1887
Volume 35, Issue 5
  • E-ISSN: 1365-2117

Abstract

[Abstract

Palustrine‐lacustrine carbonates of the well‐dated Xichagou section (ca. 43 to ca. 13 Ma) next to the active Altyn Tagh Fault (ATF) are investigated in terms of abundance, lithofacies, strontium, carbon and oxygen isotopes, to differentiate tectonic and climatic controls on the evolution of intermontane lakes in the Tibetan Plateau. Volumetrically dominant siliciclastic strata document five depositional stages: mid‐Eocene alluvial fan (onshore), late Eocene fan delta (nearshore), Oligocene semi‐deep lake (offshore), early Miocene braided fluvial delta (nearshore) and mid‐Miocene fluvial plain (onshore). Carbonates are most abundant in the middle three lacustrine stages and contain various lithofacies, including calcretes, microbialites, grainstones and marlstones. Oxygen isotopes show two positive excursions (−1.17‰ and −2.59‰) at the first nearshore and late offshore stages, indicating two relatively saline stages linked to the Eocene and late Oligocene global warming climates. Carbon isotopes show a positive excursion (from −4.0‰ to +2.9‰) at the middle semi‐deep lake stage and meanwhile strontium isotopes of carbonates show a large negative excursion (from 0.7120‰ to 0.7113‰), both in response to the early Oligocene global humid and cooling climate and resultant lake expansion at the Qaidam Basin. Except for this lake expansion event, the first‐order lake transgressing, shallowing and regressing evolution at the Xichagou section were not consistent with Cenozoic global climatic change trends. Instead, the two‐stage strike‐slip faulting of the ATF probably induced the northeastward and eastward migration of basin depocenter and resulted in the lake transgression‐regression at the Xichagou section. The widespread presence and relatively minor variation in oxygen isotopes (from −7.5‰ to −7.0‰) of early Miocene microbialites in the northern Tibetan Plateau suggest a warm climate and a low relief before ca. 15 Ma.

,

Tectonically driven lake migration primarily controlled the evolution of sedimentary facies and carbonate deposition of orogen proximal lakes

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12772
2023-09-10
2025-11-07
Loading full text...

Full text loading...

References

  1. Abels, H. A., Dupont‐Nivet, G., Xiao, G., Bosboom, R., & Krijgsman, W. (2011). Step‐wise change of Asian interior climate preceding the Eocene‐Oligocene Transition (EOT). Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 399–412.
    [Google Scholar]
  2. Alonso‐Zarza, A. M. (2003). Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth‐Science Reviews, 60, 261–298.
    [Google Scholar]
  3. Alonso‐Zarza, A. M., & Wright, V. P. (2010). Chapter 5 calcretes. Developments in Sedimentology, 61, 225–267.
    [Google Scholar]
  4. Anderson, N. L., Barrett, K. L., Jones, S. E., & Belovsky, G. E. (2020). Impact of abiotic factors on microbialite growth (Great Salt Lake, Utah, USA): A tank experiment. Hydrobiologia, 847, 2113–2122.
    [Google Scholar]
  5. Bao, J., Wang, Y., Song, C., Feng, Y., Hu, C., Zhong, S., & Yang, J. (2017). Cenozoic sediment flux in the Qaidam Basin, northern Tibetan Plateau, and implications with regional tectonics and climate. Global and Planetary Change, 155, 56–69.
    [Google Scholar]
  6. Baskin, R. L., Della Porta, G., & Wright, V. P. (2022). Characteristics and controls on the distribution of sublittoral microbial bioherms in Great Salt Lake, Utah: Implications for understanding microbialite development. The Depositional Record, 8, 39–66.
    [Google Scholar]
  7. Bookman, R., Enzel, Y., Agnon, A., & Stein, M. (2004). Late Holocene lake levels of the Dead Sea. Geological Society of America Bulletin, 116, 555–571.
    [Google Scholar]
  8. Bosence, D., Gibbons, K., Le Heron, D. P., Morgan, W. A., Pritchard, T., & Vining, B. A. (2015). Microbial carbonates in space and time: Introduction. Geological Society, London, Special Publications, 418, 1–15.
    [Google Scholar]
  9. Bouton, A., Vennin, E., Mulder, T., Pace, A., Bourillot, R., Thomazo, C., Brayard, A., Goslar, T., Buoncristiani, J. F., Désaubliaux, G., & Visscher, P. T. (2016). Enhanced development of lacustrine microbialites on gravity flow deposits, Great Salt Lake, Utah, USA. Sedimentary Geology, 341, 1–12.
    [Google Scholar]
  10. Brady, A. L., Slater, G. F., Omelon, C. R., Southam, G., Druschel, G., Andersen, D. T., Hawes, I., Laval, B., & Lim, D. S. S. (2010). Photosynthetic isotope biosignatures in laminated micro‐stromatolitic and non‐laminated nodules associated with modern, freshwater microbialites in Pavilion Lake, B.C. Chemical Geology, 274(1–2), 56–67.
    [Google Scholar]
  11. Browning, J. V., Miller, K. G., & Pak, D. K. (1996). Global implications of lower to middle Eocene sequence boundaries on the New Jersey coastal plain: The icehouse cometh. Geology, 24, 639–642.
    [Google Scholar]
  12. Bullen, T. D., & Kendall, C. (1998). Tracing of weathering reactions and water flowpaths: A multi‐isotope approach. In C.Kendall & J. J.McDonnell (Eds.), Isotope tracers in catchment hydrology (pp. 611–646). Elsevier Science.
    [Google Scholar]
  13. Chagas, A. A. P., Webb, G. E., Burne, R. V., & Southam, G. (2016). Modern lacustrine microbialites: Towards a synthesis of aqueous and carbonate geochemistry and mineralogy. Earth‐Science Reviews, 162, 338–363.
    [Google Scholar]
  14. Chang, H., Li, L., Qiang, X., Garzione, C. N., Pullen, A., & An, Z. (2015). Magnetostratigraphy of Cenozoic deposits in the western Qaidam Basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 430, 271–283.
    [Google Scholar]
  15. Chen, G. Y. (2010). The study of Cenozoic lacustrine carbonate rocks and its sedimentary model in the western Qaidam Basin. Chengdu University of Technology.
    [Google Scholar]
  16. Chen, Z. M. (1981). Approaches to the changes of ecological environment of lakes in Xizang based on the upheaval of the Qinghai‐Xizang Plateau. Oceanologia et Limnologia Sinica, 12, 402–411.
    [Google Scholar]
  17. Cheng, F., Jolivet, M., Fu, S., Zhang, C., Zhang, Q., & Guo, Z. (2016). Large‐scale displacement along the Altyn Tagh Fault (North Tibet) since its Eocene initiation: Insight from detrital zircon U‐Pb geochronology and subsurface data. Tectonophysics, 677–678, 261–279.
    [Google Scholar]
  18. Cheng, F., Guo, Z., Jenkins, H. S., Fu, S., & Cheng, X. (2015). Initial rupture and displacement on the Altyn Tagh Fault, northern Tibetan Plateau: Constraints based on residual Mesozoic to Cenozoic strata in the western Qaidam Basin. Geosphere, 11, 921–942.
    [Google Scholar]
  19. Cheng, F., Jolivet, M., Guo, Z., Wang, L., Zhang, C., & Li, X. (2021). Cenozoic evolution of the Qaidam basin and implications for the growth of the northern Tibetan plateau: A review. Earth‐Science Reviews, 220, 103730.
    [Google Scholar]
  20. Choi, S., Kim, N. H., Kim, H. I., Kweon, J. J., Lee, S. K., Zhang, S., & Varricchio, D. J. (2022). Preservation of aragonite in Late Cretaceous (Campanian) turtle eggshell. Palaeogeography, Palaeoclimatology, Palaeoecology, 585, 110741.
    [Google Scholar]
  21. Cheng, F., Jolivet, M., Fu, S., Zhang, C., Zhang, Q., & Guo, Z. (2016). Large‐scale displacement along the Altyn Tagh Fault (North Tibet) since its Eocene initiation: Insight from detrital zircon U‐Pb geochronology and subsurface data. Tectonophysics, 677–678, 261–279.
    [Google Scholar]
  22. Cohen, A. S., Talbot, M. R., Awramik, S. M., Dettman, D. L., & Abell, P. (1997). Lake level and paleoenvironmental history of Lake Tanganyika, Africa, as inferred from late Holocene and modern stromatolites. Bulletin of the Geological Society of America, 109, 444–460.
    [Google Scholar]
  23. Dai, M. N., Zong, C. L., & Yuan, H. L. (2012). A calibration strategy of 87Sr/86Sr ratio for rocks with high Rb/Sr measured by multiple collector‐inductively coupled plasma‐mass spectrometry. Rock and Mineral Analysis, 31, 95–102.
    [Google Scholar]
  24. Della Porta, G. (2015). Carbonate build‐ups in lacustrine, hydrothermal and fluvial settings: Comparing depositional geometry, fabric types and geochemical signature. In D. W. J.Bosence, K. A.Gibbons, D. P.LeHeron, W. A.Morgan, & T. V. B. A.Pritchard (Eds.), Microbial carbonates in space and time: Implications for global exploration and production (Vol. 418, pp. 17–68). Geological Society, London, Special Publications.
    [Google Scholar]
  25. Della Porta, G., Capezzuoli, E., & De Bernardo, A. (2017). Facies character and depositional architecture of hydrothermal travertine slope aprons (Pleistocene, Acquasanta Terme, Central Italy). Marine and Petroleum Geology, 87, 171–187.
    [Google Scholar]
  26. Della Porta, G., Hoppert, M., Hallmann, C., Schneider, D., & Reitner, J. (2022). The influence of microbial mats on travertine precipitation in active hydrothermal systems (Central Italy). The Depositional Record, 8, 165–209.
    [Google Scholar]
  27. Dworkin, S. I., Nordt, L., & Atchley, S. (2005). Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate. Earth and Planetary Science Letters, 237, 56–68.
    [Google Scholar]
  28. Fang, X., Zhang, W., Meng, Q., Gao, J., Wang, X., King, J., Song, C., Dai, S., & Miao, Y. (2007). High‐resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258, 293–306.
    [Google Scholar]
  29. Gierlowski‐Kordesch, E. H. (1998). Carbonate deposition in an ephemeral siliciclastic alluvial system: Jurassic Shuttle Meadow Formation, Newark Supergroup, Hartford Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 140, 161–184.
    [Google Scholar]
  30. Gierlowski‐Kordesch, E. H., Jacobson, A. D., Blum, J. D., & Valero Garćes, B. L. (2008). Watershed reconstruction of a Paleocene‐Eocene lake basin using Sr isotopes in carbonate rocks. Geological Society of America Bulletin, 120, 85–95.
    [Google Scholar]
  31. Guo, P., Liu, C., Gibert, L., Huang, L., Zhang, D., & Dai, J. (2020). How to find high‐quality petroleum source rocks in saline lacustrine basins: A case study from the Cenozoic Qaidam Basin, NW China. Marine and Petroleum Geology, 111, 603–623.
    [Google Scholar]
  32. Guo, P., Liu, C., Huang, L., Wang, P., Wang, K., Yuan, H., Xu, C., & Zhang, Y. (2017). Genesis of the late Eocene bedded halite in the Qaidam Basin and its implication for paleoclimate in East Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 487, 364–380.
    [Google Scholar]
  33. Guo, P., Liu, C., Huang, L., Yu, M., Wang, P., & Zhang, G. (2018). Palaeohydrological evolution of the late Cenozoic saline lake in the Qaidam Basin, NE Tibetan Plateau: Tectonic vs. climatic control. Global and Planetary Change, 165, 44–61.
    [Google Scholar]
  34. Guo, P., Liu, C., Wang, L., Zhang, G., & Fu, X. (2019). Mineralogy and organic geochemistry of the terrestrial lacustrine pre‐salt sediments in the Qaidam Basin: Implications for good source rock development. Marine and Petroleum Geology, 107, 149–162.
    [Google Scholar]
  35. Guo, P., Liu, C., Yu, M., Ma, D., Wang, P., Wang, K., Mao, G., & Zhang, Q. (2018). Paleosalinity evolution of the Paleogene perennial Qaidam lake on the Tibetan Plateau: Climatic vs. tectonic control. International Journal of Earth Sciences, 107, 1641–1656.
    [Google Scholar]
  36. Hanson, A. D., Ritts, B. D., Zinniker, D., Moldowan, J. M., & Biffi, U. (2001). Upper Oligocene lacustrine source rocks and petroleum systems of the northern Qaidam basin, northwest China. AAPG Bulletin, 85, 601–619.
    [Google Scholar]
  37. Hren, M. T., & Sheldon, N. D. (2012). Temporal variations in lake water temperature: Paleoenvironmental implications of lake carbonate δ18O and temperature records. Earth and Planetary Science Letters, 337–338, 77–84.
    [Google Scholar]
  38. Isaji, Y., Kawahata, H., Kuroda, J., Yoshimura, T., Ogawa, N. O., Suzuki, A., Shibuya, T., Jiménez‐Espejo, F. J., Lugli, S., Santulli, A., Manzi, V., Roveri, M., & Ohkouchi, N. (2017). Biological and physical modification of carbonate system parameters along the salinity gradient in shallow hypersaline solar salterns in Trapani, Italy. Geochimica et Cosmochimica Acta, 208, 354–367.
    [Google Scholar]
  39. Ji, J., Zhang, K., Clift, P. D., Zhuang, G., Song, B., Ke, X., & Xu, Y. (2017). High‐resolution magnetostratigraphic study of the Paleogene‐Neogene strata in the Northern Qaidam Basin: Implications for the growth of the Northeastern Tibetan Plateau. Gondwana Research, 46, 141–155.
    [Google Scholar]
  40. Jian, X., Fu, L., Wang, P., Guan, P., Zhang, W., Fu, H. J., & Mei, H. W. (2022). Sediment provenance of the Lulehe Formation in the Qaidam basin: Insight to initial Cenozoic deposition and deformation in northern Tibetan plateau. Basin Research, 35, 271–294. https://doi.org/10.1111/bre.12712
    [Google Scholar]
  41. Jian, X., Guan, P., Zhang, D. W., Zhang, W., Feng, F., Liu, R. J., & Lin, S. D. (2013). Provenance of tertiary sandstone in the northern Qaidam basin, northeastern Tibetan Plateau: Integration of framework petrography, heavy mineral analysis and mineral chemistry. Sedimentary Geology, 290, 109–125.
    [Google Scholar]
  42. Jian, X., Guan, P., Zhang, W., & Feng, F. (2013). Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam basin, northeastern Tibetan Plateau: Implications for provenance and weathering. Chemical Geology, 360–361, 74–88.
    [Google Scholar]
  43. Katz, M. E., Miller, K. G., Wright, J. D., Wade, B. S., Browning, J. V., Cramer, B. S., & Rosenthal, Y. (2008). Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nature Geoscience, 1, 329–334.
    [Google Scholar]
  44. Leng, M. J., & Marshall, J. D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23, 811–831.
    [Google Scholar]
  45. Li, B., Yan, M., Zhang, W., Fang, X., Yang, Y., Zhang, D., Guan, C., & Bao, J. (2021). Two‐stage strike‐slip faulting of the Altyn Tagh Fault revealed by magnetic fabrics in the Qaidam Basin. Tectonophysics, 821, 229142.
    [Google Scholar]
  46. Li, L., Garzione, C. N., Pullen, A., & Chang, H. (2016). Early‐middle Miocene topographic growth of the northern Tibetan Plateau: Stable isotope and sedimentation evidence from the southwestern Qaidam basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 201–213.
    [Google Scholar]
  47. Li, S., Currie, B. S., Rowley, D. B., Ingalls, M., Qiu, L., & Wu, Z. (2019). Diagenesis of shallowly buried Miocene lacustrine carbonates from the Hoh Xil Basin, northern Tibetan Plateau: Implications for stable‐isotope based elevation estimates. Sedimentary Geology, 388, 20–36.
    [Google Scholar]
  48. Ma, J., Wu, C., Wang, Y., Wang, J., Fang, Y., Zhu, W., Zhai, L., & Zhou, T. (2017). Paleoenvironmental reconstruction of a saline lake in the tertiary: Evidence from aragonite laminae in the northern Tibet Plateau. Sedimentary Geology, 353, 1–12.
    [Google Scholar]
  49. Meng, Q. R., & Fang, X. (2008). Cenozoic tectonic development of the Qaidam Basin in the northeastern Tibetan Plateau. The Geological Society of America Special Paper, 444, 1–24.
    [Google Scholar]
  50. Miao, Y., Fang, X., Wu, F., Cai, M., Song, C., Meng, Q., & Xu, L. (2013). Late Cenozoic continuous aridification in the western Qaidam Basin: Evidence from sporopollen records. Climate of the Past, 9, 1863–1877.
    [Google Scholar]
  51. Murphy, J. T., Lowenstein, T. K., & Pietras, J. T. (2014). Preservation of primary lake signatures in alkaline earth carbonates of the Eocene Green River Wilkins Peak‐Laney Member transition zone. Sedimentary Geology, 314, 75–91.
    [Google Scholar]
  52. Négrel, P., Grosbois, C., & Kloppmann, W. (2000). The labile fraction of suspended matter in the Loire River (France): Multi‐element chemistry and isotopic (Rb–Sr and C–O) systematics. Chemical Geology, 166, 271–285.
    [Google Scholar]
  53. Newell, D. L., Jensen, J. L., Frantz, C. M., & vanden Berg, M. D. (2017). Great Salt Lake (Utah) Microbialite δ13C, δ18O, and δ15N record fluctuations in Lake biogeochemistry since the late Pleistocene. Geochemistry, Geophysics, Geosystems, 18(10), 3631–3645.
    [Google Scholar]
  54. Nie, J., Ren, X., Saylor, J. E., Su, Q., Horton, B. K., Bush, M. A., Chen, W., & Pfaff, K. (2020). Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam Basin, NE Tibetan Plateau. Bulletin of the Geological Society of America, 132, 310–320.
    [Google Scholar]
  55. Peng, T., Li, J., Song, C., Guo, B., Liu, J., Zhao, Z., & Zhang, J. (2016). An integrated biomarker perspective on Neogene‐Quaternary climatic evolution in NE Tibetan Plateau: Implications for the Asian aridification. Quaternary International, 399, 174–182.
    [Google Scholar]
  56. Petryshyn, V. A., Lim, D., Laval, B. L., Brady, A., Slater, G., & Tripati, A. K. (2015). Reconstruction of limnology and microbialite formation conditions from carbonate clumped isotope thermometry. Geobiology, 13(1), 53–67.
    [Google Scholar]
  57. Platt, N. H. (1989). Lacustrine carbonates and pedogenesis: Sedimentology and origin of palustrine deposits from the Early Cretaceous Rupelo Formation, W Cameros Basin, N Spain. Sedimentology, 36(4), 665–684.
    [Google Scholar]
  58. Polissar, P. J., Freeman, K. H., Rowley, D. B., McInerney, F. A., & Currie, B. S. (2009). Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth and Planetary Science Letters, 287, 64–76.
    [Google Scholar]
  59. Riding, R. (2011). Microbialites, stromatolites, and thrombolites. In J.Reitner & V.Thiel (Eds.), Encyclopedia of geobiology. Encyclopedia of Earth Science Series (pp. 635–654). Springer.
    [Google Scholar]
  60. Rieser, A. B., Bojar, A. V., Neubauer, F., Genser, J., Liu, Y., Ge, X. H., & Friedl, G. (2009). Monitoring Cenozoic climate evolution of northeastern Tibet: Stable isotope constraints from the western Qaidam Basin, China. International Journal of Earth Sciences, 98, 1063–1075.
    [Google Scholar]
  61. Roche, A., Vennin, E., Bouton, A., Olivier, N., Wattinne, A., Bundeleva, I., Deconinck, J. F., Virgone, A., Gaucher, E. C., & Visscher, P. T. (2018). Oligo‐Miocene lacustrine microbial and metazoan buildups from the Limagne Basin (French Massif Central). Palaeogeography, Palaeoclimatology, Palaeoecology, 504, 34–59.
    [Google Scholar]
  62. Schmid, S., Worden, R. H., & Fisher, Q. J. (2006). Sedimentary facies and the context of dolocrete in the Lower Triassic Sherwood Sandstone group: Corrib Field west of Ireland. Sedimentary Geology, 187, 205–227.
    [Google Scholar]
  63. Smith, J. P., Bullen, T. D., Brabander, D. J., & Olsen, C. R. (2009). Strontium isotope record of seasonal scale variations in sediment sources and accumulation in low‐energy, subtidal areas of the lower Hudson River estuary. Chemical Geology, 264, 375–384.
    [Google Scholar]
  64. Song, H. Y., Yi, H. S., Fan, A. C., Ma, X., & Sun, X. (2010). Petrology and sedimentary environments of lacustrine carbonate rocks in the Xichagou section, western Qaidam Basin. Geology in China, 1, 117–126.
    [Google Scholar]
  65. Talbot, M. R. (1990). A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology: Isotope Geoscience Section, 80, 261–279.
    [Google Scholar]
  66. Vennin, E., Bouton, A., Bourillot, R., Pace, A., Roche, A., Brayard, A., Thomazo, C., Virgone, A., Gaucher, E. C., Desaubliaux, G., & Visscher, P. T. (2019). The lacustrine microbial carbonate factory of the successive Lake Bonneville and Great Salt Lake, Utah, USA. Sedimentology, 66(1), 165–204.
    [Google Scholar]
  67. Wang, J. G., Zhang, D., Bai, Y., Sun, X., Li, X., Wang, A., Zhang, S., Yi, S., & Yang, W. (2020). Saline lacustrine palustrine sediments and microbialite in the Shangyoushashan Formation in the western Qaimdam Basin. Acta Geologica Sinica, 94, 3228–3248.
    [Google Scholar]
  68. Wang, J. G., Zhang, D., Yuan, J., Xu, L., Huang, C., Shi, Y., & Li, Y. (2019). Characteristics of reservoir genesis and oil‐gas accumulation in lacustrine carbonate in Yingxi area of Qaidam basin. Journal of China University of Mining and Technology, 48, 99–109.
    [Google Scholar]
  69. Wang, S., & Li, J. (1993). Late Cenozoic lake deposits of China and environmental outline. Journal of Lake Sciences, 5, 1–8.
    [Google Scholar]
  70. Wang, Y., Yuan, S., Zhang, T., Liu, X., Liu, Y., & Miao, Y. (2021). Sedimentary record of climate change across the Eocene/Oligocene transition from the Qaidam Basin, northeastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 564, 110203.
    [Google Scholar]
  71. Warren, J. K. (2016). Evaporites: A geological compendium (Revised and expanded. 2nd ed., p. 1807). Springer.
    [Google Scholar]
  72. Wen, Z., Zhong, J., Wang, G., Li, Y., Guo, Z., & Wang, H. (2005). Miocene stromatolites associated with lacustrine algal reefs: Qaidam Basin, China. Acta Geologica Sinica, 79, 444–452.
    [Google Scholar]
  73. Wu, L., Xiao, A., Yang, S., Wang, L., Mao, L., Wang, L., Dong, Y., & Xu, B. (2012). Two‐stage evolution of the Altyn Tagh Fault during the Cenozoic: New insight from provenance analysis of a geological section in NW Qaidam Basin, NW China. Terra Nova, 24, 387–395.
    [Google Scholar]
  74. Wu, M., Zhuang, G., Hou, M., & Liu, Z. (2021). Expanded lacustrine sedimentation in the Qaidam Basin on the northern Tibetan Plateau: Manifestation of climatic wetting during the Oligocene icehouse. Earth and Planetary Science Letters, 565, 116935.
    [Google Scholar]
  75. Xiao, A. C., Wu, L., Li, H. G., & Wang, L. Q. (2013). Tectonic processes of the Cenozoic Altyn Tagh Fault and its coupling with the Qaidam Basin, NW China. Acta Petrologica Sinica, 29, 2826–2836.
    [Google Scholar]
  76. Xiong, Y., Tan, X., Wu, K., Xu, Q., Liu, Y., & Qiao, Y. (2021). Petrogenesis of the Eocene lacustrine evaporites in the western Qaidam Basin: Implications for regional tectonic and climate changes. Sedimentary Geology, 416, 105867.
    [Google Scholar]
  77. Yang, T., Jia, J., Chen, H., Zhang, Y., Wang, Y., Wang, H., Bao, L., Zhang, L., Li, W., Xie, S., & Yan, D. (2021). Oligocene Ailanthus from southwestern Qaidam Basin, northern Tibetan Plateau, China and its implications. Geological Journal, 56, 616–627.
    [Google Scholar]
  78. Yang, T., Zhang, L., Li, W., Jia, J., Han, L., Zhang, Y., & Yan, D. (2018). New schizothoracine from Oligocene of Qaidam Basin, northern Tibetan Plateau, China, and its significance. Journal of Vertebrate Paleontology, 38, e1442840.
    [Google Scholar]
  79. Yin, A., Dang, Y., Zhang, M., McRivette, M. W., Burgess, W. P., & Chen, X. (2007). Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (part 2): Wedge tectonics in southern Qaidam basin and the eastern Kunlun range. The Geological Society of America Special Paper, 433, 369–390.
    [Google Scholar]
  80. Yin, A., Dang, Y. Q., Wang, L. C., Jiang, W. M., Zhou, S. P., Chen, X. H., Gehrels, G. E., & McRivette, M. W. (2008). Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan‐Nan Shan thrust belt and northern Qaidam basin. Bulletin of the Geological Society of America, 120, 813–846.
    [Google Scholar]
  81. Yin, A., Rumelhart, P. E., Butler, R., Cowgill, E., Harrison, T. M., Foster, D. A., Ingersoll, R. V., Zhang, Q., Zhou, X. Q., Wang, X. F., Hanson, A., & Raza, A. (2002). Tectonic history of the Altyn Tagh Fault system in northern Tibet inferred from Cenozoic sedimentation. Bulletin of the Geological Society of America, 114, 1257–1295.
    [Google Scholar]
  82. Yue, Y., & Liou, J. G. (1999). Two‐stage evolution model for the Altyn Tagh Fault, China. Geology, 27, 227–230.
    [Google Scholar]
  83. Yue, Y., Ritts, B. D., & Graham, S. A. (2001). Initiation and long‐term slip history of the Altyn Tagh Fault. International Geology Review, 43, 1087–1093.
    [Google Scholar]
  84. Yue, Y., Ritts, B. D., Graham, S. A., Wooden, J. L., Gehrels, G. E., & Zhang, Z. (2004). Slowing extrusion tectonics: Lowered estimate of post‐Early Miocene slip rate for the Altyn Tagh Fault. Earth and Planetary Science Letters, 217, 111–122.
    [Google Scholar]
  85. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 80(292), 686–693.
    [Google Scholar]
  86. Zan, J., Fang, X., Yan, M., Zhang, W., & Lu, Y. (2015). Lithologic and rock magnetic evidence for the mid‐Miocene climatic optimum recorded in the sedimentary archive of the Xining Basin, NE Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 431, 6–14.
    [Google Scholar]
  87. Zeng, L., Yi, H., Xia, G., & Yuan, T. (2017). Sedimentary sequences and implications for paleoenvironment of cenozoic lacustrine stromatolites, Qaidam Basin. Geoscience, 31, 1251–1260.
    [Google Scholar]
  88. Zhang, H., Craddock, W. H., Lease, R. O., Wang, W. T., Yuan, D. Y., Zhang, P. Z., Molnar, P., Zheng, D. W., & Zheng, W. J. (2012). Magnetostratigraphy of the Neogene Chaka basin and its implications for mountain building processes in the north‐eastern Tibetan Plateau. Basin Research, 24, 31–50.
    [Google Scholar]
  89. Zhou, F. Y., Peng, D. H., Bian, B. L., Huang, D. F., & Wang, Y. B. (1992). Progress in the organic matter study of immature oils in the Qaidam Basin. Acta Geologica Sinica, 76, 107–113.
    [Google Scholar]
  90. Zhou, K., Yi, H., & Lin, J. (2007). Petrology and sedimentary environments of the lacustrine carbonate rocks from the Miocene Wudaoliang Group in the Hoh Xil Basin, Qinghai. Sedimentary Geology and Tethyan Geology, 27, 25–30.
    [Google Scholar]
  91. Zhuang, G., Brandon, M. T., Pagani, M., & Krishnan, S. (2014). Leaf wax stable isotopes from northern Tibetan Plateau: Implications for uplift and climate since 15 Ma. Earth and Planetary Science Letters, 390, 186–198.
    [Google Scholar]
  92. Zhuang, G., Hourigan, J. K., Ritts, B. D., & Kent‐Corson, M. L. (2011). Cenozoic multiple‐phase tectonic evolution of the northern Tibetan Plateau: Constraints from sedimentary records from Qaidam Basin, Hexi Corridor, and Subei Basin, Northwest China. American Journal of Science, 311, 116–152.
    [Google Scholar]
  93. Zhuang, G., Johnstone, S. A., Hourigan, J., Ritts, B., Robinson, A., & Sobel, E. R. (2018). Understanding the geologic evolution of northern Tibetan Plateau with multiple thermochronometers. Gondwana Research, 58, 195–210.
    [Google Scholar]
/content/journals/10.1111/bre.12772
Loading
/content/journals/10.1111/bre.12772
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error