1887
Volume 35, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

Salt structures can be used as an archive for tectonic and depositional processes as all salt structures respond distinctively. Few salt tectonic studies have investigated the evolution of multi‐stage salt structures, nevertheless, no previous study had systematically identified, mapped, nor classified, the evolution of multi‐stage salt structures in a regional study. Decades of hydrocarbon exploration and the heavily dense 3D seismic data available, make the Southern North Sea one of the best natural laboratories to investigate the evolution of salt structures. The Southern North Sea salt basin is a Late Permian Zechstein salt mega‐basin containing a myriad of salt structures. The complex tectonic evolution of the Southern North Sea created diverse Mesozoic structural sub‐basins with different tectonostratigraphic evolutions. We defined a nomenclature, linked to the mega‐stratigraphic sequences, for the classification of salt structures. We used a Two‐Way‐Travel‐Time 3D seismic reflection dataset and time‐thickness variations around salt structures to systematically analyse the evolution of salt structures across the diverse structural sub‐basins of the Southern North Sea. Multi‐stage salt diapirs were triggered halokinetically in the Early Triassic and are linked to regional palaeo‐depocentres controlled by the sub‐Zechstein structural configuration. Multi‐stage salt diapirs in the different sub‐basins evolved through three different regional phases and up to five distinctive local stages. The most complex salt diapirs developed in the Central Graben, Sole Pit High and Silver Pit Basin, where multi‐stage salt diapirs showed 4–5 local stages of salt diapirism. The multi‐stage evolution of salt structures should be thoroughly investigated to reduce risks and uncertainties in the energy sector and net zero projects, such as in carbon capturing and storage projects, and energy storage in man‐made salt caverns.

,

Visualization of the relationship between regional tectonic phases and local stages of salt diapirism with the chrono‐halokinetic stacks in the Southern North Sea salt basin.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12791
2023-11-12
2025-05-19
Loading full text...

Full text loading...

/deliver/fulltext/bre/35/6/bre12791.html?itemId=/content/journals/10.1111/bre.12791&mimeType=html&fmt=ahah

References

  1. Alberts, M., & Underhill, J. R. (1991). The effect of Tertiary structuration on Permian gas prospectivity, Cleaver Bank Area, Southern North Sea. In A. M.Spencer (Ed.), Generation, accumulation and production of Europes Hydrocarbons (pp. 161–173). Special Publication of the European Association of Petroleum Geoscientists. No. 1.
    [Google Scholar]
  2. Arthur, T. J. (1993). Mesozoic structural evolution of the UK Southern North Sea: Insights from analysis of fault systems. In J. R.Parker (Ed.), Petroleum Geology of Northwest Europe: Proceedings of the 4th conference (pp. 1269–1279). Geological Society, London.
    [Google Scholar]
  3. Baldschuhn, R., Binot, F., Fleig, S., & Kockel, F. (2001). Geotektonischer Atlas von Nordwest‐Deutschland und dem deutschen Nordsee‐Sektor. (Vol. 153, pp. 3–95). Geologisches Jahrbuch.
    [Google Scholar]
  4. Bally, A. W. (1981). Thoughts on the tectonics of folded belts. In K. R.McClay & N. J.Price (Eds.), Thrust and nappe tectonics (Vol. 9, pp. 13–32). Geological Society, Special Publication.
    [Google Scholar]
  5. Cameron, T. D. J., Crosby, A., Balson, P. S., Jeffrey, D. H., Lott, G. K., Bulat, J., & Harrison, D. J. (1992). United Kingdom offshore regional report: The geology of the southern North Sea. HMSO for the British Geological Survey.
    [Google Scholar]
  6. Davison, I. (2007). Geology and tectonics of the South Atlantic Brazilian salt basins. Geological Society, London, Special Publications, 272(1), 345–359.
    [Google Scholar]
  7. Davison, I., Alsop, G. I., Evans, N. G., & Safariscz, M. (2000). Overburden deformation patterns and mechanisms of salt diapirs penetration in Central Graben, North Sea. Marine and Petroleum Geology, 17, 601–618.
    [Google Scholar]
  8. de Jager, J. (2003). Inverted basins in the Netherlands, similarities and differences. Netherlands Journal of Geosciences—Geologie en Mijnbouw, 82(4), 339–349.
    [Google Scholar]
  9. de Lugt, I. R., van Wees, J. D., & Wong, T. E. (2003). The tectonic evolution of the southern Dutch North Sea during the Palaeogene: Basin inversion in distinct pulses. Tectonophysics, 373(1–4), 141–159.
    [Google Scholar]
  10. Dooley, T. P., Jackson, M. P. A., & Hudec, M. R. (2007). Initiation and growth of salt‐based thrust belts on passive margins: Results from physical models. Basin Research, 19(1), 165–177.
    [Google Scholar]
  11. Doornenbal, H., & Stevenson, A. (2010). Petroleum geological atlas of the Southern Permian Basin Area. EAGE Publications.
    [Google Scholar]
  12. Duin, E. J. T., Doornenbal, J. C., Rijkers, R. H. B., Verbeek, J. W., & Wong, T. E. (2006). Subsurface of the Netherlands—Results of recent onshore and offshore mapping. Netherlands Journal of Geosciences, 85(4), 245–276.
    [Google Scholar]
  13. Evans, D., Graham, C., Armour, A., & Bathurst, P. (2003). The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea.
    [Google Scholar]
  14. Gast, R. E., Dusar, M., Breitkreuz, C., Gaupp, R., Schneider, J. W., Stemmerik, L., Geluk, M. C., Geißler, M., Kiersnowski, J., Glennie, K. W., Kabel, S., & Jones, N. S. (2010). Rotliegend. In J. C.Doornenbal & A. G.Stevenson (Eds.), Petroleum Geological Atlas of the Southern Permian Basin Area (pp. 101–121). EAGE Publications B.V.
    [Google Scholar]
  15. Geldart, L. P., & Sheriff, R. E. (2004). Chapter 5, Problems in exploration seismology and their solutions (pp. 141–180). SEG.
    [Google Scholar]
  16. Geluk, M. C. (1999). Late Permian (Zechstein) rifting in the Netherlands: Models and implications for petroleum geology. Petroleum Geoscience, 5, 189–199.
    [Google Scholar]
  17. Geluk, M. C. (2005). Stratigraphy and tectonics of Permo‐Triassic basins in the Netherland and surrounding areas (p. 171). Utrecht University.
    [Google Scholar]
  18. Geluk, M. C. (2007). Permian. In T. E.Wong, D. A. J.Batjes, & J.De Jager (Eds.), Geology of the Netherlands (pp. 63–84). Royal Netherlands Academy of Arts and Sciences.
    [Google Scholar]
  19. Geluk, M. C., Paar, W., & Fokker, P. (2007). Salt. In T. E.Wong, D. A. J.Batjes, & J.De Jager (Eds.), Geology of the Netherlands (pp. 283–294). Royal Netherlands Academy of Arts and Sciences.
    [Google Scholar]
  20. Giles, K. A., & Rowan, M. G. (2012). Concepts in halokinetic‐sequence deformation and stratigraphy. Geological Society, London, Special Publications, 363(1), 7–31.
    [Google Scholar]
  21. Glennie, K. W. (1990a). Outline of the North Sea history and structural framework. In Introduction to the Petroleum Geology of the North Sea (pp. 34–77). Blackwell Scientific Publications.
    [Google Scholar]
  22. Glennie, K. W., & Provan, D. M. J. (1990b). Lower Permian Rotliegend Reservoir of the Southern North Sea gas province. In J.Brooks (Ed.), Classic petroleum provinces (pp. 399–416). Geological Society Special Publication.
    [Google Scholar]
  23. Glennie, K. W. (1997). History of exploration in the Southern North Sea, petroleum geology of the Southern North Sea: Future potential (Vol. 123, pp. 5–16). Geological Society.
    [Google Scholar]
  24. Glennie, K. W., & Underhill, J. R. (1998). Petroleum geology of the North Sea basic concept and recent advances. Blackwell Science.
    [Google Scholar]
  25. Grant, R. J., Underhill, J. R., Hernández‐Casado, J., Barker, S. M., & Jamieson, R. J. (2019). Upper Permian Zechstein supergroup carbonate‐evaporite platform palaeomorphology in the UK Southern North Sea. Marine and Petroleum Geology, 100, 484–518.
    [Google Scholar]
  26. Grant, R. J., Underhill, J. R., Hernández‐Casado, J., Jamieson, R. J., & Williams, R. M. (2019). The evolution of the dowsing Graben system: Implications for petroleum prospectivity in the UK Southern North Sea. Petroleum Geoscience. 1–34.
    [Google Scholar]
  27. Harding, R., & Huuse, M. (2015). Salt on the move: Multi stage evolution of salt diapirs in the Netherlands North Sea. Marine and Petroleum Geology, 61, 39–55.
    [Google Scholar]
  28. Hudec, M. R., & Jackson, M. P. A. (2007). Terra infirma: Understanding salt tectonics. Earth‐Science Reviews, 82(1–2), 1–28.
    [Google Scholar]
  29. Hudec, M. R., & Jackson, M. P. A. (2011). The salt mine: A digital atlas of salt tectonics (Vol. 99). The University of Texas at Austin, Bureau of Economic Geology, Udden Book Series No. 5: AAPG Memoir. 305 p.
    [Google Scholar]
  30. Hudec, M. R., Jackson, M. P. A., & Schultz‐Ela, D. D. (2009). The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins. Geological Society of America Bulletin, preprint(2008), 201–221.
    [Google Scholar]
  31. Jackson, M. P. A., & Hudec, M. R. (2017). Salt tectonics: Principles and practice. Cambridge University Press.
    [Google Scholar]
  32. Jackson, M. P. A., & Vendeville, B. (1994). Regional extension as a geologic trigger for diapirism. Geological Society of America Bulletin, 106, 57–73.
    [Google Scholar]
  33. Jackson, M. P. A., & Vendeville, B. C. (1990). The rise and fall of diapirs during thin‐skinned extension (abstract). Bulletin of the American Association of Petroleum Geologists, 74, 683.
    [Google Scholar]
  34. Jackson, M. P. A., & Vendeville, B. C. (1992). Initiation of diapirism by regional extension. Abstracts with Programs—Geological Society of America, 24(7), 279–280.
    [Google Scholar]
  35. Jackson, M. P. A., & Vendeville, B. C. (1995). Origin of minibasins by multidirectional extension above a spreading lobe of allochthonous salt. In C. J.Travis, B. C.Vendeville, H.Harrison, F. J.Peel, M. R.Hudec, & B. F.Perkins (Eds.), Salt, sediment and hydrocarbons, GCSSEPM Foundation 16th Annual Research Conference (Vol. 135). AAPG International Convention and Exposition Meeting.
    [Google Scholar]
  36. Jackson, M. P. A., Vendeville, B. C., & Schultz‐Ela, D. D. (1994). Structural dynamics of salt systems. Annual Review of Earth and Planetary Sciences, 22, 93–117.
    [Google Scholar]
  37. Jackson, M. P. A., & Talbot, C. J. (1994). Advances in salt tectonics. In P.Hancock (Ed.), Continental deformation (pp. 159–179). Pergamon Press.
    [Google Scholar]
  38. Karam, P., & Mitra, S. (2016). Experimental studies of the controls of the geometry and evolution of salt diapirs. Marine and Petroleum Geology, 77, 1309–1322.
    [Google Scholar]
  39. Knox, R. W. O. B., Bosch, J. H. A., Rasmussen, E. S., Heilmann‐Clausen, C., Hiss, M., De Lugt, I. R., Kasinksi, J., King, C., Kothe, A., Slodkowska, B., Standke, G., & Vandenberghe, N. (2010). Cenozoic. In H.Doornenbal & A.Stevenson (Eds.), Petroleum Geological Atlas of the Southern Permian Basin Area (pp. 210–223). EAGE Publications B.V.
    [Google Scholar]
  40. Koyi, H., & Petersen, K. (1993). Influence of basement faults on the development of salt structures in the Danish Basin. Marine and Petroleum Geology, 10(2), 82–94.
    [Google Scholar]
  41. Lin, S.‐t., Vendeville, B. C., Jackson, M. P. A., & Anonymous . (1992). Experimental modeling of extensional salt tectonics during gravity spreading. International Geological Congress, Abstracts—Congres Geologique Internationale, Resumes, 29, 132.
    [Google Scholar]
  42. Maystrenko, Y. P., Bayer, U., & Scheck‐Wenderoth, M. (2012). Regional‐scale structural role of Permian salt within the Central European Basin System. Geological Society, London, Special Publications, 363(1), 409–430.
    [Google Scholar]
  43. Maystrenko, Y. P., Bayer, U., & Scheck‐Wenderoth, M. (2013). Salt as a 3D element in structural modeling—Example from the Central European Basin System. Tectonophysics, 591, 62–82.
    [Google Scholar]
  44. McKie, T. (2017). Chapter 7‐paleogeographic evolution of latest permian and triassic salt basins in northwestern Europe. In J. I.Soto, J. F.Flinch, & G.Tari (Eds.), Permo‐triassic salt provinces of Europe, North Africa and the Atlantic margins (pp. 159–173). Elsevier.
    [Google Scholar]
  45. Moragas, M., Vergés, J., Nalpas, T., Saura, E., Martín‐Martín, J. D., Messager, G., & Hunt, D. W. (2017). The impact of syn‐ and post‐extension prograding sedimentation on the development of salt‐related rift basins and their inversion: Clues from analogue modelling. Marine and Petroleum Geology, 88, 985–1003.
    [Google Scholar]
  46. Nalpas, T., Le Douaran, S., Brun, J. P., Unternehr, P., & Richert, J. P. (1995). Inversion of the broad Fourteens Basin (offshore Netherlands), a small‐scale model investigation. Sedimentary Geology, 95(3), 237–250.
    [Google Scholar]
  47. Peel, F. J. (2014). How do salt withdrawal minibasins form? Insights from forward modelling, and implications for hydrocarbon migration. Tectonophysics, 630, 222–235.
    [Google Scholar]
  48. Peryt, T. M., Geluk, M. C., Mathiesen, A., Paul, J., & Smith, K. (2010). Zechstein. In J. C.Doornenbal & A.Stevenson (Eds.), Petroleum geological atlas of the southern Permian Basin area (pp. 123–147). EAGE Publications.
    [Google Scholar]
  49. Pharaoh, T. C., Dusar, M., Geluk, M. C., Kockel, F., Krawczyk, C. M., Krzywiec, P., Scheck‐Wenderoth, M., Thybo, H., Vejbæk, O. V., & Van Wees, J. D. (2010). Tectonic evolution. In J. C.Doornenbal & A. G.Stevenson (Eds.), Petroleum geological atlas of the Southern Permian Basin area (pp. 25–57). EAGE Publications B.V.
    [Google Scholar]
  50. Pichel, L. M., & Jackson, C. A. L. (2020). Four‐dimensional variability of composite Halokinetic sequences. Basin Research, (pp. 1277–1299).
    [Google Scholar]
  51. Quirk, D. G. (1993). Interpreting the upper carboniferous of the Dutch cleaver Bank high. In Proceedings Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference. The Geological Society.
    [Google Scholar]
  52. Quirk, D. G., & Pilcher, R. S. (2012). Flip‐flop salt tectonics. Geological Society, London, Special Publications, 363(1), 245–264.
    [Google Scholar]
  53. Quirk, D. G., Schodt, N., Lassen, B., Ings, S. J., Hsu, D., Hirsch, K. K., & Von Nicolai, C. (2012). Salt tectonics on passive margins: Examples from Santos, Campos and Kwanza Basins. Geological Society, London, Special Publications, 363, 207–244.
    [Google Scholar]
  54. Rank‐Friend, M., & Elders, C. F. (2004). The evolution and growth of Central Graben Salt Structures, Salt Dome Province, Danish North Sea. Geological Society, London, Memoirs, 29(1), 149–164.
    [Google Scholar]
  55. Remmelts, G. (1995). Fault‐related salt salt tectonics in the southern North Sea, the Netherlands. In M. P. A.Jackson, D. G.Roberts, & S.Snelson (Eds.), Salt tectonics: A global perspective (Vol. 65, pp. 261–272). American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  56. Remmelts, G. (1996). Salt tectonics in the southern North Sea, the Netherlands. In H. E.Rondeel, D. A. J.Batjes, & W. H.Nieuwenhuijs (Eds.), Geology of gas and oil under the Netherlands: Selection of papers presented at the 1983 International Conference of the American Association of Petroleum Geologists, held in the Hague (pp. 143–158). Springer Netherlands.
    [Google Scholar]
  57. Rowan, M. G., & Weimer, P. (1998). Salt‐sediment interaction, Northern Green Canyon and Ewing Bank (Offshore Louisiana), Northern Gulf of Mexico. AAPG Bulletin, 82(May 1998 Part B), 1055–1082.
    [Google Scholar]
  58. Sans, M., & Koyi, H. (2001). Modelling the role of erosion in diapir development in contractional settings. Geological Society of America Memoir, 193, 111–122.
    [Google Scholar]
  59. Schultz‐Ela, D., & Walsh, P. (2002). Modeling of grabens extending above evaporites in canyonlands National Park, Utah. Journal of Structural Geology, 24(2), 247–275.
    [Google Scholar]
  60. Schultz‐Ela, D. D., Jackson, M. P. A., & Vendeville, B. C. (1993). Mechanics of active salt diapirism. Tecfonophysics, 228, 215–312.
    [Google Scholar]
  61. Sears, R. A., Harbury, A. R., Protoy, A. J. G., & Stewart, D. J. (1993). Structural styles from the central graben in the UK and Norway. In J. R.Parker (Ed.), Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference. Geological Society.
    [Google Scholar]
  62. Seni, S. J., & Jackson, M. P. A. (1984). Sedimentary record of Cretaceous and Tertiary salt movement, East Texas basin: Times, rates, and volumes of salt flow and their implications for nuclear waste isolation and petroleum exploration. The University of Texas at Austin, Bureau of Economic Geology.
    [Google Scholar]
  63. Soto, J. I., Flinch, J. F., & Tari, G. (2017). Permo‐Triassic basins and tectonics in Europe, North Africa and the Atlantic margins: A synthesis. In J. I.Soto, J. F.Flinch, & G.Tari (Eds.), Permo‐Triassic salt provinces of Europe, North Africa and the Atlantic margins (pp. 3–41). Elsevier.
    [Google Scholar]
  64. Stewart, I. J. (2020). Chapter 7—Tectonostratigraphic megasequences and chronostratigraphy. In N.Scarselli, J.Adam, D.Chiarella, D. G.Roberts, & A. W.Bally (Eds.), Regional geology and tectonics (second edition) (pp. 113–117). Elsevier.
    [Google Scholar]
  65. Stewart, S. A. (2006). Implications of passive salt diapir kinematics for reservoir segmentation by radial and concentric faults. Marine and Petroleum Geology, 23(8), 843–853.
    [Google Scholar]
  66. Stewart, S. A. (2007). Salt tectonics in the North Sea Basin: A structural style template for seismic interpreters. In A. C.Ries, R. W. H.Butler, & R. H.Graham (Eds.), Deformation of the continental crust: The legacy of Mike Coward. Geological Society of London Special Publications.
    [Google Scholar]
  67. Stewart, S. A., & Coward, M. P. (1995). Synthesis of salt tectonics in the Southern North Sea, UK. Marine and Petroleum Geology, 12(5), 457–475.
    [Google Scholar]
  68. Stewart, S. A., Harvey, M. J., Otto, S. C., & Weston, P. J. (1996). Influence of salt on fault geometry: Examples from the UK salt basins. The Geological Society London, Salt Tectonics, 1, 175–202.
    [Google Scholar]
  69. ten Veen, J. H., van Gessel, S. F., & den Dulk, M. (2012). Thin‐and thick‐skinned salt tectonics in the Netherlands; a quantitative approach. Netherlands Journal of Geosciences, 91(4), 447–464.
    [Google Scholar]
  70. Trusheim, F. (1960). Mechanism of salt migration in Northern Germany. AAPG Bulletin, 44(9), 1519–1540.
    [Google Scholar]
  71. Underhill, J. R., Lykakis, N., & Shafique, S. (2009). Turning exploration risk into a carbon storage opportunity in the UK.
    [Google Scholar]
  72. van Gent, H., Back, S., Urai, J. L., & Kukla, P. (2010). Small‐scale faulting in the upper cretaceous of the Groningen block (the Netherlands): 3D seismic interpretation, fault plane analysis and regional paleostress. Journal of Structural Geology, 32(4), 537–553.
    [Google Scholar]
  73. Van Hoorn, B. (1987). Structural evolution, timing and tectonic style of the Sole Pit inversion. Tectonophysics, 137(1), 239–284.
    [Google Scholar]
  74. Vejbæk, O. V., Andersen, C., Dusar, M., Herngreen, G. F. W., Krabbe, H., Leszczyńki, K., Lott, G. K., Mutterlose, J., & Van der Molen, A. S. (2010). Cretaceous. In H.Doornenbal & A. G.Stevenson (Eds.), Petroleum Geological Atlas of the Southern Permian Basin Area (pp. 195–209). EAGE Publications B.V.
    [Google Scholar]
  75. Vendeville, B. (2002). A new interpretation of Trusheim's classic model of salt‐diapir growth. Gulf Coast Association of Geological Societies Transactions, 52, 943–952.
    [Google Scholar]
  76. Vendeville, B. C., & Jackson, M. P. A. (1992a). The fall of diapirs during thin‐skinned extension. Marine and Petroleum Geology, 9(4), 354–371.
    [Google Scholar]
  77. Vendeville, B. C., & Jackson, M. P. A. (1992b). The rise of diapirs during thin‐skinned extension. Marine and Petroleum Geology, 9(4), 331–353.
    [Google Scholar]
  78. Vendeville, B. C., Ge, H., Jackson, M. P. A., & Anonymous . (1994). Experimental deformation of prograding sedimentary wedges above a viscous source layer. In Annual Meeting Abstracts ‐ American Association of Petroleum Geologists and Society of Economic Paleontologists and Mineralogists (Vol. 1994, p. 276).
    [Google Scholar]
  79. Vendeville, B. C., & Nilsen, K. T. (1995). Episodic growth of salt diapirs driven by horizontal shortening. In C. J.Travis, H.Harrison, M. R.Hudec, B. C.Vendeville, F. J.Peel, & B. F.Perkins (Eds.), Salt, sediment and hydrocarbons (pp. 285–295). Gulf Coast Section Society of Exploration Paleontologists and Mineralogists Foundation 16th Annual Research Conference.
    [Google Scholar]
  80. Waltham, D. (1997). Why does salt start to move?Tecfonophysics, 282(1–4), 117–128.
    [Google Scholar]
  81. Warsitzka, M., Jähne‐Klingberg, F., Kley, J., & Kukowski, N. (2019). The timing of salt structure growth in the Southern Permian Basin (Central Europe) and implications for basin dynamics. Basin Research, 31(2), 337–360.
    [Google Scholar]
  82. Warsitzka, M., Kley, J., & Kukowski, N. (2013). Salt diapirism driven by differential loading—Some insights from analogue modelling. Tectonophysics, 591, 83–97.
    [Google Scholar]
  83. Woodcock, N. H., & Strachan, R. A. (2000). Geological history of Britain and Ireland. Cambridge University Press, 423 p.
    [Google Scholar]
  84. Ziegler, P. A. (1990a). Geological atlas of Western and Central Europe. Geological Society Publishing House (Bath), Shell Internationale Petroleum Maatschappij B.V.
    [Google Scholar]
  85. Ziegler, P. A. (1990b) Tectonic and palaeogeographic development of the North Sea rift system. In D. J.Blundell & A. D.Gibbs (Eds.), Tectonic evolution of the North Sea rifts (Vol. 81). Oxford Science Publications.
    [Google Scholar]
  86. Ziegler, P. A., & Van Hoorn, B. (1989). Evolution of North Sea rift system. In A. J.Tankard & H. R.Balkwill (Eds.), Extensional tectonics and stratigraphy of the North Atlantic margins (Vol. 46). American Association of Petroleum Geologists.
    [Google Scholar]
/content/journals/10.1111/bre.12791
Loading
/content/journals/10.1111/bre.12791
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): halokinesis; salt diapirism; salt tectonics; Southern North Sea

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error