history. International Journal of Earth Sciences, 92(5), 758–778.
    [Google Scholar]
  15. Bernet, M., Zattin, M., Garver, J. I., Brandon, M. T., & Vance, J. A. (2001). Steady state exhumation of the European Alps. Geology, 29, 35–38.
    [Google Scholar]
  16. Bertotti, G., Mosca, P., Juez, J., Polino, R., & Dunai, T. (2006). Oligocene to present kilometres scale subsidence and exhumation of the Ligurian Alps and the Tertiary Piedmont Basin (NW Italy) revealed by apatite (U–Th)/He thermochronology: Correlation with regional tectonics. Terra Nova, 18(1), 18–25.
    [Google Scholar]
  17. Boccaletti, M., Coli, M., & Napoleone, G. (1980). Landsat lineation pattern in the Apennines and its geodynamic significance. Modern Geology, 7(2), 95–103.
    [Google Scholar]
  18. Bonini, L., Dallagiovanna, G., & Seno, S. (2010). The role of pre‐existing faults in the structural evolution of thrust systems: Insights from the Ligurian Alps (Italy). Tectonophysics, 480(1–4), 73–87.
    [Google Scholar]
  19. Brogi, A., & Liotta, D. (2006). Understanding the crustal structures of southern Tuscany: The contribution of the CROP18 project. Bollettino di Geofisica Teorica ed Applicata, 47(3), 401–423.
    [Google Scholar]
  20. Brown, R. W., Beucher, R., Roper, S., Persano, C., Stuart, F., & Fitzgerald, P. (2013). Natural age dispersion arising from the analysis of broken crystals. Part I: Theoretical basis and implications for the apatite (U‐Th)/He thermochronometer. Geochimica et Cosmochimica Acta, 122, 478–497. https://doi.org/10.1016/j.gca.2013.05.041
    [Google Scholar]
  21. Burg, J. P., & Gerya, T. V. (2005). The role of viscous heating in Barrovian metamorphism of collisional orogens: Thermomechanical models and application to the Lepontine Dome in the Central Alps. Journal of Metamorphic Geology, 23(2), 75–95. https://doi.org/10.1111/j.1525‐1314.2005.00563.x
    [Google Scholar]
  22. Capó, A., & Garcia, C. (2019). Basin filling evolution of the central basins of Mallorca since the Pliocene. Basin Research, 31(5), 948–966. https://doi.org/10.1111/bre.12352
    [Google Scholar]
  23. Capponi, G., & Crispini, L. (2002). Structural and metamorphic of alpine tectonics in the Voltri Massif (Ligurian Alps, North‐Western Italy). Eclogae Geologicae Helvetiae, 95(1), 31–42.
    [Google Scholar]
  24. Capponi, G., Crispini, L., Federico, L., & Malatesta, C. (2016). Geology of the eastern Ligurian Alps: A review of the tectonic units. Italian Journal of Geosciences, 135(1), 157–169. https://doi.org/10.3301/IJG.2015.06
    [Google Scholar]
  25. Capponi, G., Crispini, L., Federico, L., Piazza, M., & Fabbri, B. (2009). Late Alpine tectonics in the Ligurian Alps: Constraints from the Tertiary Piedmont Basin conglomerates. Geological Journal, 44(2), 211–224. https://doi.org/10.1002/gj.1140
    [Google Scholar]
  26. Carlson, W. D., Donelick, R. A., & Ketcham, R. A. (1999). Variability of apatite fission‐track annealing kinetics: I. Experimental results. American Mineralogist, 84(9), 1213–1223. https://doi.org/10.2138/am‐1999‐0901
    [Google Scholar]
  27. Carminati, E., Lustrino, M., & Doglioni, C. (2012). Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints. Tectonophysics, 579, 173–192. https://doi.org/10.1016/j.tecto.2012.01.026
    [Google Scholar]
  28. Carrapa, B., Bertotti, G., & Krijgsman, W. (2003). Subsidence, stress regime and rotation(s) of a tectonically active sedimentary basin within the western Alpine Orogen: The Tertiary Piedmont Basin (Alpine domain, NW Italy). Geological Society, London, Special Publications, 208(1), 205–227.
    [Google Scholar]
  29. Carrapa, B., Di Giulio, A., Mancin, N., Stockli, D., Fantoni, R., Hughes, A., & Gupta, S. (2016). Tectonic significance of Cenozoic exhumation and foreland basin evolution in the Western Alps. Tectonics, 35(8), 1892–1912. https://doi.org/10.1002/2016TC004132
    [Google Scholar]
  30. Carrapa, B., Di Giulio, A., & Wijbrans, J. (2004). The early stages of the alpine collision: An image derived from the upper Eocene–lower Oligocene record in the Alps–Apennines junction area. Sedimentary Geology, 171(1–4), 181–203.
    [Google Scholar]
  31. Carrapa, B., & Garcia‐Castellanos, D. (2005). Western Alpine back‐thrusting as subsidence mechanism in the Tertiary Piedmont Basin (western Po Plain, NW Italy). Tectonophysics, 406(3–4), 197–212.
    [Google Scholar]
  32. Casini, L. (2012). A MATLAB‐derived software (geothermMOD1.2) for one‐dimensional thermal modelling, and its application to the Corsica‐Sardinia batholith. Computers and Geosciences, 45, 82–86. https://doi.org/10.1016/j.cageo.2011.10.020
    [Google Scholar]
  33. Casini, L., & Maino, M. (2018). 2D‐thermo‐mechanical modelling of spatial P‐T variations in heterogeneous shear zones. Italian Journal of Geosciences, 137(2), 272–282. https://doi.org/10.3301/IJG.2018.13
    [Google Scholar]
  34. Casini, L., Puccini, A., Cuccuru, S., Maino, M., & Oggiano, G. (2013). GEOTHERM: A finite difference code for testing metamorphic P‐T‐t paths and tectonic models. Computers and Geosciences, 59, 171–180. https://doi.org/10.1016/j.cageo.2013.05.017
    [Google Scholar]
  35. Castellarin, A. (2001). Alps‐Apennines and Po Plain‐frontal Apennines relations. In G. B.Vai & I. P.Martini (Eds.), Anatomy of an Orogen: The Apennines and adjacent Mediterranean basins (pp. 177–195). Springer Netherlands. https://doi.org/10.1007/978‐94‐015‐9829‐3_13
    [Google Scholar]
  36. Cavanna, F., Di Giulio, A., Galbiati, B., Mosna, S., Perotti, C. R., & Pieri, M. (1989). Carta geologica dell'estremità orientale del Bacino Terziario Ligure‐Piemontese. Atti Ticinensi Di Scienze Della Terra, 32(1).
    [Google Scholar]
  37. Ceriani, A., Arboit, F., Di Giulio, A., Decarlis, A., Steuber, T., Amadori, C., & Al, S. A. (2021). The influence of fragile deformation on the deposition of seep‐carbonates: A case study in the South Alps‐Apennines tectonic knot. Basin Research., 34, 555–569. https://doi.org/10.1111/bre.12630
    [Google Scholar]
  38. Ceriani, A., Di Giulio, A., Goldstein, R. H., & Rossi, C. (2002). Diagenesis associated with cooling during burial: An example from Lower Cretaceous reservoir sandstones (Sirt Basin, Libya). AAPG Bulletin, 86(9), 1573–1591.
    [Google Scholar]
  39. Ceriani, A., Di Giulio, A., Fantoni, R., & Scotti, P. (2006). Cooling in rifting sequences during increasing burial depth due to heat flow decrease. Terra Nova, 18(5), 365–371.
    [Google Scholar]
  40. Cibin, U., Di Giulio, A., & Martelli, L. (2003). Oligocene‐early Miocene tectonic evolution of the northern Apennines (northwestern Italy) traced through provenance of piggy‐back basin fill successions. Geological Society, London, Special Publications, 208(1), 269–287.
    [Google Scholar]
  41. Corrado, S., Schito, A., Romano, C., Grigo, D., Poe, B. T., Aldega, L., Caricchi, C., di Paolo, L., & Zattin, M. (2020). An integrated platform for thermal maturity assessment of polyphase, long‐lasting sedimentary basins, from classical to brand‐new thermal parameters and models: An example from the on‐shore Baltic Basin (Poland). Marine and Petroleum Geology, 122, 104547. https://doi.org/10.1016/j.marpetgeo.2020.104547
    [Google Scholar]
  42. Crispini, L., Federico, L., Capponi, G., & Spagnolo, C. (2009). Late orogenic transpressional tectonics in the «Ligurian knot». Bollettino Della Società Geologica Italiana, 128(2), 433–441.
    [Google Scholar]
  43. Dalla, S., Rossi, M. E., Orlando, M., Visentin, C., Gelati, R., Gnaccolini, M., Papani, G., Belli, A., Biffi, U., & Catrullo, D. (1992). Late Eocene‐Tortonian tectono‐sedimentary evolution in the western part of the Padan Basin, northern Italy. Paleontology and Evolution, 24–25, 341–362.
    [Google Scholar]
  44. D'Atri, A., Dela Pierre, F., Ruffini, R., Novaretti, A., Cosca, M. A., & Hunziker, J. C. (2001). Calcareous plankton biostratigraphy and 40Ar/39Ar dating of miocene volcaniclastic layers from Monferrato (NW Italy). Eclogae Geologicae Helvetiae, 94(2), 137–144. https://doi.org/10.5169/seals‐168883
    [Google Scholar]
  45. Davies, J. H., & von Blanckenburg, F. (1995). Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters, 129(1–4), 85–102. https://doi.org/10.1016/0012‐821X(94)00237‐S
    [Google Scholar]
  46. de Voogd, B., Nicolich, R., Olivet, J. L., Fanucci, F., Burrus, J., & Mauffret, A. (1991). First deep seismic reflection transect from the Gulf of Lions to Sardinia (ECORS‐crop profiles in Western Mediterranean). American Geophysical Union (AGU), 22, 265–274. https://doi.org/10.1029/gd022p0265
    [Google Scholar]
  47. Decarlis, A., Beltrando, M., Manatschal, G., Ferrando, S., & Carosi, R. (2017). Architecture of the distal Piedmont‐Ligurian rifted margin in NW Italy: Hints for a flip of the rift system polarity. Tectonics, 36, 2388–2406. https://doi.org/10.1002/2017TC004561
    [Google Scholar]
  48. DeCelles, G., & Giles, K. N. (1996). Foreland basin systems. Basin Research, 8, 105–123.
    [Google Scholar]
  49. Depine, G. V., Andronicos, C. L., & Phipps‐Morgan, J. (2008). Near‐isothermal conditions in the middle and lower crust induced by melt migration. Nature, 452(7183), 80–83. https://doi.org/10.1038/nature06689
    [Google Scholar]
  50. Di Giulio, A. (1991). Detritismo della parte orientale del Bacino Terziario Piemontese durante l'Eocene‐Oligocene: composizione delle arenarie ed evoluzione tettono‐stratigrafica. Atti Ticinensi Di Scienze Della Terra, 34, 21–22.
    [Google Scholar]
  51. Di Giulio, A., Amadori, C., Mueller, P., & Langone, A. (2020). The role of the down‐bending plate as detrital source in convergent systems revealed by U‐Pb dating of zircon grains: Insights from southern Andes and Western Italian Alps. Minerals—Special Issue Detrital Mineral U/Pb Age Dating and Geochemistry of Magmatic Products in Basin Sequences: State of the Art and Progress, 10, 623. https://doi.org/10.3390/min10070632. hdl:11571/1343508
    [Google Scholar]
  52. Di Giulio, A., Carrapa, B., Fantoni, R., Gorla, L., & Valdisturlo, A. (2001). Middle Eocene to Early Miocene sedimentary evolution of the western Lombardian segment of the South Alpine foredeep (Italy). International Journal of Earth Sciences, 90(3), 534–548. https://doi.org/10.1007/s005310000186
    [Google Scholar]
  53. Di Giulio, A., & Galbiati, B. (1995). Interaction between tectonics and deposition into an episutural basin in the Alps‐Apennine knot. Atti Convegno Rapporti Alpi–Appennino, 14, 113–128.
    [Google Scholar]
  54. Di Giulio, A., Grigo, D., Zattin, M., Amadori, C., Consonni, A., Nicola, C., Ortenzi, A., Scotti, P., & Tamburelli, S. (2021). Diagenetic history vs. thermal evolution of Paleozoic and Triassic reservoirs rocks in the Ghadames‐Illizi Basin (Algeria‐Tunisia‐Lybia). Marine and Petroleum Geology, 127, 104979. https://doi.org/10.1016/j.marpetgeo.2021.104979
    [Google Scholar]
  55. Di Giulio, A., Marini, M., Felletti, F., Patacci, M., Rossi, M., & Amadori, C. (2019). Control exerted by collisional tectonics on basin topography and depositional styles: The Tertiary Piedmont Basin in the Alps‐Apennines junction (NW Italy). In M.Vigliotti, M.Tropeano, V.Pascucci, D.Ruberti, & L.Sabato (Eds.), Field Trips—GUIDE BOOK, 34th IAS Meeting of Sedimentology, Rome (Italy) September 10–13 2019, Post‐Meeting Field Trip B2 (pp. 303–332). Associazione Italiana di Geologia del Sedimentario—GeoSed ISBN 978‐88‐944576‐0‐5.
    [Google Scholar]
  56. Di Stefano, R., Bianchi, I., Ciaccio, M. G., Carrara, G., & Kissling, E. (2011). Three‐dimensional Moho topography in Italy: New constraints from receiver functions and controlled source seismology. Geochemistry, Geophysics, Geosystems, 12, Q09006. https://doi.org/10.1029/2011GC003649
    [Google Scholar]
  57. Donelick, R. A. (1993). A method of fission track analysis utilizing bulk chemical etching of apatite. (U.S. Patent No. 5,267,274).
  58. Donelick, R. A., O'Sullivan, P. B., & Ketcham, R. A. (2005). Apatite fission‐track analysis. Reviews in Mineralogy and Geochemistry, 58(1), 49–94. https://doi.org/10.2138/rmg.2005.58.3
    [Google Scholar]
  59. Duprat‐Oualid, S., Yamato, P., & Schmalholz, S. M. (2015). A dimensional analysis to quantify the thermal budget around lithospheric‐scale shear zones. Terra Nova, 27(3), 163–168. https://doi.org/10.1111/ter.12144
    [Google Scholar]
  60. Ehlers, T. A., & Farley, K. A. (2003). Apatite (U‐Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters, 206(1–2), 1–14. https://doi.org/10.1016/S0012‐821X(02)01069‐5
    [Google Scholar]
  61. Fantoni, R., Bersezio, R., Forcella, F., Gorla, L., Mosconi, A., & Picotti, V. (1999). New dating of the Tertiary magmatic products of the central Southern Alps. Bearings on the interpretation of Alpine tectonic history. Memorie Di Scienze Geologiche, 51(1), 47–61.
    [Google Scholar]
  62. Farley, K. A. (2000). Helium diffusion from apatite; general behavior as illustrated by Durango fluorapatite. Journal of Geophysical Research, 105, 2903–2914.
    [Google Scholar]
  63. Farley, K. A. (2002). (U‐Th)/He dating: Techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry, 47(1), 819–844. https://doi.org/10.2138/rmg.2002.47.18
    [Google Scholar]
  64. Federico, L., Capponi, G., Crispini, L., Scambelluri, M., & Villa, I. M. (2005). 39Ar/40Ar dating of high‐pressure rocks from the Ligurian Alps: Evidence for a continuous subduction‐exhumation cycle. Earth and Planetary Science Letters, 240(3–4), 668–680. https://doi.org/10.1016/j.epsl.2005.09.062
    [Google Scholar]
  65. Federico, L., Crispini, L., Dabove, G. M., Piazza, M., & Capponi, G. (2016). Stratigraphic vs structural contacts in a late orogenic basin: The case of the Tertiary Piedmont Basin in the Sassello area (Ligurian Alps, Italy). Journal of Maps, 12(5), 959–967.
    [Google Scholar]
  66. Federico, L., Crispini, L., Scambelluri, M., & Capponi, G. (2007). Ophiolite mélange zone records exhumation in a fossil subduction channel. Geology, 35(6), 499–502.
    [Google Scholar]
  67. Federico, L., Maino, M., Capponi, G., & Crispini, L. (2020). Paleo‐depth of fossil faults estimated from paleostress state: Applications from the Alps and the Apennines (Italy). Journal of Structural Geology, 140, 104152. https://doi.org/10.1016/j.jsg.2020.104152
    [Google Scholar]
  68. Federico, L., Spagnolo, C., Crispini, L., & Capponi, G. (2009). Fault‐slip analysis in the metaophiolites of the Voltri Massif: Constraints for the tectonic evolution at the Alps/Apennine boundary. Geological Journal, 44(2), 225–240. https://doi.org/10.1002/gj.1139
    [Google Scholar]
  69. Felletti, F. (2002, August). Complex bedding geometries and facies associations of the turbiditic fill of a confined basin in a transpressive setting (Castagnola Fm., Tertiary Piedmont Basin, NW Italy). Sedimentology, 49(4), 645–667. https://doi.org/10.1046/j.1365‐3091.2002.00467.x
    [Google Scholar]
  70. Felletti, F. (2004a). Spatial variability of Hurst statistics in the Castagnola formation, Tertiary Piedmont Basin, NW Italy: Discrimination of sub‐environments in a confined turbidite system. Geological Society, London, Special Publications, 222(1), 285–305.
    [Google Scholar]
  71. Felletti, F. (2004b). Statistical modelling and validation of correlation in turbidites: An example from the Tertiary Piedmont Basin (Castagnola Fm., Northern Italy). Marine and Petroleum Geology, 21(1), 23–39.
    [Google Scholar]
  72. Festa, A., Fioraso, G., Bissacca, E., & Petrizzo, M. R. (2015). Geology of the Villalvernia—Varzi line between Scrivia and Curone valleys (NW Italy). Journal of Maps, 11(1), 39–55. https://doi.org/10.1080/17445647.2014.959569
    [Google Scholar]
  73. Fitzgerald, P. G., Baldwin, S. L., Webb, L. E., & O'Sullivan, P. B. (2006). Interpretation of (U‐Th)/He single grain ages from slowly cooled crustal terranes: A case study from the Transantarctic Mountains of southern Victoria Land. Chemical Geology, 225(1–2), 91–120. https://doi.org/10.1016/j.chemgeo.2005.09.001
    [Google Scholar]
  74. Flowers, R. M., Ketcham, R. A., Shuster, D. L., & Farley, K. A. (2009). Apatite (U‐Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta, 73(8), 2347–2365.
    [Google Scholar]
  75. Foeken, J., Dunai, T., Bertotti, G., & Andriessen, P. (2003). Late Miocene to present exhumation in the Ligurian Alps (SW Alps) with evidence for accelerated denudatio during the Messinian Salinity Crisis. Geology, 31, 797–800.
    [Google Scholar]
  76. Ford, M., Duchêne, S., Gasquet, D., & Vanderhaeghe, O. (2006). Two‐phase orogenic convergence in the external and internal SW Alps. Journal of the Geological Society, 163(5), 815–826. https://doi.org/10.1144/0016‐76492005‐034
    [Google Scholar]
  77. Fox, M., Herman, F., Kissling, E., & Willett, S. D. (2015). Rapid exhumation in the Western Alps driven by slab detachment and glacial erosion. Geology, 43, 379–382.
    [Google Scholar]
  78. Fox, M., Herman, F., Willett, S. D., & Schmid, S. M. (2016). The exhumation history of the European Alps inferred from linear inversion of thermochronometric data. American Journal of Science, 316, 505–541. https://doi.org/10.2475/06.2016.01
    [Google Scholar]
  79. Galbraith, R. F., & Green, P. F. (1990). Estimating the component ages in a finite mixture. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 17(3), 197–206.
    [Google Scholar]
  80. Galbraith, R. F., & Laslett, G. M. (1993). Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measurements, 21, 459–470.
    [Google Scholar]
  81. Gallagher, K. (2012). Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth, 117, B02408. https://doi.org/10.1029/2011JB008825
    [Google Scholar]
  82. Gallagher, K., Stephenson, J., Brown, R., Holmes, C., & Fitzgerald, P. (2005). Low temperature thermochronology and modeling strategies for multiple samples 1: Vertical profiles. Earth and Planetary Science Letters, 237(1–2), 193–208. https://doi.org/10.1016/j.epsl.2005.06.025
    [Google Scholar]
  83. Gattacceca, J., Deino, A., Rizzo, R., Jones, D. S., Henry, B., Beaudoin, B., & Vadeboin, F. (2007). Miocene rotation of Sardinia: New paleomagnetic and geochronological constraints and geodynamic implications. Earth and Planetary Science Letters, 258(3–4), 359–377. https://doi.org/10.1016/j.epsl.2007.02.003
    [Google Scholar]
  84. Gautheron, C., Tassan‐Got, L., Barbarand, J., & Pagel, M. (2009). Effect of alpha‐damage annealing on apatite (U‐Th)/He thermochronology. Chemical Geology, 266(3), 157–170. https://doi.org/10.1016/j.chemgeo.2009.06.001
    [Google Scholar]
  85. Gelati, R. (1977). La successione eo‐oligocenica di Garbagna (Alessandria) al margine orientale del Bacino Terziario Ligure Piemontese. Rivista Italiana di Paleontologia e Stratigrafia, 83, 103–136.
    [Google Scholar]
  86. Gelati, R., & Gnaccolini, M. (1978). I conglomerati della Val Borbera, al margine orientale del Bacino terziario ligure‐piemontese. Istituti di Geologia e Paleontologia dell'Università degli Studi di Milano, 84(3), 701–728.
    [Google Scholar]
  87. Ghibaudo, G., Clari, P., & Perello, M. (1985). Litostratigrafia, sedimentologia ed evoluzione tettonico‐sedimentaria dei depositi miocenici del margine sud‐orientale del bacino terziario ligure‐piemontese (Valli Borbera, Scrivia e Lemme). In memoria di Carlo Sturani. Bollettino Della Società Geologica Italiana, 104(3), 349–397.
    [Google Scholar]
  88. Ghibaudo, G., Massari, F., Chiambretti, I., d'Atri, A., & Fornaciari, E. (2019). Birth and tectono‐sedimentary evolution of the Tertiary Piedmont Basin (NW Italy). Journal of Mediterranean Earth Sciences, 11, 5–112.
    [Google Scholar]
  89. Gholamrezaie, E., Scheck‐Wenderoth, M., Sippel, J., & Strecker, M. R. (2018). Variability of the geothermal gradient across two differently aged magma‐rich continental rifted margins of the Atlantic Ocean: The Southwest African and the Norwegian margins. Solid Earth, 9, 139–158. https://doi.org/10.5194/se‐9‐139‐2018
    [Google Scholar]
  90. Girdler, R. W. (1970). A review of Red Sea heat flow. Philosophical Transactions of the Royal Society of London, 267(1181), 191–203.
    [Google Scholar]
  91. Gleadow, A. J. W., Duddy, I. R., Green, P. F., & Lovering, J. F. (1986). Confined fission track lengths in apatite: A diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology, 94(4), 405–415.
    [Google Scholar]
  92. Gnaccolini, M., Gelati, R., Falletti, P., & Catrullo, D. (1998). Sequence stratigraphy of the “Langhe” Oligo–Miocene succession, Tertiary Piedmont Basin, northern Italy. In C. P.de Graciansky, J.Hardenbol, T.Jacquin, & P. R.Vail (Eds.), Mesozoic and Cenozoic sequence stratigraphy of European basins (pp. 234–244). SEPM Special Publication 60.
    [Google Scholar]
  93. Goldstein, R. H. (2001). Fluid inclusions in sedimentary and diagenetic systems. Lithos, 55, 159–193. https://doi.org/10.1016/S0024‐4937(00)00044‐X
    [Google Scholar]
  94. Goldstein, R. H., & Reynolds, T. J. (1994). Systematics of fluid inclusions in diagenetic minerals (p. 199). SEPM Short Course 31. https://doi.org/10.2110/scn.94.31
    [Google Scholar]
  95. Green, P., & Duddy, I. (2018). Apatite (U‐Th‐Sm)/He thermochronology on the wrong side of the tracks. Chemical Geology, 488, 21–33.
    [Google Scholar]
  96. Green, P. F., Duddy, I. R., Laslett, G. M., Hegarty, K. A., Gleadow, A. J. W., & Lovering, J. F. (1989). Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chemical Geology: Isotope Geoscience Section, 79(2), 155–182.
    [Google Scholar]
  97. Green, P. F., Duddy, I. R., Gleadow, A. J. W., & Lovering, J. F. (1989). Apatite fission‐track analysis as a paleotemperature indicator for hydrocarbon exploration. In Thermal history of sedimentary basins (pp. 181–195). Springer.
    [Google Scholar]
  98. Gusmeo, T., Cavazza, W., Alania, V. M., Enukidze, O. V., Zattin, M., & Corrado, S. (2021). Structural inversion of back‐arc basins—The Neogene Adjara‐Trialeti fold‐and‐thrust belt (SW Georgia) as a far‐field effect of the Arabia‐Eurasia collision. Tectonophysics, 803, 228702. https://doi.org/10.1016/j.tecto.2020.228702
    [Google Scholar]
  99. Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., & Bernoulli, D. (2010). Recoiling plate‐tectonic reconstructions of Alpine Tethys with the geological‐geophysical record of spreading and subduction in the Alps. Earth‐Science Reviews, 102(3), 121–158. https://doi.org/10.1016/j.earscirev.2010.06.002
    [Google Scholar]
  100. Handy, M. R., Schmid, S. M., Paffrath, M., Friederich, W., & the AlpArray Working Group . (2021). European tectosphere and slabs beneath the greater Alpine area—Interpretation of mantle 1 structure in the Alps‐Apennines‐Pannonian region from teleseismic Vp studies. Solid Earth Discussions, 2021, 1–61. https://doi.org/10.5194/se‐2021‐49
    [Google Scholar]
  101. Hurford, A. J. (1990). Standardization of fission track dating calibration: Recommendation by Ficcio Track Working Group of I.U.G.S. Subcommission on Geochronology. Chemical Geology: Isotope Geoscience Section, 80(2), 171–178.
    [Google Scholar]
  102. Hurford, A. J., & Green, P. F. (1983). The zeta age calibration of fission‐track dating. Chemical Geology, 41, 285–317.
    [Google Scholar]
  103. Jamieson, A. R., Beaumont, C., Hamilton, J., & Fullsack, P. (1996). Tectonic assembly of inverted metamorphic sequences. Geology, 24(9), 839. https://doi.org/10.1130/0091‐7613(1996)024<0839:TAOIMS>2.3.CO;2
    [Google Scholar]
  104. Jolivet, L., & Faccenna, C. (2000). Meditterranean extension and the Africa‐Eurasia collision. Tectonics, 19(6), 1095–1106. https://doi.org/10.1029/2000TC900018
    [Google Scholar]
  105. Jolivet, L., Gorini, C., Smit, J., & Leroy, S. (2015). Continental break‐up and the dynamics of rifting in back‐arc basins: The Gulf of Lion margin. Tectonics, 34(4), 662–679. https://doi.org/10.1002/2014TC003570
    [Google Scholar]
  106. Kästle, E. D., Rosenberg, C., Boschi, L., Bellahsen, N., Meier, T., & El‐Sharkawy, A. (2020). Slab break‐offs in the Alpine subduction zone. International Journal of Earth Sciences (Geologische Rundschau), 109, 587–603. https://doi.org/10.1007/s00531‐020‐01821‐z
    [Google Scholar]
  107. Ketcham, R. A. (2005). The role of crystallographic angle in characterizing and modeling apatite fission‐track length data. Radiation Measurements, 39(6), 595–601. https://doi.org/10.1016/j.radmeas.2004.07.008
    [Google Scholar]
  108. Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J., & Hurford, A. J. (2007). Improved modeling of fission‐track annealing in apatite. American Mineralogist, 92(5–6), 799–810. https://doi.org/10.2138/am.2007.2281
    [Google Scholar]
  109. Ketcham, R. A., Gautheron, C., & Tassan‐Got, L. (2011). Accounting for long alpha‐ particle stopping distances in (U–Th–Sm)/He geochronology: Refinement of the baseline case. Geochimica et Cosmochimica Acta, 75(24), 7779–7791.
    [Google Scholar]
  110. Ketcham, R. A., van der Beek, P., Barbarand, J., Bernet, M., & Gautheron, C. (2018). Reproducibility of thermal history reconstruction from apatite fission‐track and (U‐Th)/He data. Geochemistry, Geophysics, Geosystems, 19(8), 2411–2436.
    [Google Scholar]
  111. Kohn, B., Chung, L., & Gleadow, A. (2019). Fission‐track analysis: Field collection, sample preparation and data acquisition. In M.Malusà & P.Fitzgerald (Eds.), Fission‐track thermochronology and its application to geology. Springer textbooks in earth sciences, geography and environment. Springer. https://doi.org/10.1007/978‐3‐319‐89421‐8_2
    [Google Scholar]
  112. Laubscher, H. P., Biella, G. C., Cassinis, R., Lozey, A., Scarascia, S., & Tobacco, I. (1992). The Ligurian knot. Tethys. Geologische Rundschau, 81, 275–289.
    [Google Scholar]
  113. Liao, W. Z., Lin, T. Q., Liu, C. S., Oung, J. N., & Wang, Y. (2014). Heat flow in the rifted continental margin of the South China Sea near Taiwan and its tectonic implications. Journal of Asian Earth Science, 92, 233–244. https://doi.org/10.1016/j.jseaes.2014.01.003
    [Google Scholar]
  114. Lippitsch, R., Kissling, E., & Ansorge, J. (2003). Upper mantle structure beneath the Alpine orogen from high‐resolution teleseismic tomography. Journal of Geophysical Research, 108(B8), 2376. https://doi.org/10.1029/2002JB002016
    [Google Scholar]
  115. Liu, D., Zhao, L., Paul, A., Yuan, H., Solarino, S., Aubert, C., Pondrelli, S., Salimbeni, S., Eva, E., Malusá, M. G., & Guillot, S. (2022). Receiver function mapping of the mantle transition zone beneath the Western Alps: New constraints on slab subduction and mantle upwelling. Earth and Planetary Science Letters, 577, 117267. https://doi.org/10.1016/j.epsl.2021.117267
    [Google Scholar]
  116. Luijendik, E., Winter, T., Ferguson, G., von Hagke, C., & Scibek, J. (2020). Using thermal springs to quantify deep groundwater flow and its thermal footprint in the Alps and a comparison with North American orogens. Geophysical Research Letters, 47(22), e2020GL090134.
    [Google Scholar]
  117. Macgregor, D. S. (2020). Regional variations in geothermal gradient and heat flow across the African plate. Journal of African Earth Science, 171, 103950.
    [Google Scholar]
  118. Maffione, M., Speranza, F., Faccenna, C., Cascella, A., Vignaroli, G., & Sagnotti, L. (2008). A synchronous Alpine and Corsica‐Sardinia rotation. Journal of Geophysical Research: Solid Earth, 113, B03104. https://doi.org/10.1029/2007JB005214
    [Google Scholar]
  119. Maino, M., Casini, L., Boschi, C., Di Giulio, A., Setti, M., & Seno, S. (2020). Time‐dependent heat budget of a thrust from geological records and numerical experiments. Journal of Geophysical Research: Solid Earth, 125, e2019JB018940. https://doi.org/10.1029/2019JB018940
    [Google Scholar]
  120. Maino, M., Casini, L., Ceriani, A., Decarlis, A., Di Giulio, A., Seno, S., Setti, M., & Stuart, F. M. (2015). Dating shallow thrusts with zircon (U‐Th)/He thermochronometry—The shear heating connection. Geology, 43, 495–498. https://doi.org/10.1130/G36492.1
    [Google Scholar]
  121. Maino, M., Dallagiovanna, G., Dobson, K. J., Gaggero, L., Persano, C., Seno, S., & Stuart, F. M. (2012). Testing models of orogen exhumation using zircon (U–Th)/He thermochronology: Insight from the Ligurian Alps, Northern Italy. Tectonophysics, 560–561, 84–93. https://doi.org/10.1016/j.tecto.2012.06.045
    [Google Scholar]
  122. Maino, M., Decarlis, A., Felletti, F., & Seno, S. (2013). Tectono‐sedimentary evolution of the Tertiary Piedmont Basin (NW Italy) within the Oligo‐Miocene central Mediterranean geodynamics. Tectonics, 32(3), 593–619. https://doi.org/10.1002/tect.20047
    [Google Scholar]
  123. Maino, M., Gaggero, L., Langone, A., Seno, S., & Fanning, M. (2019). Cambro‐Silurian magmatisms at the northern Gondwana margin (Penninic basement of the Ligurian Alps). Geoscience Frontiers, 10(1), 315–330. https://doi.org/10.1016/j.gsf.2018.01.003
    [Google Scholar]
  124. Maino, M., & Seno, S. (2016). The thrust zone of the Ligurian Penninic basal contact (Monte Fronté, Ligurian Alps, Italy). Journal of Maps, 12, 341–351. https://doi.org/10.1080/17445647.2016.1213669
    [Google Scholar]
  125. Malusà, M. G., Guillot, S., Zhao, L., Paul, A., Solarino, S., Dumont, T., Schwartz, S., Aubert, C., Baccheschi, P., Eva, E., Lu, Y., Lyu, C., Pondrelli, S., Salimbeni, S., Sun, W., & Yuan, H. (2021). The deep structure of the Alps based on the CIFALPS seismic experiment: A synthesis. Geochemistry, Geophysics, Geosystems, 22(3), e2020GC009466.
    [Google Scholar]
  126. Mancin, N., & Pirini, C. (2001). Middle Eocene to early Miocene foraminiferal biostratigraphy in the epiligurian succession (Northern Apennines, Italy). Rivista Italiana di Paleontologia e Stratigrafia, 107(3), 371–393.
    [Google Scholar]
  127. Mangenot, X., Bonifacie, M., Gasparrini, M., Götz, A., Chaduteau, C., Ader, M., & Rouchon, V. (2017). Coupling Δ47 and fluid inclusion thermometry on carbonate cements to precisely reconstruct the temperature, salinity and δ18O of paleo‐groundwater in sedimentary basins. Chemical Geology, 472, 44–57. https://doi.org/10.1016/j.chemgeo.2017.10.011
    [Google Scholar]
  128. Marini, M., Maron, M., Petrizzo, M. R., Felletti, F., & Muttoni, G. (2020). Magnetochronology applied to assess tempo of turbidite deposition: A case study of ponded sheet‐like turbidites from the lower Miocene of the northern Apennines (Italy). Sedimentary Geology, 403, 105654. https://doi.org/10.1016/j.sedgeo.2020.105654
    [Google Scholar]
  129. Marini, M., Patacci, M., Felletti, F., & McCaffrey, W. D. (2016). Fill to spill stratigraphic evolution of a confined turbidite mini‐basin succession, and its likely well bore expression: The Castagnola Fm, NW Italy. Marine and Petroleum Geology, 69, 94–111. https://doi.org/10.1016/j.marpetgeo.2015.10.014
    [Google Scholar]
  130. Marroni, M., Feroni, A. C., di Biase, D., Ottria, G., Pandolfi, L., & Taini, A. (2002). Polyphase folding at upper structural levels in the Borbera Valley (northern Apennines, Italy): Implications for the tectonic evolution of the linkage area between Alps and Apennines. Comptes Rendus Geoscience, 334(8), 565–572.
    [Google Scholar]
  131. Marroni, M., Meneghini, F., & Pandolfi, L. (2010). International geology review anatomy of the Ligure‐Piemontese subduction system: Evidence from late cretaceous‐middle Eocene convergent margin deposits in the Northern Apennines, Italy. International Geology Review, 52(10–12), 1160–1192. https://doi.org/10.1080/00206810903545493
    [Google Scholar]
  132. Marroni, M., Ottria, G., & Pandolfi, L. (2010). Note Illustrative della Carta Geologica d'Italia alla scala 1: 50,000 Foglio 196 Cabella Ligure. Istituto Poligrafico e Zecca Dello Stato.
    [Google Scholar]
  133. Mattioli, M., Di Battistini, G., & Zanzucchi, G. (2002). Geochemical features of the Tertiary buried Mortara volcanic body (Northern Apennines, Italy). Bollettino Della Società Geologica Italiana, 1, 239–249.
    [Google Scholar]
  134. Mazurek, M., Hurford, A. J., & Leu, W. (2006). Unravelling the multi‐stage burial history of the Swiss Molasse Basin: Integration of apatite fission track, vitrinite reflectance and biomarker isomerisation analysis. Basin Research, 18(1), 27–50.
    [Google Scholar]
  135. Midttømme, K., & Roaldset, E. (1999). Thermal conductivity of sedimentary rocks: Uncertainties in measurement and modelling. Geological Society, London, Special Publications, 158, 45–60. https://doi.org/10.1144/GSL.SP.1999.158.01.04
    [Google Scholar]
  136. Mitchell, R. K., Indares, A., & Ryan, B. (2014). High to ultrahigh temperature contact metamorphism and dry partial melting of the Tasiuyak paragneiss, northern Labrador. Journal of Metamorphic Geology, 32(6), 535–555. https://doi.org/10.1111/jmg.12086
    [Google Scholar]
  137. Mori, H., Mori, N., Wallis, S., Westaway, R., & Annen, C. (2017). The importance of heating duration for Raman CM thermometry: Evidence from contact metamorphism around the Great Whin Sill intrusion, UK. Journal of Metamorphic Geology, 35(2), 165–180. https://doi.org/10.1111/jmg.12225
    [Google Scholar]
  138. Mosca, P. (2006). Neogene basin evolution in the Western Po Plain (NW Italy). Insights from seismic interpretation, subsidence analysis and low temperature (U‐Th)/He thermochronology. [PhD Thesis, Vrije Universiteit, Amsterdam, The Netherlands]. p. 190.
  139. Mosca, P., Polino, R., Rogledi, S., & Rossi, M. (2010). New data for the kinematic interpretation of the Alps–Apennines junction (Northwestern Italy). International Journal of Earth Sciences, 99(4), 833–849.
    [Google Scholar]
  140. Mueller, P., Maino, M., & Seno, S. (2020). Progressive deformation patterns from an accretionary prism (Helminthoid Flysch, Ligurian Alps, Italy). Geosciences, 10(1), 26. https://doi.org/10.3390/geosciences10010026
    [Google Scholar]
  141. Mutti, E., Papani, L., Di Biase, D., Davoli, G., Mora, S., Segadelli, S., & Tinterri, R. (1995). Il Bacino Terziario Epimesoalpino e le sue implicazioni sui rapporti tra Alpi ed Appennino. Memorie di Scienze Geologiche di Padova, 47, 217–244.
    [Google Scholar]
  142. Osadetz, K. G., Kohn, B. P., Feinstein, S., & O'Sullivan, P. B. (2002). Thermal history of Canadian Williston basin from apatite fission‐track thermochronology—Implications for petroleum systems and geodynamic history. Tectonophysics, 349(1–4), 221–249.
    [Google Scholar]
  143. Pasquale, V., Chiozzi, P., Verdoya, M., & Gola, G. (2012). Heat flow in the Western Po Basin and the surrounding orogenic belts. Geophysical Journal International, 190, 8–22. https://doi.org/10.1111/j.1365‐246X.2012.05486.x
    [Google Scholar]
  144. Pasquale, V., Gola, G., Chiozzi, P., & Verdoya, M. (2011). Thermophysical properties of the Po Basin rocks. Geophysical Journal International, 186, 69–81.
    [Google Scholar]
  145. Patacci, M., Marini, M., Felletti, F., Di Giulio, A., Setti, M., & McCaffrey, W. (2020). Origin of mud in turbidites and hybrid event beds: Insight from ponded mudstone caps of the Castagnola turbidite system (north‐west Italy). Sedimentology, 67(5), 2625–2644. https://doi.org/10.1111/sed.12713
    [Google Scholar]
  146. Pauselli, C., Gola, G., Mancinelli, P., Trumpy, E., Saccone, M., Manzella, A., & Ranallic, G. (2019, September). A new surface heat flow map of the Northern Apennines between latitudes 42.5 and 44.5 N. Geothermics, 81, 39–52. https://doi.org/10.1016/j.geothermics.2019.04.002
    [Google Scholar]
  147. Pieri, M., & Groppi, G. (1981). Subsurface geological structure of the Po Plain, Italy. Progetto Finalizzato Geodinamica Sottoprogetto “Modello Strutturale”, Consiglio Nazionale delle Ricerche, 414, 1–13.
    [Google Scholar]
  148. Piromallo, C., & Faccenna, C. (2004). How deep can we find the traces of Alpine subduction?Geophysical Research Letters, 31, L06605. https://doi.org/10.1029/2003GL019288
    [Google Scholar]
  149. Reiners, P. W., & Brandon, M. T. (2006). Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34(1), 419–466. https://doi.org/10.1146/annurev.earth.34.031405.125202
    [Google Scholar]
  150. Reiners, P. W., & Farley, K. A. (2001). Influence of crystal size on apatite (U‐Th)/He thermochronology: An example from the Bighorn Mountains, Wyoming. Earth and Planetary Science Letters, 188(3–4), 413–420. https://doi.org/10.1016/S0012‐821X(01)00341‐7
    [Google Scholar]
  151. Reiners, P. W., Spell, T. L., Nicolescu, S., & Zanetti, K. A. (2004). Zircon (U‐Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochimica et Cosmochimica Acta, 68(8), 1857–1887. https://doi.org/10.1016/j.gca.2003.10.021
    [Google Scholar]
  152. Ricci Lucchi, F. (1990). Turbidites in foreland and on‐thrust basins of the northern Apennines. Palaeogeography, Palaeoclimatology, Palaeoecology, 77(1), 51–66.
    [Google Scholar]
  153. Rollet, N., Déverchère, J., Beslier, M. O., Guennoc, P., Réhault, J. P., Sosson, M., & Truffert, C. (2002). Back arc extension, tectonic inheritance, and volcanism in the Ligurian Sea, Western Mediterranean. Tectonics, 21(3), 6‐1–6‐23. https://doi.org/10.1029/2001TC900027
    [Google Scholar]
  154. Rosenbaum, G., & Lister, G. S. (2005). The Western Alps from the Jurassic to Oligocene: Spatio‐temporal constraints and evolutionary reconstructions. Earth‐Science Reviews, 69(3–4), 281–306. https://doi.org/10.1016/j.earscirev.2004.10.001
    [Google Scholar]
  155. Rossi, M., & Craig, J. (2016). A new perspective on sequence stratigraphy of syn‐orogenic basins: Insights from the Tertiary Piedmont Basin (Italy) and implications for play concepts and reservoir heterogeneity. Geological Society, London, Special Publications, 436(1), 93–133.
    [Google Scholar]
  156. Rossi, M., Mosca, P., Riccardo, P., Rogledi, S., & Biffi, U. (2009). New outcrop and subsurface data in the Tertiary Piedmont Basin (NW‐Italy): Unconformity‐bounded stratigraphic units and their relationships with basin‐modification phases. Rivista Italiana di Paleontologia e Stratigrafia, 115(3), 305–335.
    [Google Scholar]
  157. Ruffini, R., Cosca, M., d’Atri, A., Hunziker, J., & Polino, R. (1995). The volcanic supply of the Taveyanne turbidites (Savoie, France): A riddle for Tertiary Alpine volcanism. Atti delle Accademia Scienze Roma, 14, 359–376.
    [Google Scholar]
  158. Salimbeni, S., Agostinetti, N. P., Pondrelli, S., & CIFALPS Working Group . (2021). Insights into the origin and deformation style of the continental Moho: A case‐study from the Western Alps (Italy). Journal of Geophysical Research: Solid Earth, 126, e2020JB021319. https://doi.org/10.1029/2020JB021319
    [Google Scholar]
  159. Schlunegger, F., & Kissling, E. (2015). Slab rollback orogeny in the Alps and evolution of the Swiss Molasse basin. Nature Communications, 6, 8605. https://doi.org/10.1038/ncomms9605
    [Google Scholar]
  160. Schneider, D. A., & Issler, D. R. (2019). Application of low‐temperature thermochronology to hydrocarbon exploration. In Fission‐track thermochronology and its application to geology (pp. 315–333). Springer.
    [Google Scholar]
  161. Secchi, G., Casini, L., Cifelli, F., Naitza, S., Carta, E., & Oggiano, G. (2022). Syntectonic magmatism and reactivation of collisional structures during late Variscan shearing (SW Sardinia, Italy). International Journal of Earth Sciences, 111, 1469–1490. https://doi.org/10.1007/s00531‐022‐02193‐2
    [Google Scholar]
  162. Séranne, M. (1999). The Gulf of lion continental margin (NW Mediterranean) revisited by IBS: An overview. Geological Society, London, Special Publications, 156(1), 15–36.
    [Google Scholar]
  163. Sinclair, H. D. (1997). Flysch to molasse transition in peripheral foreland basins: The role of the passive margin versus slab break‐off. Geology, 25, 1123–1126.
    [Google Scholar]
  164. Sizova, E., Gerya, T., & Brown, M. (2014). Contrasting styles of Phanerozoic and Precambrian continental collision. Gondwana Research, 25(2), 522–545. https://doi.org/10.1016/j.gr.2012.12.011
    [Google Scholar]
  165. Sobel, E. R., & Seward, D. (2010). Influence of etching conditions on apatite fission‐track etch pit diameter. Chemical Geology, 271(1), 59–69. https://doi.org/10.1016/j.chemgeo.2009.12.012
    [Google Scholar]
  166. Speranza, F., Villa, I. M., Sagnotti, L., Florindo, F., Cosentino, D., Cipollari, P., & Mattei, M. (2002). Age of the Corsica–Sardinia rotation and Liguro–Provençal Basin spreading: New paleomagnetic and Ar/Ar evidence. Tectonophysics, 347(4), 231–251. https://doi.org/10.1016/S0040‐1951(02)00031‐8
    [Google Scholar]
  167. Spooner, C., Scheck‐Wenderoth, M., Cacace, M., Götze, H. J., & Luijendijk, E. (2020). The 3D thermal field across the Alpine orogen and its forelands and the relation to seismicity. Global and Planetary Change, 193, 103288. https://doi.org/10.1016/j.gloplacha.2020.103288
    [Google Scholar]
  168. Stocchi, S., Cavalli, C., & Baruffini, L. (1992). I depositi torbiditici di Guaso (Pirenei centro meridionali), Gremiasco e Castagnola (settore orientale del BTP): geometria e correlazioni di dettaglio. Atti Ticinensi Di Scienze Della Terra, 35, 153–177.
    [Google Scholar]
  169. Tagami, T. (2012). Thermochronological investigation of fault zones. Tectonophysics, 538, 67–85.
    [Google Scholar]
  170. Tamburelli, S., Di Giulio, A., Amadori, C., & Consonni, A. (2022). New constraint on burial and thermal history of Devonian reservoir sandstones in the Illizi‐Ghadames basin (North Africa) through diagenetic numerical modelling. Marine and Petroleum Geology, 145, 105903. https://doi.org/10.1016/j.marpetgeo.2022.105903
    [Google Scholar]
  171. Tang, B., Zhu, C., Qiu, N., Cui, Y., Guo, S., Luo, X., Zhang, B., Li, K., Li, W., & Fu, X. (2021). Analyzing and estimating thermal conductivity of sedimentary rocks from mineral composition and pore property. In Geofluid in ultra‐deep sedimentary basins and their significance for petroleum (Vol. 2021, Article ID 6665027, 19 pages). Hindawi Geofluids. https://doi.org/10.1155/2021/6665027
    [Google Scholar]
  172. Thybo, H., & Artemieva, I. M. (2013). Moho and magmatic underplating in continental lithosphere. Tectonophysics, 609, 605–619. https://doi.org/10.1016/j.tecto.2013.05.032
    [Google Scholar]
  173. Trümpy, R. (1960). Paleotectonic evolution of the central and western Alps. Bulletin of the Geological Society of America, 71, 843–908.
    [Google Scholar]
  174. Van Hinte, J. E. (1978). Geohistory analysis‐application of micropaleontology in exploration geology. The American Association of Petroleum Geologists Bulletin, 62(2), 201–222.
    [Google Scholar]
  175. Vance, J. A. (1999). Zircon fission track evidence for a Jurassic (Tethyan) thermal event in the Western Alps. Memorie di Scienze Geologiche Padova, 51(2), 473–476.
    [Google Scholar]
  176. Vanossi, M., Cortesogno, L., Galbiati, B., Messiga, B., Piccardo, G. B., & Vannucci, R. (1986). Geologia delle Alpi Liguri: dati, problemi, ipotesi. Mémoires de la Société géologique de Italiana, 28, 5–75.
    [Google Scholar]
  177. Vanossi, M., Perotti, C. R., & Seno, S. (1994). The maritime alps arc in the ligurian and tyrrhenian systems. Tectonophysics, 230(1–2), 75–89. https://doi.org/10.1016/0040‐1951(94)90147‐3
    [Google Scholar]
  178. Vedova, B. D., Bellani, S., Pellis, G., & Squarci, P. (2001). Deep temperatures and surface heat flow distribution. In G. B.Vai & I. P.Martini (Eds.), Anatomy of an orogen: the apennines and adjacent mediterranean basins. Springer. https://doi.org/10.1007/978‐94‐015‐9829‐3_7
    [Google Scholar]
  179. Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chemical Geology, 312–313, 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021
    [Google Scholar]
  180. Vignaroli, G., Faccenna, C., Jolivet, L., Piromallo, C., & Rossetti, F. (2008). Subduction polarity reversal at the junction between the Western Alps and the northern Apennines, Italy. Tectonophysics, 450(1–4), 34–50. https://doi.org/10.1016/j.tecto.2007.12.012
    [Google Scholar]
  181. Vignaroli, G., Rossetti, F., Rubatto, D., Theye, T., Lisker, F., & Phillips, D. (2010). Pressure‐temperature‐deformation‐time (P‐T‐d‐t) exhumation history of the Voltri Massif HP complex, Ligurian Alps, Italy. Tectonics, 29, TC6009. https://doi.org/10.1029/2009TC002621
    [Google Scholar]
  182. von Blanckenburg, F., & Davies, J. H. (1995). Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics, 14, 120–131.
    [Google Scholar]
  183. Vosteen, H. D., & Schellschmidt, R. (2003). Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Physics and Chemistry of the Earth, 28, 499–509.
    [Google Scholar]
  184. Whittington, A. G., Hofmeister, A. M., & Nabelek, P. I. (2009). Temperature‐dependent thermal diffusivity of the Earth's crust and implication for magmatism. Nature, 458, 319–321. https://doi.org/10.1038/nature07818
    [Google Scholar]
  185. Wildman, M., Brown, R., Persano, C., Beucher, R., Stuart, F. M., Mackintosh, V., Gallagher, K., Schwanethal, J., & Carter, A. (2017). Contrasting Mesozoic evolution across the boundary between on and off craton regions of the South African plateau inferred from apatite fission track and (U‐Th‐Sm)/He thermochronology. Journal of Geophysical Research ‐ Solid Earth, 122, 1517–1547. https://doi.org/10.1002/2016JB013478
    [Google Scholar]
  186. Yalçin, M. N., Littke, R., & Sachsenhofer, R. F. (1997). Thermal history of sedimentary basins. In D. H.Welte, B.Horsfield, & D. R.Baker (Eds.), Petroleum and basin evolution. Springer. https://doi.org/10.1007/978‐3‐642‐60423‐2_3
    [Google Scholar]
  187. Yalçin, M. N., & Welte, D. H. (1988). The thermal evolution of sedimentary basins and significance for hydrocarbon generation. Bulletin of Turkish Petroleum Geology, Ankara, 1, 12–26.
    [Google Scholar]
  188. Zattin, M., Landuzzi, A., Picotti, V., & Zuffa, G. G. (2000). Discriminating between tectonic and sedimentary burial in a foredeep succession, northern Apennines. Journal of the Geological Society, 157, 629–633.
    [Google Scholar]
  189. Ziegler, P. A., & Dèzes, P. (2006). Crustal evolution of western and Central Europe. Geological Society, London, Memoirs, 32(1), 43–56.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12752
Loading
/content/journals/10.1111/bre.12752
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error