1887
Volume 35, Issue 5
  • E-ISSN: 1365-2117

Abstract

[Abstract

Cooling subvolcanic igneous intrusions are known to have a substantial impact on fluid flow in the shallow Earth's crust, for example activation of geothermal systems, circulation of mineralized fluids in ore deposits, fast maturation of organic matter in sedimentary rocks and the potential release of large volumes of greenhouse gases, which have triggered mass extinctions during the Earth's history. However, the long‐term post‐cooling legacy of subvolcanic intrusions on fluid flow received much less attention. Here we describe a demonstrative geological example in the Andean foothills, Argentina, showing that igneous intrusions have long‐term effects on fluid flow after their emplacement and cooling. The case study is a ca. 11‐million‐year‐old, eroded subvolcanic conduit, at the rims of which large volumes of bitumen are naturally seeping out on the Earth's surface. This contribution highlights that intense syn‐emplacement fracturing of the magma has created high‐permeability pathways that affect the regional fluid circulations, even millions of years after cooling. Our observations reveal how extinct subvolcanic intrusions have long‐term consequences on subsurface fluid circulations, which need to be accounted for in the exploration of geothermal energy, drinkable groundwater, hydrocarbons and CO sequestration in volcanic basins and regions hosting ancient shallow magma intrusions.

,

Schematic representation of Cerro Alquitrán intrusive body. The drawing shows how magmatic brittle structures and structures in the host rock affect subsurface hydrocarbon migration and seepage.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12782
2023-09-10
2025-11-14
Loading full text...

Full text loading...

References

  1. Aarnes, I., Fristad, K., Planke, S., & Svensen, H. (2011). The impact of host‐rock composition on devolatilization of sedimentary rocks during contact metamorphism around mafic sheet intrusions. Geochemistry, Geophysics, Geosystems, G3(12), Q10019. https://doi.org/10.1029/2011gc003636
    [Google Scholar]
  2. Aarnes, I., Svensen, H., Connolly, J. A. D., & Podladchikov, Y. Y. (2010). How contact metamorphism can trigger global climate changes: Modeling gas generation around igneous sills in sedimentary basins. Geochimica et Cosmochimica Acta, 74, 7179–7195. https://doi.org/10.1016/j.gca.2010.09.011
    [Google Scholar]
  3. Agirrezabala, L. M. (2015). Syndepositional forced folding and related fluid plumbing above a magmatic laccolith: Insights from outcrop (lower cretaceous, Basque‐Cantabrian Basin, western Pyrenees). Geological Society of America Bulletin, 127, B31192.1. https://doi.org/10.1130/b31192.1
    [Google Scholar]
  4. Amelung, F., Jonsson, S., Zebker, H., & Segall, P. (2000). Widespread uplift and “trapdoor” faulting on Galápagos volcanoes observed with radar interferometry. Nature, 407, 993–996. https://doi.org/10.1038/35039604
    [Google Scholar]
  5. Araujo, V. S., Frisicale, M. C., Sánchez, N., Turienzo, M., Lebinson, F., & Dimieri, L. V. (2019). The relationship between Cenozoic shallow igneous bodies and thrust systems of the mountain front of the cordillera principal, Mendoza province, Argentina. Journal of South American Earth Sciences, 92, 531–551. https://doi.org/10.1016/j.jsames.2019.03.027
    [Google Scholar]
  6. Baldauf, P., Stephens, G., Nullo, F. E., Combina, A. M., & Kunk, M. (1997). Tertiary uplift, magmatism and sedimentation of the Andes, Southern Mendoza Province, Argentina. Geological Society of America, Abstracts with Program.
    [Google Scholar]
  7. Bechis, F., Giambiagi, L. B., Tunik, M. A., Suriano, J., Lanés, S., & Mescua, J. F. (2020). Tectono‐stratigraphic evolution of the Atuel Depocenter during the late Triassic to early Jurassic rift stage, Neuquén Basin, west‐Central Argentina. In D. A.Kietzmann & A.Folguera (Eds.), Opening and closure of the Neuquén Basin in the southern Andes (pp. 23–52). Springer International Publishing.
    [Google Scholar]
  8. Bettini, F., & Vasquez, J. (1979). Geologia de la Sierra Azul, Rio Grande y Sector Occidental de La Siera de Palauco. Yacimientos Petrolíferos Fiscales (internal report), Buenos Aires.
    [Google Scholar]
  9. Bischoff, A. P., Nicol, A., Cole, J. W., & Gravley, D. M. (2019). Stratigraphy of architectural elements of a buried monogenetic volcanic system. Open Geosciences, 11, 581–616. https://doi.org/10.1515/geo‐2019‐0048
    [Google Scholar]
  10. Bischoff, A. P., Planke, S., Holford, S., & Nicol, A. (2021). Seismic geomorphology, architecture and stratigraphy of volcanoes buried in sedimentary basins. In N.Károly (Ed.), Updates in volcanology (Ch. 4). IntechOpen.
    [Google Scholar]
  11. Boll, A., Alonso, J., Fuentes, F., Vergara, M., Laffitte, G. A., & Villar, H. J. (2014). Factores controlantes de las acumulaciones de hidrocarburos en el sector norte de la Cuenca Neuquina, entre los Ríos Diamante y Salado, Provincia de Mendoza, Argentina. In IX Congreso de Exploración y Desarrollo de Hidrocarburos, Book Factores controlantes de las acumulaciones de hidrocarburos en el sector norte de la Cuenca Neuquina, antre los Ríos Diamante y Salado, Provincia de Mendoza, Argentina, Edition ed. Series (pp. 3–44). Instituto Argentino del Petroleo y del Gas.
    [Google Scholar]
  12. Breitkreuz, C., Ehling, B.‐C., & Sergeev, S. (2009). Chronological evolution of an intrusive/extrusive system: The late Paleozoic Halle volcanic complex in the northeastern Saale Basin (Germany). German Journal of Geosciences, 160, 173–190. https://doi.org/10.1127/1860‐1804/2009/0160‐0173
    [Google Scholar]
  13. Brisson, I. (2015). Sistemas petroleros de la cuenca Neuquina. In J. J.Ponce, A. O.Montagna, & N.Carmona (Eds.), Geología de la cuenca neuquina y sus sistemas petroleros: una morada integradora desde los afloramientos al subsuelo (pp. 22–35). Findación YPF y Universidad Nacional de Río Negro.
    [Google Scholar]
  14. Brisson, I. E., Fasola, M. E., & Villar, H. (2020). Organic geochemical patterns of the Vaca Muerta formation. In D.Minisini, M.Fantin, I. LanusseNoguera, & H. A.Leanza (Eds.), Integrated geology of unconventionals: The case of the Vaca Muerta play, Argentina (Vol. 121, pp. 297–328). American Association of Petroleum Geologists, Memoir.
    [Google Scholar]
  15. Burchardt, S., Mattsson, T., Palma, J. O., Galland, O., Almqvist, B., Mair, K., Jerram, D. A., Hammer, Ø., & Sun, Y. (2019). Progressive growth of the Cerro Bayo Cryptodome, Chachahuén volcano, Argentina—Implications for viscous magma emplacement. Journal of Geophysical Research, 124, 7934–7961. https://doi.org/10.1029/2019JB017543
    [Google Scholar]
  16. Chevallier, L., Goedhart, M., & Woodford, A. (2001). The influence of dolerite sill and ring complexes on the occurrence of grounwater in the Karoo fractured aquifers: A morpho‐tectonic approach (p. 143). Water Research Commission, South Africa.
    [Google Scholar]
  17. Combina, A. M., & Nullo, F. (2011). Ciclos tectónicos, volcánicos y sedimentarios del Cenozoico del sur de Mendoza‐Argentina (35°‐37° S y 69°30′W). Andean Geology, 38, 198–218.
    [Google Scholar]
  18. Cordonnier, B., Caricchi, L., Pistone, M., Castro, J., Hess, K.‐U., Gottschaller, S., Manga, M., Dingwell, D. B., & Burlini, L. (2012). The viscous‐brittle transition of crystal‐bearing silicic melt: Direct observation of magma rupture and healing. Geology, 40, 611–614. https://doi.org/10.1130/g3914.1
    [Google Scholar]
  19. Corry, C. E. (1988). Laccoliths: mechanisms of emplacement and growth. Geological Society of America Special Paper, 220 (p. 110).
  20. Courtillot, V. E., & Renne, P. R. (2003). On the ages of flood basalt events. Comptes Rendus Geoscience, 335, 113–140. https://doi.org/10.1016/S1631‐0713(03)00006‐3
    [Google Scholar]
  21. Cruden, A. R., McCaffrey, K. J. W., & Bunger, A. P. (2018). Geometric scaling of tabular igneous intrusions: Implications for emplacement and growth. In C.Breitkreuz & S.Rocchi (Eds.), Physical geology of shallow magmatic systems: Dykes, sills and laccoliths (pp. 11–38). Springer International Publishing.
    [Google Scholar]
  22. Cukur, D., Horozal, S., Kim, D. C., Lee, G. H., Han, H. C., & Kang, M. H. (2010). The distribution and characteristics of the igneous complexes in the northern East China Sea Shelf Basin and their implications for hydrocarbon potential. Marine Geophysical Researches, 31, 299–313. https://doi.org/10.1007/s11001‐010‐9112‐y
    [Google Scholar]
  23. de Miranda, F. S., Vettorazzi, A. L., Cunha, P. R. C., Aragão, F. B., Michelon, D., Caldeira, J. L., Porsche, E., Martins, C., Ribeiro, R. B., Vilela, A. F., Corrêa, J. R., Silveira, L. S., & Andreola, K. (2018). Atypical igneous‐sedimentary petroleum systems of the Parnaíba Basin, Brazil: Seismic, well logs and cores. Geological Society, London, Special Publications, 472, 341–360. https://doi.org/10.1144/SP472.15
    [Google Scholar]
  24. de Saint‐Blanquat, M., Habert, G., Horsman, E., Morgan, S. S., Tikoff, B., Launeau, P., & Gleizes, G. (2006). Mechanisms and duration of non‐tectonically assisted magma emplacement in the upper crust: The black Mesa pluton, Henry Mountains, Utah. Tectonophysics, 428, 1–31. https://doi.org/10.1016/j.tecto.2006.07.014
    [Google Scholar]
  25. Delaney, P. T., & Pollard, D. D. (1981). Deformation of host rocks and flow of magma during growth of Minette dikes and breccia‐bearing intrusions near ship rock, New Mexico. U.S. Geological Survey Professional Paper, 1202 (p. 61).
  26. Dessanti, R. N. (1959). Geologia del Cerro Alquitran y alrededores, Departamento de San Rafael (Prov. de Mendoza). Museo de La Plata, Notas XIX, Geológia, 71, 301–325.
    [Google Scholar]
  27. Einsele, G., Gieskes, J. M., Curray, J., Moore, D. M., Aguayo, E., Aubry, M.‐P., Fornari, D. J., Guerrero, J., Kastner, M., Kelts, K., Lyle, M., Matoba, Y., Molina‐Cruz, A., Niemitz, J., Rueda, J., Saunders, A., Schrader, H., Simoneit, B., & Vacquier, V. (1980). Intrusion of basaltic sills into highly porous sediments, and resulting hydrothermal activity. Nature, 283, 441–445.
    [Google Scholar]
  28. Fjeldskaar, W., Helset, H. M., Johansen, H., Grunnaleite, I., & Horstad, I. (2008). Thermal modelling of magmatic intrusions in the Gjallar ridge, Norwegian Sea: Implications for vitrinite reflectance and hydrocarbon maturation. Basin Research, 20, 143–159. https://doi.org/10.1111/j.1365‐2117.2007.00347.x
    [Google Scholar]
  29. Gaete, A., Walter, T. R., Bredemeyer, S., Zimmer, M., Kujawa, C., Franco Marin, L., San Martin, J., & Bucarey Parra, C. (2020). Processes culminating in the 2015 phreatic explosion at lascar volcano, Chile, evidenced by multiparametric data. Natural Hazards and Earth System Sciences, 20, 377–397. https://doi.org/10.5194/nhess‐20‐377‐2020
    [Google Scholar]
  30. Galerne, C. Y., & Hasenclever, J. (2019). Distinct degassing pulses during magma invasion in the stratified Karoo Basin—New insights from hydrothermal fluid flow modeling. G3, 20, 2955–2984. https://doi.org/10.1029/2018GC008120
    [Google Scholar]
  31. Galland, O., de la Cal, H., Mescua, J., & Rabbel, O. (2022). 3‐dimensional trapdoor structure of laccolith‐induced doming and implications for laccolith emplacement, Pampa Amarilla, Mendoza Province, Argentina. Tectonophysics, 836, 229418. https://doi.org/10.1016/j.tecto.2022.229418
    [Google Scholar]
  32. Galland, O., Spacapan, J. B., Rabbel, O., Mair, K., Soto, F. G., Eiken, T., Schiuma, M., & Leanza, H. A. (2019). Structure, emplacement mechanism and magma‐flow significance of igneous fingers—Implications for sill emplacement in sedimentary basins. Journal of Structural Geology, 124, 120–135. https://doi.org/10.1016/j.jsg.2019.04.013
    [Google Scholar]
  33. Giambiagi, L., Bechis, F., García, V., & Clark, A. H. (2008). Temporal and spatial relationships of thick‐ and thin‐skinned deformation: A case study from the Malargüe fold‐and‐thrust belt, southern Central Andes. Tectonophysics, 459, 123–139. https://doi.org/10.1016/j.tecto.2007.11.069
    [Google Scholar]
  34. Giambiagi, L. B., Ghiglione, M., Cristallini, E., & Bottesi, G. (2009). Kinematic models of basement/cover interaction: Insights from the Malargüe fold and thrust belt, Mendoza, Argentina. Journal of Structural Geology, 31, 1443–1457. https://doi.org/10.1016/j.jsg.2009.10.006
    [Google Scholar]
  35. Gilbert, G. K. (1877). Report on the Geology of the Henry Mountains. Geographical and Geological Survey of the Rocky Mountains Region (p. 160).
  36. Goto, Y., & Tomiya, A. (2019). Internal structures and growth style of a quaternary subaerial Rhyodacite Cryptodome at Ogariyama, Usu volcano, Hokkaido, Japan. Frontiers, 7.
    [Google Scholar]
  37. Gu, L., Ren, Z., Wu, C., Zhao, M., & Qiu, J. (2002). Hydrocarbon reservoirs in a trachyte porphyry intrusion in the eastern depression of the Liaohe Basin, Northeast China. AAPG Bulletin, 86, 1821–1832. https://doi.org/10.1306/61EEDD8C‐173E‐11D7‐8645000102C1865D
    [Google Scholar]
  38. Hedenquist, J. W., & Lowenstern, J. B. (1994). The role of magmas in the formation of hydrothermal ore deposits. Nature, 370, 519–527. https://doi.org/10.1038/370519a0
    [Google Scholar]
  39. Holford, S. P., Schofield, N., & Reynolds, P. (2017). Subsurface fluid flow focused by buried volcanoes in sedimentary basins: Evidence from 3D seismic data, Bass Basin, offshore southeastern Australia. Interpretation, 5, SK39–SK50. https://doi.org/10.1190/INT‐2016‐0205.1
    [Google Scholar]
  40. Hornby, A. J., Lavallée, Y., Kendrick, J. E., De Angelis, S., Lamur, A., Lamb, O. D., Rietbrock, A., & Chigna, G. (2019). Brittle‐ductile deformation and tensile rupture of dome lava during inflation at Santiaguito, Guatemala. Journal of Geophysical Research, 124, 10107–10131. https://doi.org/10.1029/2018JB017253
    [Google Scholar]
  41. Horsman, E., Morgan, S. S., de Saint Blanquat, M., Habert, G., Nugent, A., Hunter, R. A., & Tikoff, B. (2009). Emplacement and assembly of shallow intrusions from multiple magma pulses, Henry Mountains, Utah. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100, 117–132. https://doi.org/10.1017/S1755691009016089
    [Google Scholar]
  42. Howell, J. A., Schwartz, E., Spalletti, L. A., & Veiga, G. D. (2005). The Neuquén Basin: An overview. In J. A.Howell, E.Schwartz, L. A.Spalletti, & G. D.Veiga (Eds.), The Neuquén Basin, Argentina: A case study in sequence stratigraphy and basin dynamics (Vol. 252, pp. 1–14). Geological Society, London, Special Publications.
    [Google Scholar]
  43. Ingebritsen, S. E., Geiger, S., Hurwitz, S., & Driesner, T. (2010). Numerical simulation of magmatic hydrothermal systems. Reviews of Geophysics, 48, RG1002.
    [Google Scholar]
  44. Iyer, K., Schmid, D. W., Planke, S., & Millett, J. (2017). Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate. Earth and Planetary Science Letters, 467, 30–42. https://doi.org/10.1016/j.epsl.2017.03.023
    [Google Scholar]
  45. Jerram, D. A., & Bryan, S. E. (2015). Plumbing systems of shallow level intrusive complexes. In C.Breitkreuz & S.Rocchi (Eds.), Physical geology of shallow magmatic systems—Dykes, sills and laccoliths (pp. 39–60). Springer Berlin Heidelberg.
    [Google Scholar]
  46. Kozlowski, E., Manceda, R., & Ramos, V. (1993). Estructura. In V. A.Ramos (Ed.), Geología y Recursos Naturales de Mendoza: 12 Congreso Geológico Argentina y 2 Congreso de Exploración de Hidrocarburos, Relatorio (pp. 235–256).
    [Google Scholar]
  47. Kroeger, K. F., Bischoff, A. P., & Nicol, A. (2022). Petroleum systems in a buried stratovolcano: Maturation, migration and leakage. Marine and Petroleum Geology, 141, 105682. https://doi.org/10.1016/j.marpetgeo.2022.105682
    [Google Scholar]
  48. Lanés, S., Giambiagi, L., Bechis, F., & Tunik, M. (2008). Late Triassic—Early Jurassic successions of the Atuel depocenter: Sequence stratigraphy and tectonic controls. Revista de la Asociación Geológica Argentina, 63, 534–548.
    [Google Scholar]
  49. Lavallée, Y., Benson, P. M., Heap, M. J., Hess, K. U., Flaws, A., Schillinger, B., Meredith, P. G., & Dingwell, D. B. (2013). Reconstructing magma failure and the degassing network of dome‐building eruptions. Geology, 41, 515–518. https://doi.org/10.1130/G33948.1
    [Google Scholar]
  50. Lavallée, Y., Meredith, P. G., Dingwell, D. B., Hess, K. U., Wassermann, J., Cordonnier, B., Gerik, A., & Kruhl, J. H. (2008). Seismogenic lavas and explosive eruption forecasting. Nature, 453, 507–510. https://doi.org/10.1038/nature06980
    [Google Scholar]
  51. Legarreta, L., & Uliana, M. A. (1991). Jurassic–Cretaceous marine oscillations and geometry of back‐arc basin fill, central Argentine Andes. In D. I.MacDonald (Ed.), Sedimentation, tectonics and Eustasy: Sea level changes at active plate margins (Vol. 12, pp. 429–450). International Association of Sedimentologists, Oxford, Special Publication.
    [Google Scholar]
  52. Legarreta, L., & Uliana, M. A. (1996). The Jurassic succession in west‐Central Argentina: Stratal patterns, sequences and paleogeographic evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 120, 303–330. https://doi.org/10.1016/0031‐0182(95)00042‐9
    [Google Scholar]
  53. Legarreta, L., & Villar, H. J. (2015). The Vaca Muerta formation (Late Jurassic—Early Cretaceous), Neuquén Basin, Argentina: Sequences, facies and source rock characteristics. In Unconventional resources technology conference (URTeC2015), Edition ed. Series.
    [Google Scholar]
  54. Magee, C., Stevenson, C. T. E., Ebmeier, S. K., Keir, D., Hammond, J. O. S., Gottsmann, J. H., Whaler, K. A., Schofield, N., Jackson, C. A. L., Petronis, M. S., O'Driscoll, B., Morgan, J., Cruden, A., Vollgger, S. A., Dering, G. M., Micklethwaite, S., & Jackson, M. D. (2018). Magma plumbing systems: A geophysical perspective. Journal of Petrology, 59, 1217–1251. https://doi.org/10.1093/petrology/egy064
    [Google Scholar]
  55. Manceda, R., & Figueroa, D. (1995). Inversion of the mesozoic Neuquén rift in the Malargüe fold and thrust belt, Mendoza, Argentina. In A. J.Tankard, R.Suárez, & H. J.Welsink (Eds.), Petroleum Basins of South America (Vol. 62, pp. 169–182). American Association of Petroleum Geologists Memoirs.
    [Google Scholar]
  56. Mark, N. J., Schofield, N., Pugliese, S., Watson, D., Holford, S., Muirhead, D., Brown, R., & Healy, D. (2018). Igneous intrusions in the Faroe Shetland basin and their implications for hydrocarbon exploration; new insights from well and seismic data. Marine and Petroleum Geology, 92, 733–753. https://doi.org/10.1016/j.marpetgeo.2017.12.005
    [Google Scholar]
  57. Mattsson, T., Burchardt, S., Almqvist, B. S. G., & Ronchin, E. (2018). Syn‐emplacement fracturing in the Sandfell laccolith, eastern Iceland—Implications for rhyolite intrusion growth and volcanic hazards. Frontiers, 6. https://doi.org/10.3389/feart.2018.00005
    [Google Scholar]
  58. Mescua, J. F., & Giambiagi, L. B. (2012). Fault inversion vs. new thrust generation: A case study in the Malargüe fold‐and‐thrust belt, Andes of Argentina. Journal of Structural Geology, 35, 51–63. https://doi.org/10.1016/j.jsg.2011.11.011
    [Google Scholar]
  59. Mescua, J. F., Giambiagi, L. B., Tassara, A., Gimenez, M., & Ramos, V. A. (2014). Influence of pre‐Andean history over Cenozoic foreland deformation: Structural styles in the Malargüe fold‐and‐thrust belt at 35°S, Andes of Argentina. Geosphere, 10, 585–609. https://doi.org/10.1130/GES00939.1
    [Google Scholar]
  60. Montanari, D., Bonini, M., Corti, G., Agostini, A., & Del Ventisette, C. (2017). Forced folding above shallow magma intrusions: Insights on supercritical fluid flow from analogue modelling. Journal of Volcanology and Geothermal Research, 345, 67–80. https://doi.org/10.1016/j.jvolgeores.2017.07.022
    [Google Scholar]
  61. Mordensky, S. P., Villeneuve, M. C., Kennedy, B. M., Heap, M. J., Gravley, D. M., Farquharson, J. I., & Reuschlé, T. (2018). Physical and mechanical property relationships of a shallow intrusion and volcanic host rock, pinnacle ridge, Mt. Ruapehu, New Zealand. Journal of Volcanology and Geothermal Research, 359, 1–20. https://doi.org/10.1016/j.jvolgeores.2018.05.020
    [Google Scholar]
  62. Nullo, F. E., Stephens, G. C., Otamendi, J., & Baldauf, P. E. (2002). El volcanismo del Tertiario superior del sur de Mendoza. Revista de la Asociación Geológica Argentina, 57, 119–132.
    [Google Scholar]
  63. Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide. Vol. 1: Biomarkers and isotopes in the environment and human history. Cambridge University Press.
    [Google Scholar]
  64. Peters, K. E., Walters, C. C., & Moldowan, J. M. (2007). The biomarker guide. Vol. 2: Biomarkers and isotopes in petroleum exploration and earth history. Cambridge University Press.
    [Google Scholar]
  65. Planke, S., Rabbel, O., Galland, O., Millett, J. M., Manton, B., Jerram, D. A., Palma, O. J., & Spacapan, J. B. (2018). Seismic imaging and petroleum implications of igneous intrusions in sedimentary basins constrained by outcrop analogues and seismic data from the Neuquén Basin and the NE Atlantic. In 10 Congreso de Exploración y Desarrollo de Hidrocarburos, book seismic imaging and petroleum implications of igneous intrusions in sedimentary basins constrained by outcrop analogues and seismic data from the Neuquén Basin and the NE Atlantic, Edition ed. Series (pp. 343–366). Instituto Argentina del Petroleo y del Gas.
    [Google Scholar]
  66. Rabbel, O., Palma, J. O., Mair, K., Galland, O., Spacapan, J. B., & Senger, K. (2021). Fracture networks in shale‐hosted igneous intrusions: Processes, distribution and implications for igneous petroleum systems. Journal of Structural Geology, 150, 104403. https://doi.org/10.1016/j.jsg.2021.104403
    [Google Scholar]
  67. Rateau, R., Schofield, N., & Smith, M. (2013). The potential role of igneous intrusions on hydrocarbon migration, west of Shetland. Petroleum Geoscience, 19, 259–272. https://doi.org/10.1144/petgeo2012‐035
    [Google Scholar]
  68. Rocchi, S., Westerman, D. S., Dini, A., & Farina, F. (2010). Intrusive sheets and sheeted intrusions at Elba Island, Italy. Geosphere, 6, 225–236. https://doi.org/10.1130/GES00551.1
    [Google Scholar]
  69. Rocchi, S., Westerman, D. S., Dini, A., Innocenti, F., & Tonarini, S. (2002). Two‐stage growth of laccoliths at Elba Island, Italy. Geology, 30, 983–986. https://doi.org/10.1130/0091‐7613(2002)030<0983:tsgola>2.0.co;2
    [Google Scholar]
  70. Rodriguez Monreal, F., Villar, H. J., Baudino, R., Delpino, D., & Zencich, S. (2009). Modeling an atypical petroleum system: A case study of hydrocarbon generation, migration and accumulation related to igneous intrusions in the Neuquén Basin, Argentina. Marine and Petroleum Geology, 26, 590–605. https://doi.org/10.1016/j.marpetgeo.2009.01.005
    [Google Scholar]
  71. Saubin, E., Kennedy, B., Tuffen, H., Villeneuve, M., Davidson, J., & Burchardt, S. (2019). Comparative field study of shallow rhyolite intrusions in Iceland: Emplacement mechanisms and impact on country rocks. Journal of Volcanology and Geothermal Research, 388, 106691. https://doi.org/10.1016/j.jvolgeores.2019.106691
    [Google Scholar]
  72. Schmiedel, T., Burchardt, S., Mattsson, T., Guldstrand, F., Galland, O., Palma, J. O., & Skogby, H. (2021). Emplacement and segment geometry of large, high‐viscosity magmatic sheets. Minerals, 11. https://doi.org/10.3390/min11101113
    [Google Scholar]
  73. Schmiedel, T., Galland, O., Haug, Ø. T., Dumazer, G., & Breitkreuz, C. (2019). Coulomb failure of Earth's brittle crust controls growth, emplacement and shapes of igneous sills, saucer‐shaped sills and laccoliths. Earth and Planetary Science Letters, 510, 161–172. https://doi.org/10.1016/j.epsl.2019.01.011
    [Google Scholar]
  74. Senger, K., Millett, J., Planke, S., Ogata, K., Eide, C. H., Festøy, M., Galland, O., & Jerram, D. A. (2017). Effects of igneous intrusions on the petroleum system: A review. First Break, 35, 47–56. https://doi.org/10.3997/1365‐2397.2017011
    [Google Scholar]
  75. Senger, K., Roy, S., Braathen, A., Buckley, S. J., Bælum, K., Gernigon, L., Mjelde, R., Noormets, R., Ogata, K., Olaussen, S., Planke, S., Ruud, B. O., & Tveranger, J. (2013). Geometries of doleritic intrusions in Central Spitsbergen, Svalbard: An integrated study of an onshore‐offshore magmatic province with implications for CO2 sequestration. Norwegian Journal of Geology, 93, 143–166.
    [Google Scholar]
  76. Spacapan, J. B., D'Odorico, A., Palma, O., Galland, O., Rojas Vera, E., Ruiz, R., Leanza, H. A., Medialdea, A., & Manceda, R. (2020). Igneous petroleum systems in the Malargüe fold and thrust belt, Río Grande Valley area, Neuquén Basin, Argentina. Marine and Petroleum Geology, 111, 309–331. https://doi.org/10.1016/j.marpetgeo.2019.08.038
    [Google Scholar]
  77. Spacapan, J. B., Palma, O., Galland, O., Manceda, R., Rocha, E., D'Odorico, A., & Leanza, H. A. (2018). Thermal impact of igneous sill complexes on organic‐rich formations and the generation of a petroleum system: Case study in the Neuquén Basin, Argentina. Marine and Petroleum Geology, 91, 519–531. https://doi.org/10.1016/j.marpetgeo.2018.01.018
    [Google Scholar]
  78. Sruoga, P., Etcheverría, M. P., Folguera, A., Repol, D., Zanettini, J. C. M., & Fauqué, L. E. (2005). Hoja Geológica 3569‐I Volcán Maipo. Servicio Geológico Minero Argentino.
    [Google Scholar]
  79. Stewart, A. L., & McPhie, J. (2003). Internal structure and emplacement of an upper Pliocene dacite cryptodome, Milos Island, Greece. Journal of Volcanology and Geothermal Research, 124, 129–148. https://doi.org/10.1016/S0377‐0273(03)00074‐X
    [Google Scholar]
  80. Svensen, H., Planke, S., Malthe‐Sorenssen, A., Jamtvelt, B., Myklebust, R., Eldem, T. R., & Rey, S. S. (2004). Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429, 542–545.
    [Google Scholar]
  81. Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F., Podladchikov, Y. Y., & Jamtveit, B. (2009). Siberian gas venting and the end‐Permian environmental crisis. Earth and Planetary Science Letters, 277, 490–500. https://doi.org/10.1016/j.epsl.2008.11.015
    [Google Scholar]
  82. Sydnes, M., Fjeldskaar, W., Løtveit, I. F., Grunnaleite, I., & Cardozo, N. (2018). The importance of sill thickness and timing of sill emplacement on hydrocarbon maturation. Marine and Petroleum Geology, 89, 500–514. https://doi.org/10.1016/j.marpetgeo.2017.10.017
    [Google Scholar]
  83. Westerman, D. S., Dini, A., Innocenti, F., & Rocchi, S. (2004). Rise and fall of a nested Christmas‐tree laccolith complex, Elba Island, Italy. Geological Society, London, Special Publications, 234, 195–213. https://doi.org/10.1144/gsl.sp.2004.234.01.12
    [Google Scholar]
  84. Westerman, D. S., Rocchi, S., Breitkreuz, C., Stevenson, C. T., & Wilson, P. I. R. (2018). Structures related to the emplacement of shallow‐level intrusions. In C.Breitkreuz & S.Rocchi (Eds.), Physical geology of shallow magmatic systems: Dykes, sills and laccoliths (pp. 83–118). Springer International Publishing.
    [Google Scholar]
  85. White, J. D. L., & Ross, P. S. (2011). Maar‐diatreme volcanoes: A review. Journal of Volcanology and Geothermal Research, 201, 1–29. https://doi.org/10.1016/j.jvolgeores.2011.01.010
    [Google Scholar]
  86. Wilson, P. I. R., McCaffrey, K. J. W., Wilson, R. W., Jarvis, I., & Holdsworth, R. E. (2016). Deformation structures associated with the trachyte mesa intrusion, Henry Mountains, Utah: Implications for sill and laccolith emplacement mechanisms. Journal of Structural Geology, 87, 30–46. https://doi.org/10.1016/j.jsg.2016.04.001
    [Google Scholar]
  87. Wilson, P. I. R., Wilson, R. W., Sanderson, D. J., Jarvis, I., & McCaffrey, K. J. W. (2021). Analysis of deformation bands associated with the trachyte mesa intrusion, Henry Mountains, Utah: Implications for reservoir connectivity and fluid flow around sill intrusions. Solid Earth, 12, 95–117. https://doi.org/10.5194/se‐12‐95‐2021
    [Google Scholar]
  88. Witte, J., Bonora, M., Carbone, C., & Oncken, O. (2012). Fracture evolution in oil‐producing sills of the Rio Grande Valley, northern Neuquén Basin, Argentina. AAPG Bulletin, 96, 1253–1277. https://doi.org/10.1306/10181110152
    [Google Scholar]
  89. Yagupsky, D. L., Cristallini, E. O., Fantín, J., Valcarce, G. Z., Bottesi, G., & Varadé, R. (2008). Oblique half‐graben inversion of the Mesozoic Neuquén rift in the Malargüe fold and Thrust Belt, Mendoza, Argentina: New insights from analogue models. Journal of Structural Geology, 30, 839–853. https://doi.org/10.1016/j.jsg.2008.03.007
    [Google Scholar]
/content/journals/10.1111/bre.12782
Loading
/content/journals/10.1111/bre.12782
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error