1887
Volume 35, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

Dip‐view photograph of the Lower Eocene platform‐to‐basin transition showing clinoformal prograding geometries, stratal relationships, and depositional cycles.

, Abstract

Excellent cliff exposures in the Khush‐Ab and Chenareh anticlines (Zagros Foreland Basin, SW Iran) offer a good opportunity to document stratal geometries, paleofacies heterogeneity, depositional architecture and depositional cycles of the Lower Eocene sedimentary basin system. These unique outcrops containing six logged sections have been studied across a large‐scale transect, covering ca. 10 km of continental (Kashkan Formation), carbonate‐dominated platforms (Taleh‐Zang Formation) and submarine fan to basin‐floor settings (Amiran and Pabdeh formations). Field observations of the bedding geometries revealed a set of NE–SW oriented carbonate ramp clinoforms (clinoformal units 1–4) with sigmoidal cross‐sectional shapes and an internal fore‐stepping architecture. Based on detailed facies analysis, six facies associations (FA) were identified (FA.I to FA.VI), which are interpreted to have been deposited laterally in the continental, proximal to distal and deep‐water settings of a distally steepened carbonate ramp. According to the stratal stacking pattern, bounding surface, facies architecture and internal makeup of carbonate clinoforms, four H‐F‐cycles (cycle I–IV) corresponding to a lower hierarchical rank (fourth‐order cycle) were recognized and nested within the regressive stacking pattern (HST) of a higher hierarchical rank (third‐order sequence). These H‐F‐cycles are arranged in three segments (bottomset, foreset and topset) of each clinoformal unit. Higher rank transgressive blocks (TST) discriminated each clinoformal unit by up‐deepening sets of the H‐F‐cycle V. In total, five third‐order depositional sequences were identified. The sequence, stratigraphic framework and internal makeup of this carbonate platform indicate that these carbonate sloping successions are the type of accretionary carbonate ramp clinoforms that display an ascending ramp‐slope break trajectory. Evolutionary episodes of biogenic communities, climatic change, local tectonic movements, physical processes (e.g. waves and storms) and water depth gradient are major forcing parameters that controlled the carbonate factory and depositional geometry of this Lower Eocene succession; however, carbonate‐producing organisms and eustatic sea‐level fluctuations played the first role, and local tectonic movements in response to tectonic activities of the Zagros Foreland Basin played the second role. As a result, Taleh‐Zang carbonate platforms are rich in diverse assemblages of LBFs without fragments of coral and red algae, which appear to be a consequence of a hothouse state that diminishes the global thermal gradient, weakens pycnoclines and thereby limits the turbulence.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12790
2023-11-12
2025-05-24
Loading full text...

Full text loading...

References

  1. Adabi, M., Zohdi, A., Ghabeishavi, A., & Amiri‐Bakhtiyar, H. (2008). Applications of nummulitids and other larger benthic foraminifera in depositional environment and sequence stratigraphy: An example from the Eocene deposits in Zagros Basin, SW Iran. Facies, 54(4), 499–512.
    [Google Scholar]
  2. Adams, E. W., & Schlager, W. (2000). Basic types of submarine slope curvature. Journal of Sedimentary Research, 70(4), 814–828.
    [Google Scholar]
  3. Allahkarampour Dill, M., Vaziri‐Moghaddam, H., Seyrafian, A., & Behdad, A. (2018). Oligo‐Miocene carbonate platform evolution in the northern margin of the Asmari intra‐shelf basin, SW Iran. Marine and Petroleum Geology, 92, 437–461.
    [Google Scholar]
  4. Babazadeh, S. A. (2005). Presence of Cuvillierina (foraminifera) and its different species in eastern Iran. Revue de Paléobiologie, 24(2), 781–788.
    [Google Scholar]
  5. Babazadeh, S. A. (2006). A new species, Cuvillierina courmae n.sp. (foraminifera), from the Lower Eocene (Cuisian) of the Gazik area (eastern Iran). Geodiversitas, 28(2), 189–197.
    [Google Scholar]
  6. Bagherpour, B., & Vaziri, M. R. (2012). Facies, paleoenvironment, carbonate platform and facies changes across Paleocene Eocene of the Taleh Zang Formation in the Zagros Basin, SW‐Iran. Historical Biology, 24(2), 121–142.
    [Google Scholar]
  7. Bassi, D., Hottinger, L., & Nebelsick, J. H. (2007). Larger foraminifera from the upper Oligocene of the venetian area, North‐East Italy. Palaeontology, 50(4), 845–868.
    [Google Scholar]
  8. Bayet‐Goll, A., De Carvalho, C. N., Moussavi‐Harami, R., Mahboubi, A., & Nasiri, Y. (2014). Depositional environments and ichnology of the deep‐marine succession of the Amiran Formation (Upper Maastrichtian–Paleocene), Lurestan Province, Zagros Fold–Thrust Belt, Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 401, 13–42.
    [Google Scholar]
  9. Beavington‐Penney, S. J., & Racey, A. (2004). Ecology of extant nummulitids and other larger benthic foraminifera: Applications in palaeoenvironmental analysis. Earth‐Science Reviews, 67(3–4), 219–265.
    [Google Scholar]
  10. Beavington‐Penney, S. J., Wright, V. P., & Racey, A. (2006). The Middle Eocene Seeb formation of Oman: An investigation of acyclicity, stratigraphic completeness, and accumulation rates in shallow marine carbonate settings. Journal of Sedimentary Research, 76(10), 1137–1161.
    [Google Scholar]
  11. Berberian, M., & King, G. C. P. (1981). Towards the paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2), 210–265.
    [Google Scholar]
  12. Brandano, M., & Corda, L. (2002). Nutrients, sea level and tectonics: Constrains for the facies architecture of a Miocene carbonate ramp in Central Italy. Terra Nova, 14, 257–262.
    [Google Scholar]
  13. Brandano, M., Frezza, V., Tomassetti, L., & Cuffaro, M. (2009). Heterozoan carbonates in oligotrophic tropical waters: The Attard member of the lower coralline limestone formation (Upper Oligocene, Malta). Palaeogeography, Palaeoclimatology, Palaeoecology, 274(1–2), 54–63.
    [Google Scholar]
  14. Brandano, M., Frezza, V., Tomassetti, L., Pedley, M., & Matteucci, R. (2009). Facies analysis and palaeoenvironmental interpretation of the Late Oligocene Attard Member (Lower Coralline Limestone Formation), Malta. Sedimentology, 56(4), 1138–1158.
    [Google Scholar]
  15. Bullimore, S., Henriksen, S., Liestol, F. M., & Helland‐Hansen, W. (2005). Clinoform stacking patterns, shelf‐edge trajectories and facies associations in tertiary coastal deltas, offshore Norway: Implications for the prediction of lithology in prograding systems. Norwegian Journal of Geology, 85(1–2), 169–187.
    [Google Scholar]
  16. Buxton, M. W. N., & Pedley, H. M. (1989). A standardized model for Tethyan Tertiary carbonate ramps. Journal of the Geological Society, 146, 746–748.
    [Google Scholar]
  17. Catuneanu, O. (2006). Principles of sequence stratigraphy, Developments in sedimentology, vol. 58. Elsevier, 375.
    [Google Scholar]
  18. Catuneanu, O. (2019). Model‐independent sequence stratigraphy. Earth‐Science Reviews, 188, 312–388.
    [Google Scholar]
  19. Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., Fielding, C. R., Fisher, W. L., Galloway, W. E., Gibling, M. R., Giles, K. A., Holbrook, J. M., Jordan, R., Kendall, C. G. S. C., Macurda, B., Martinsen, O. J., Miall, A. D., Neal, J. E., Nummedal, D., … Winker, C. (2009). Towards the standardization of sequence stratigraphy. Earth‐Science Reviews, 92(1–2), 1–33.
    [Google Scholar]
  20. Catuneanu, O., Galloway, W. E., Kendall, C. G. S.t. C., Miall, A. D., Posamentier, H. W., Strasser, A., & Tucker, M. E. (2011). Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, 44(3), 173–245.
    [Google Scholar]
  21. Charvin, K., Hampson, G. J., Gallagher, K.l., & Labourdette, R. (2010). Intra‐parasequence architecture of an interpreted asymmetrical wave‐dominated delta. Sedimentology, 57(3), 760–785.
    [Google Scholar]
  22. Charvin, K., Hampson, G. J., Gallagher, K. L., Storms, J. E. A., & Labourdette, R. (2011). Characterization of controls on high‐resolution stratigraphic architecture in wave‐dominated shoreface–shelf parasequences using inverse numerical modeling. Journal of Sedimentary Research, 81(8), 562–578.
    [Google Scholar]
  23. Corda, L., & Brandano, M. (2003). Aphotic zone carbonate production on a Miocene ramp, Central Apennines, Italy. Sedimentary Geology, 161, 55–70.
    [Google Scholar]
  24. Driscoll, N. W., & Karner, G. D. (1999). Three‐dimensional quantitative modeling of clinoform development. Marine Geology, 154(1–4), 383–398.
    [Google Scholar]
  25. Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. In W. E.Ham (Ed.), Classification of carbonate rocks (pp. 108–121). AAPG Mem.
    [Google Scholar]
  26. Falcon, N. L. (1969). Problems of the relationship between surface structure and deep displacements illustrated by the Zagros range. Geological Society, London, Special Publications, 3(1), 9–21.
    [Google Scholar]
  27. Gilbert, G. K. (1885). The topographic features of lake shores. Annual Report US Geological Survey, 5, 75–123.
    [Google Scholar]
  28. Gilbert, G. (1890). Lake Bonneville: United States Geological Survey (pp. 1–438). US Government Printing Office.
    [Google Scholar]
  29. Hallock, P. (1985). Why are larger foraminifera large?Paleobiology, 11(2), 195–208.
    [Google Scholar]
  30. Hallock, P. (2000). Symbiont‐bearing foraminifera: Harbingers of global change?Micropaleontology, 46(1), 95–104.
    [Google Scholar]
  31. Hallock, P. (2005). Global change and modern coral reefs: New opportunities to understand shallow‐water carbonate depositional processes. Sedimentary Geology, 175(1–4), 19–33.
    [Google Scholar]
  32. Helland‐Hansen, W., & Hampson, G. J. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21(5), 454–483.
    [Google Scholar]
  33. Hoentzsch, S., Scheibner, C., Brock, J. P., & Kuss, J. (2013). Circum‐Tethyan carbonate platform evolution during the Palaeogene: The Prebetic platform as a test for climatically controlled facies shifts. Turkish Journal of Earth Sciences, 22(6), 891–918.
    [Google Scholar]
  34. Homke, S., Vergés, J., Serra‐Kiel, J., Bernaola, G., Sharp, I., Garcés, M., Montero‐Verdú, I., Karpuz, R., & Goodarzi, M. H. (2009). Late Cretaceous–Paleocene formation of the proto–Zagros foreland basin, Lurestan Province, SW Iran. Geological Society of America Bulletin, 121, 963–978.
    [Google Scholar]
  35. Hottinger, L. (2007). Revision of the foraminiferal genus Globoreticulina Rahaghi, 1978, and of its associated fauna of larger foraminifera from the late Middle Eocene of Iran. Carnets de Géologie, CG2007(A06), 1–51.
    [Google Scholar]
  36. James, G. A., & Wynd, J. G. (1965). Stratigraphic nomenclature of Iranian oil consortium agreement area. AAPG Bulletin, 49(12), 2182–2245.
    [Google Scholar]
  37. James, N. P., & Borch, C. C.d. (1991). Carbonate shelf edge off southern Australia: A prograding open‐platform margin. Geology, 19(10), 1005–1008.
    [Google Scholar]
  38. Janson, X., Van Buchem, F. S. P., Dromart, G., Eichenseer, H. T., Dellamonica, X., Boichard, R., Bonnaffe, F., & Eberli, G. (2010). Architecture and facies differentiation within a Middle Miocene carbonate platform, Ermenek, Mut Basin, southern Turkey. Geological Society, London, Special Publications, 329(1), 265–290.
    [Google Scholar]
  39. Johannessen, E. P., & R. J. S. (2005). Shelf‐margin clinoforms and prediction of Deepwater sands. Basin Research, 17(4), 521–550.
    [Google Scholar]
  40. Jorry, S. (2004). The Eocene Nummulite carbonates (Central Tunisia and NE Libya): Sedimentology, depositional environments, and application to oil reservoirs. (PhD Thesis), Université de Genève http://archimer.ifremer.fr/doc/00091/20198/
  41. Jorry, S., Hasler, C.‐A., & Davaud, E. (2006). Hydrodynamic behaviour of nummulites: Implications for depositional models. Facies, 52(2), 221–235.
    [Google Scholar]
  42. Liu, J., Saito, Y., Wang, H., Yang, Z., & Nakashima, R. (2007). Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea. Marine Geology, 236(3–4), 165–187.
    [Google Scholar]
  43. Løseth, T. M., Steel, R. J., Crabaugh, J. P., & Schellpeper, M. (2006). Interplay between shoreline migration paths, architecture and pinchout distance for siliciclastic shoreline tongues: Evidence from the rock record. Sedimentology, 53(4), 735–767.
    [Google Scholar]
  44. Martín‐Martín, M., Guerrera, F., Tosquella, J., & Tramontana, M. (2020). Paleocene‐lower Eocene carbonate platforms of westernmost Tethys. Sedimentary Geology, 404, 105674.
    [Google Scholar]
  45. Martín‐Martín, M., Guerrera, F., Tosquella, J., & Tramontana, M. (2021). Middle Eocene carbonate platforms of the westernmost Tethys. Sedimentary Geology, 415, 105861.
    [Google Scholar]
  46. Mateu‐Vicens, G., Hallock, P., & Brandano, M. (2008). A depositional model and Paleoecological reconstruction of the lower Tortonian distally steepened ramp of Menorca (Balearic Islands, Spain). Palaios, 23(7), 465–481.
    [Google Scholar]
  47. Mateu‐Vicens, G., Pomar, L., & FerrÀNdez‐CaÑAdell, C. (2012). Nummulitic banks in the upper Lutetian ‘Buil level’, Ainsa Basin, south central Pyrenean zone: The impact of internal waves. Sedimentology, 59(2), 527–552.
    [Google Scholar]
  48. Mitchum, R. M., Vail, P. R., & Thompson, S. (1977). Seismic stratigraphy and global changes of sea level, part 2: The depositional sequence as a basic unit for stratigraphic analysis. In C. E.Payton (Ed.), Application of seismic reflection configuration to stratigraphic interpretation, seismic stratigraphy—Applications to hydrocarbon exploration (Vol. 26, pp. 53–62). AAPG Memorial.
    [Google Scholar]
  49. Morsilli, M., Bosellini, F. R., Pomar, L., Hallock, P., Aurell, M., & Papazzoni, C. A. (2012). Mesophotic coral buildups in a prodelta setting (Late Eocene, southern Pyrenees, Spain): A mixed carbonate–siliciclastic system. Sedimentology, 59(3), 766–794.
    [Google Scholar]
  50. Motiei, H. (1994). Stratigraphy of Zagros (in Farsi). Geological Survey of Iran.
    [Google Scholar]
  51. Motiei, H. (1995). Petroleum geology of Zagros (in Farsi) (p. 1). Geological Survey of Iran, Tehran.
    [Google Scholar]
  52. Neal, J., & Abreu, V. (2009). Sequence stratigraphy hierarchy and the accommodation succession method. Geology, 37(9), 779–782.
    [Google Scholar]
  53. Octavian, C. (2017). Sequence stratigraphy: Guidelines for a standard methodology.
  54. Patruno, S., Hampson, G. J., Jackson, C. A.‐L., & Dreyer, T. (2015). Clinoform geometry, geomorphology, facies character and stratigraphic architecture of a sand‐rich subaqueous delta: Jurassic Sognefjord formation, offshore Norway. Sedimentology, 62(1), 350–388.
    [Google Scholar]
  55. Patruno, S., Hampson, G. J., Jackson, C. A.‐L., & Whipp, P. S. (2015). Quantitative progradation dynamics and stratigraphic architecture of ancient shallow‐marine clinoform sets: A new method and its application to the Upper Jurassic Sognefjord Formation, Troll Field, Offshore Norway. Basin Research, 27(4), 412–452.
    [Google Scholar]
  56. Patruno, S., & Helland‐Hansen, W. (2018). Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth‐Science Reviews, 185, 202–233.
    [Google Scholar]
  57. Payros, A., Pujalte, V., Tosquella, J., & Orue‐Etxebarria, X. (2010). The Eocene storm‐dominated foralgal ramp of the western Pyrenees (Urbasa‐Andia Formation): An analogue of future shallow‐marine carbonate systems?Sedimentary Geology, 228(3–4), 184–204.
    [Google Scholar]
  58. Pellegrini, C., Maselli, V., Gamberi, F., Asioli, A., Bohacs, K. M., Drexler, T. M., & Trincardi, F. (2017). How to make a 350‐m‐thick lowstand systems tract in 17,000 years: The Late Pleistocene Po River (Italy) lowstand wedge. Geology, 45(4), 327–330.
    [Google Scholar]
  59. Pellegrini, C., Patruno, S., Helland‐Hansen, W., Steel, R. J., & Trincardi, F. (2020). Clinoforms and clinothems: Fundamental elements of basin infill. Basin Research, 32(2), 187–205.
    [Google Scholar]
  60. Pomar, L. (2001a). Ecological control of sedimentary accommodation: Evolution from a carbonate ramp to rimmed shelf, Upper Miocene, Balearic Islands. Palaeogeography, Palaeoclimatology, Palaeoecology, 175(1–4), 249–272.
    [Google Scholar]
  61. Pomar, L. (2001b). Types of carbonate platforms: A genetic approach. Basin Research, 13, 313–334.
    [Google Scholar]
  62. Pomar, L. (2020). Carbonate systems. In Regional geology and tectonics (pp. 235–311). Elsevier.
    [Google Scholar]
  63. Pomar, L., Baceta, J. I., Hallock, P., Mateu‐Vicens, G., & Basso, D. (2017). Reef building and carbonate production modes in the west‐central Tethys during the Cenozoic. Marine and Petroleum Geology, 83, 261–304.
    [Google Scholar]
  64. Pomar, L., Bassant, P., Brandano, M., Ruchonnet, C., & Janson, X. (2012). Impact of carbonate producing biota on platform architecture: Insights from Miocene examples of the Mediterranean region. Earth‐Science Reviews, 113(3–4), 186–211.
    [Google Scholar]
  65. Pomar, L., & Hallock, P. (2008). Carbonate factories: A conundrum in sedimentary geology. Earth‐Science Reviews, 87, 134–169.
    [Google Scholar]
  66. Pomar, L., & Haq, B. U. (2016). Decoding depositional sequences in carbonate systems: Concepts vs experience. Global and Planetary Change, 146, 190–225.
    [Google Scholar]
  67. Pomar, L., Mateu‐Vicens, G., Morsilli, M., & Brandano, M. (2014). Carbonate ramp evolution during the Late Oligocene (Chattian), Salento Peninsula, southern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 404, 109–132.
    [Google Scholar]
  68. Ponce, J. J., Olivero, E. B., & Martinioni, D. R. (2008). Upper Oligocene–Miocene clinoforms of the foreland Austral Basin of Tierra del Fuego, Argentina: Stratigraphy, depositional sequences and architecture of the foredeep deposits. Journal of South American Earth Sciences, 26(1), 36–54.
    [Google Scholar]
  69. Porebski, S. J., & Steel, R. J. (2003). Shelf‐margin deltas: Their stratigraphic significance and relation to Deepwater sands. Earth‐Science Reviews, 62(3–4), 283–326.
    [Google Scholar]
  70. Puga‐bernabéu, A., martín, J. M., Braga, J. C., & Sánchez‐almazo, I. M. (2010). Downslope‐migrating sandwaves and platform‐margin clinoforms in a current‐dominated, distally steepened temperate‐carbonate ramp (Guadix Basin, Southern Spain). Sedimentology, 57(2), 293–311.
    [Google Scholar]
  71. Quiquerez, A., & Dromart, G. (2006). Environmental control on granular clinoforms of ancient carbonate shelves. Geological Magazine, 143(3), 343–365.
    [Google Scholar]
  72. Racey, A. (2001). A review of Eocene nummulite accumulations: Structure, formation and reservoir potential. Journal of Petroleum Geology, 24(1), 79–100.
    [Google Scholar]
  73. Reeve, M. T., Jackson, C. A.‐L., Bell, R. E., Magee, C., & Bastow, I. D. (2016). The stratigraphic record of prebreakup geodynamics: Evidence from the Barrow Delta, Offshore Northwest Australia. Tectonics, 35(8), 1935–1968.
    [Google Scholar]
  74. Rich, J. L. (1951). Three critical environments of deposition, and criteria for recognition of rocks deposited in each of them. Geological Society of America Bulletin, 62(1), 1–20.
    [Google Scholar]
  75. Romero, J., Caus, E., & Rosell, J. (2002). A model for the palaeoenvironmental distribution of larger foraminifera based on late Middle Eocene deposits on the margin of the south Pyrenean basin (NE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 179(1–2), 43–56.
    [Google Scholar]
  76. Sarkar, S. (2017). Microfacies analysis of larger benthic foraminifera‐dominated Middle Eocene carbonates: A palaeoenvironmental case study from Meghalaya, NE India (Eastern Tethys). Arabian Journal of Geosciences, 10(5), 121.
    [Google Scholar]
  77. Saura, E., Verges, J., Homke, S., Blanc, E., Serra‐Kiel, J., Bernaola, G., Casciello, E., Fernandez, N., Romaire, I., Casini, G., Embry, J. C., Sharp, I. R., & Hunt, D. W. (2011). Basin architecture and growth folding of the NW Zagros early foreland basin during the Late Cretaceous and early Tertiary. Journal of the Geological Society, 168(1), 235–250.
    [Google Scholar]
  78. Scheibner, C., Rasser, M. W., & Mutti, M. (2007). The Campo section (Pyrenees, Spain) revisited: Implications for changing benthic carbonate assemblages across the Paleocene‐Eocene boundary. Palaeogeography Palaeoclimatology Palaeoecology, 248(1–2), 145–168.
    [Google Scholar]
  79. Scheibner, C., Reijmer, J. J. G., Marzouk, A. M., Speijer, R. P., & Kuss, J. (2003). From platform to basin: The evolution of a Paleocene carbonate margin (Eastern Desert, Egypt). International Journal of Earth Sciences, 92(4), 624–640.
    [Google Scholar]
  80. Scheibner, C., & Speijer, R. P. (2008). Late Paleocene–early Eocene Tethyan carbonate platform evolution—A response to long‐ and short‐term paleoclimatic change. Earth‐Science Reviews, 90(3–4), 71–102.
    [Google Scholar]
  81. Scheibner, C., & Speijer, R. P. (2009). Recalibration of the Tethyan shallow‐benthic zonation across the Paleocene‐Eocene boundary: The Egyptian record. Geologica Acta, 7(1–2), 195–214.
    [Google Scholar]
  82. Schlager, W. (2005). Carbonate sedimentology and sequence stratigraphy (p. 200). SEPM Concepts in Sedimentology and Paleontology.
    [Google Scholar]
  83. Shabafrooz, R., Mahboubi, A., Vaziri‐Moghaddam, H., Ghabeishavi, A., & Moussavi‐Harami, R. (2015). Depositional architecture and sequence stratigraphy of the Oligo–Miocene Asmari platform; Southeastern Izeh Zone, Zagros Basin, Iran. Facies, 61, 1–32.
    [Google Scholar]
  84. Sherkati, S., & Letouzey, J. (2004). Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. Marine and Petroleum Geology, 21(5), 535–554.
    [Google Scholar]
  85. Sherkati, S., Letouzey, J., & Lamotte, D. F. D. (2006). Central Zagros fold‐thrust belt (Iran): New insights from seismic data, field observation, and sandbox modeling. Tectonics, 25, 1–27.
    [Google Scholar]
  86. Snedden, J., & Liu, C. (2010). A compilation of Phanerozoic Sea‐level change, coastal onlaps and recommended sequence designations. Search and Discovery Article, 40594(3), 1–2.
    [Google Scholar]
  87. Steel, R., & Olsen, T. (2002). Clinoforms, clinoform trajectories and Deepwater sands, sequence‐stratigraphic models for exploration and production: Evolving methodology, emerging models and application histories: Gulf Coast Section SEPM 22nd Research Conference. Houston, TX, pp. 367–381.
  88. Steel, R., Olsen, T., Armentrout, J. M., & Rosen, N. C. (2002). Clinoforms, clinoform trajectories and deepwater sands, sequence stratigraphic models for exploration and production: Evolving methodology, emerging models and application histories. SEPM Society for Sedimentary Geology.
    [Google Scholar]
  89. Stocklin, J. (1968). Structural history and tectonics of Iran. A review. American Association of Petroleum Geologists Bulletin, 52, 1229–1258.
    [Google Scholar]
  90. Tella, T. O., Winterleitner, G., Morsilli, M., & Mutti, M. (2022). Testing sea‐level and carbonate production effects on stratal architecture of a distally steepened carbonate ramp (Upper Miocene, Menorca): A 3D forward modelling approach. Sedimentary Geology, 441, 106267.
    [Google Scholar]
  91. Tosquella, J., Martín‐Martín, M., Guerrera, F., Serrano, F., & Tramontana, M. (2022). The Eocene carbonate platform of the central‐western Malaguides (internal Betic zone, S Spain) and its meaning for the Cenozoic paleogeography of the westermost Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 589, 110840.
    [Google Scholar]
  92. van Buchem, F. S. P., Allan, T. L., Laursen, G. V., Lotfpour, M., Moallemi, A., Monibi, S., Motiei, H., Pickard, N. A. H., Tahmasbi, A. R., Vedrenne, V., & Vincent, B. (2010). Regional stratigraphic architecture and reservoir types of the Oligo‐Miocene deposits in the Dezful Embayment (Asmari and Pabdeh formations) SW Iran. Geological Society, London, Special Publications, 329(1), 219–263.
    [Google Scholar]
  93. van Wagoner, J. C., Mitchum, R. M., Campion, K. M., & Rahmanian, V. D. (1990). Siliciclastic sequence stratigraphy in well logs, core, and outcrops: Concepts for high‐resolution correlation of time and facies (pp. 1–55). American Association of Petroleum Geologists Methods in Exploration Series, vol. 7.
    [Google Scholar]
  94. Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S., Bohaty, S. M., De Vleeschouwer, D., & Florindo, F. (2020). An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science, 369(6509), 1383–1387.
    [Google Scholar]
  95. White, M. (1997). A new species of Somalina (Somalina hottingeri) with partially vacuolate lateral walls from the Middle Eocene of Oman. Journal of Micropalaeontology, 16(2), 131–135.
    [Google Scholar]
  96. Wilson, J. L. (1975). Carbonate facies in geologic history (p. 471). Springer‐Verlag.
    [Google Scholar]
  97. Wynd, J. G. (1965). Biofacies of the Iranian consortium‐agreement area. Iranian Offshore Oil Company.
    [Google Scholar]
  98. Zachos, J., Pagani, H., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693.
    [Google Scholar]
  99. Zecchin, M. (2010). Towards the standardization of sequence stratigraphy: Is the parasequence concept to be redefined or abandoned?Earth‐Science Reviews, 102, 117–119.
    [Google Scholar]
/content/journals/10.1111/bre.12790
Loading
/content/journals/10.1111/bre.12790
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error