1887
Volume 35, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

We describe a workflow for determining the permeability distribution in sedimentary basins. The workflow uses facies analysis, sequence stratigraphy and structural interpretation to build a stratigraphic forward model (SFM), from which the permeability of faults and host rocks is estimated. The resulting permeability distribution provides input for fluid flow simulations.

, Abstract

The permeability of faults and their sedimentary host rocks is a critical input for models of fluid flow in sedimentary basins. Permeability of sedimentary rocks can vary by orders of magnitude over short distances due to variations in sedimentary facies, as well as being strongly anisotropic. Structural features also affect permeability, with faults acting as fluid conduits or barriers depending on the nature of the sedimentary host rock. Constraining these variations in permeability is challenging where outcrops are lacking and drillhole data are sparse. This study describes a workflow using stratigraphic forward modelling to estimate the permeability distribution (both magnitude and anisotropy) in sedimentary rocks and associated faults, which is then used in fluid flow simulations. Permeability is represented as a tensor in the global coordinate system, enabling the use of an unstructured mesh that is independent of stratigraphic layering. The workflow is demonstrated in a sub‐basin of the Proterozoic McArthur Basin of northern Australia. A range of fault permeability scenarios are explored, where fault permeability is a function of host rock properties. The simulation results demonstrate the importance of capturing the direction of permeability anisotropy in dipping strata, as well as highlighting the effect of different fault permeability scenarios. The workflow is particularly well‐suited to scenarios where there are sufficient boreholes to constrain a stratigraphic forward model, but insufficient to determine the permeability distribution by interpolation. Potential applications include mineral and hydrocarbon exploration, groundwater studies, contaminant dispersal modelling, and CO sequestration.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12792
2023-11-12
2025-02-14
Loading full text...

Full text loading...

/deliver/fulltext/bre/35/6/bre12792.html?itemId=/content/journals/10.1111/bre.12792&mimeType=html&fmt=ahah

References

  1. Ahmad, M., Dunster, J. N., & Munson, T. J. (2013). McArthur Basin. In M.Ahmad & T. J.Munson (Eds.), Geology and mineral resources of the Northern Territory (pp. 1–72). Northern Territory Geological Survey.
    [Google Scholar]
  2. Anderman, E. R., Kipp, K. L., Hill, M. C., Valstar, J., & Neupauer, R. M. (2002). MODFLOW‐2000, the U.S. Geological Survey modular ground‐water model—Documentation of the model‐layer variable‐direction horizontal anisotropy (LVDA) capability of the hydrogeologic‐unit flow (HUF) package. Open‐File Report. https://doi.org/10.3133/OFR02409
  3. Arch, J., & Maltman, A. (1990). Anisotropic permeability and tortuosity in deformed wet sediments. Journal of Geophysical Research, 95, 9035. https://doi.org/10.1029/JB095iB06p09035
    [Google Scholar]
  4. Barnicoat, A. C., Sheldon, H. A., & Ord, A. (2009). Faulting and fluid flow in porous rocks and sediments: Implications for mineralisation and other processes. Mineralium Deposita, 44, 705–718. https://doi.org/10.1007/s00126‐009‐0236‐4
    [Google Scholar]
  5. Baumgartner, R. J., Kunzmann, M., Spinks, S., Bian, X., John, S. G., Blaikie, T. N., & Hu, S. (2021). Zinc isotope composition of the Proterozoic clastic‐dominated McArthur River Zn‐Pb‐Ag deposit, northern Australia. Ore Geology Reviews, 139, 104545. https://doi.org/10.1016/J.OREGEOREV.2021.104545
    [Google Scholar]
  6. Bear, J. (1972). Dynamics of fluids in porous media. Elsevier.
    [Google Scholar]
  7. Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O., & Scibek, J. (2013). Fault zone hydrogeology. Earth‐Science Reviews, 127, 171–192. https://doi.org/10.1016/J.EARSCIREV.2013.09.008
    [Google Scholar]
  8. Bense, V. F., & Person, M. A. (2006). Faults as conduit‐barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resources Research, 42, 1–18. https://doi.org/10.1029/2005WR004480
    [Google Scholar]
  9. Betts, P. G., Armit, R. J., Stewart, J., Aitken, A. R. A., Ailleres, L., Donchak, P., Hutton, L., Withnall, I., & Giles, D. (2016). Australia and Nuna. Geological Society, London, Special Publications, 424, 47–81. https://doi.org/10.1144/SP424.2
    [Google Scholar]
  10. Betts, P. G., & Giles, D. (2006). The 1800–1100 Ma tectonic evolution of Australia. Precambrian Research, 144, 92–125. https://doi.org/10.1016/J.PRECAMRES.2005.11.006
    [Google Scholar]
  11. Betts, P. G., Giles, D., & Lister, G. S. (2003). Tectonic environment of shale‐hosted massive sulfide Pb‐Zn‐Ag deposits of Proterozoic northeastern Australia. Economic Geology, 98, 557–576. https://doi.org/10.2113/gsecongeo.98.3.557
    [Google Scholar]
  12. Bjørlykke, K. (1993). Fluid flow in sedimentary basins. Sedimentary Geology, 86, 137–158. https://doi.org/10.1016/0037‐0738(93)90137‐T
    [Google Scholar]
  13. Blaikie, T. N., & Kunzmann, M. (2020). Geophysical interpretation and tectonic synthesis of the Proterozoic southern McArthur Basin, northern Australia. Precambrian Research, 343, 105728. https://doi.org/10.1016/J.PRECAMRES.2020.105728
    [Google Scholar]
  14. Bolton, A. J., Maltman, A. J., & Clennell, M. B. (1998). The importance of overpressure timing and permeability evolution in fine‐grained sediments undergoing shear. Journal of Structural Geology, 20, 1013–1022. https://doi.org/10.1016/S0191‐8141(98)00030‐3
    [Google Scholar]
  15. Borghi, A., Renard, P., & Courrioux, G. (2015). Generation of 3D spatially variable anisotropy for groundwater flow simulations. Groundwater, 53, 955–958. https://doi.org/10.1111/gwat.12295
    [Google Scholar]
  16. Brown, K. M., Bekins, B., Clennell, B., Dewhurst, D., & Westbrook, G. (1994). Heterogeneous hydrofracture development and accretionary fault dynamics. Geology, 22, 259. https://doi.org/10.1130/0091‐7613(1994)022<0259:HHDAAF>2.3.CO;2
    [Google Scholar]
  17. Brown, K. M., & Moore, J. C. (1993). Comment on “Anisotropic permeability and tortuosity in deformed wet sediments” by J. Arch and A. Maltman. Journal of Geophysical Research: Solid Earth, 98, 17859–17864. https://doi.org/10.1029/93JB01298
    [Google Scholar]
  18. Bull, S. W. (1998). Sedimentology of the Palaeoproterozoic Barney Creek formation in DDH BMR McArthur 2, southern McArthur basin, northern territory. Australian Journal of Earth Sciences, 45, 21–31. https://doi.org/10.1080/08120099808728364
    [Google Scholar]
  19. Catuneanu, O. (2019). Scale in sequence stratigraphy. Marine and Petroleum Geology, 106, 128–159. https://doi.org/10.1016/J.MARPETGEO.2019.04.026
    [Google Scholar]
  20. Chen, J., Walter, M. R., Logan, G. A., Hinman, M. C., & Summons, R. E. (2003). The Paleoproterozoic McArthur River (HYC) Pb/Zn/Ag deposit of northern Australia: Organic geochemistry and ore genesis. Earth and Planetary Science Letters, 210, 467–479. https://doi.org/10.1016/S0012‐821X(03)00171‐7
    [Google Scholar]
  21. Cooke, D. R., Bull, S. W., Donovan, S., & Rogers, J. R. (1998). K‐metasomatism and base metal depletion in volcanic rocks from the McArthur Basin, Northern Territory; implications for base metal mineralization. Economic Geology, 93, 1237–1263. https://doi.org/10.2113/gsecongeo.93.8.1237
    [Google Scholar]
  22. Crawford, B. R., Faulkner, D. R., & Rutter, E. H. (2008). Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz‐clay fault gouge. Journal of Geophysical Research, 113, B03207. https://doi.org/10.1029/2006JB004634
    [Google Scholar]
  23. Croxford, N. (1968). A mineralogical examination of the McArthur lead‐zinc‐silver deposit. Australasian Institute of Mining and Metallurgy Proceedings, 226, 97–108.
    [Google Scholar]
  24. Croxford, N., & Jephcott, S. (1972). The McArthur lead‐zinc deposit, Northern Territory. Proceedings of the Australian Institute of Mining and Metallurgy, 243, 1–26.
    [Google Scholar]
  25. David, C., Menendez, B., Zhu, W., & Wong, T. F. (2001). Mechanical compaction, microstructures and permeability evolution in sandstones. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26, 45–51.
    [Google Scholar]
  26. de Marsily, G., Delay, F., Gonçalvès, J., Renard, P., Teles, V., & Violette, S. (2005). Dealing with spatial heterogeneity. Hydrogeology Journal, 13, 161–183. https://doi.org/10.1007/s10040‐004‐0432‐3
    [Google Scholar]
  27. Dewhurst, D. N., Brown, K. M., Clennell, M. B., & Westbrook, G. K. (1996). A comparison of the fabric and permeability anisotropy of consolidated and sheared silty clay. Engineering Geology, 42, 253–267. https://doi.org/10.1016/0013‐7952(95)00089‐5
    [Google Scholar]
  28. Dewhurst, D. N., Clennell, M. B., Brown, K. M., & Westbrook, G. K. (1996). Fabric and hydraulic conductivity of sheared clays. Géotechnique, 46, 761–768. https://doi.org/10.1680/geot.1996.46.4.761
    [Google Scholar]
  29. Dewhurst, D. N., Yang, Y., & Aplin, A. C. (1999). Permeability and fluid flow in natural mudstones. Geological Society, London, Special Publications, 158, 23–43. https://doi.org/10.1144/GSL.SP.1999.158.01.03
    [Google Scholar]
  30. Ehrenberg, S. N., & Nadeau, P. H. (2005). Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity‐depth and porosity‐permeability relationships. American Association of Petroleum Geologists Bulletin, 89, 435–445. https://doi.org/10.1306/11230404071
    [Google Scholar]
  31. Eldridge, C. S., Williams, N., & Walshe, J. L. (1993). Sulfur isotope variability in sediment‐hosted massive sulfide deposits as determined using the ion microprobe SHRIMP; II, a study of the H.Y.C. deposit at McArthur River, Northern Territory, Australia. Economic Geology, 88, 1–26. https://doi.org/10.2113/gsecongeo.88.1.1
    [Google Scholar]
  32. Fisher, A. T., & Hounslow, M. W. (1990). Transient fluid flow through the toe of the Barbados accretionary complex: Constraints from ocean drilling program leg 110 heat row studies and simple models. Journal of Geophysical Research, 95, 8845. https://doi.org/10.1029/JB095iB06p08845
    [Google Scholar]
  33. Fisher, Q. J., Casey, M., Harris, S. D., & Knipe, R. J. (2003). Fluid‐flow properties of faults in sandstone: The importance of temperature history. Geology, 31, 965–968.
    [Google Scholar]
  34. Garven, G., Bull, S. W., & Large, R. R. (2001). Hydrothermal fluid flow models of stratiform ore genesis in the McArthur Basin, Northern Territory, Australia. Geofluids, 1, 289–311.
    [Google Scholar]
  35. Geuzaine, C., & Remacle, J.‐F. (2009). Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities. International Journal for Numerical Methods in Engineering, 79, 1309–1331. https://doi.org/10.1002/nme.2579
    [Google Scholar]
  36. Gieskes, J. M., Vrolijk, P., & Blanc, G. (1990). Hydrogeochemistry of the northern Barbados accretionary complex transect: Ocean drilling project leg 110. Journal of Geophysical Research, 95, 8809. https://doi.org/10.1029/JB095iB06p08809
    [Google Scholar]
  37. Gigon, J., Deloule, E., Mercadier, J., Huston, D. L., Richard, A., Annesley, I. R., Wygralak, A. S., Skirrow, R. G., Mernagh, T. P., & Masterman, K. (2020). Tracing metal sources for the giant McArthur River Zn‐Pb deposit (Australia) using lead isotopes. Geology, 48, 478–482. https://doi.org/10.1130/G47001.1
    [Google Scholar]
  38. Giles, D., Betts, P., & Lister, G. (2002). Far‐field continental backarc setting for the 1.80–1.67 Ga basins of northeastern Australia. Geology, 30, 823. https://doi.org/10.1130/0091‐7613(2002)030<0823:FFCBSF>2.0.CO;2
    [Google Scholar]
  39. Granjeon, D. (1996). Modélisation stratigraphique déterministe: Conception et applications d'un modèle diffusif 3D multilithologique. Universite Rennes.
    [Google Scholar]
  40. Granjeon, D., & Joseph, P. (1999). Concepts and applications of a 3D multiple lithology, diffusive model in stratigraphic modeling. In J. W.Harbaugh, W. L.Watney, E. C.Rankey, R.Slingerland, R. H.Goldstein, & E. K.Franseen (Eds.), Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations (pp. 197–210). SEPM Society for Sedimentary Geology.
    [Google Scholar]
  41. Harbaugh, A. W., Banta, E. R., Hill, M. C., & McDonald, M. G. (2000). MODFLOW‐2000, the U.S. Geological Survey modular ground‐water model—User guide to modularization concepts and the ground‐water flow process. Open‐File Report. https://doi.org/10.3133/OFR200092
  42. Hayward, N., Magnall, J. M., Taylor, M., King, R., McMillan, N., & Gleeson, S. A. (2021). The Teena Zn‐Pb deposit (McArthur Basin, Australia). Part I: syndiagenetic base metal sulfide mineralization related to dynamic subbasin evolution. Economic Geology, 116, 1743–1768. https://doi.org/10.5382/econgeo.4846
    [Google Scholar]
  43. Hinman, M. C. (1995). Base metal mineralisation at McArthur River: Structure and kinematics of the HYC‐Cooley zone at McArthur River (Vol. 1995/005). Australian Geological Survey Organisation Record.
    [Google Scholar]
  44. Hinman, M. C. (1996). Constraints, timing and processes of stratiform base metal mineralisation at the HYC Ag‐Pb‐Zn deposit, McArthur River. In MIC’96 – New Developments in Metallogenic Research: The McArthur, Mount Isa, Cloncurry Minerals Province. EGRU contribution 56 (pp. 56–59). James Cook University Economic Geology Research Unit.
    [Google Scholar]
  45. Hinman, M. C. (2001). Inhalation, thermochemical sulphate reduction and processes of ore formation at HYC McArthur River, Northern Territory. In A hydrothermal odyssey. James Cook University of North Queensland.
    [Google Scholar]
  46. Ireland, T., Bull, S. W., & Large, R. R. (2004). Mass flow sedimentology within the HYC Zn‐Pb‐Ag deposit, Northern Territory, Australia: Evidence for syn‐sedimentary ore genesis. Mineralium Deposita, 39, 143–158.
    [Google Scholar]
  47. Ireland, T., Large, R. R., McGoldrick, P., & Blake, M. (2004). Spatial distribution patterns of sulfur isotopes, nodular carbonate, and ore textures in the McArthur River (HYC) Zn‐Pb‐Ag deposit, Northern Territory, Australia. Economic Geology, 99, 1687–1709. https://doi.org/10.2113/gsecongeo.99.8.1687
    [Google Scholar]
  48. Jackson, M. J., Muir, M. D., & Plumb, K. A. (1987). Geology of the southern McArthur Basin. Bulletin.
    [Google Scholar]
  49. Knipe, R. J. (1997). Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs. American Association of Petroleum Geologists Bulletin, 81(1997), 187–195. https://doi.org/10.1306/522B42DF‐1727‐11D7‐8645000102C1865D
    [Google Scholar]
  50. Kunzmann, M., Crombez, V., Blaikie, T. N., Catuneanu, O., King, R., Halverson, G. P., Schmid, S., & Spinks, S. C. (2022). Sequence stratigraphy of the ca. 1640 Ma Barney Creek Formation, McArthur Basin, Australia. Australian Journal of Earth Sciences., 1–29. https://doi.org/10.1080/08120099.2022.2095030
    [Google Scholar]
  51. Kunzmann, M., Schmid, S., Blaikie, T. N., & Halverson, G. P. (2019). Facies analysis, sequence stratigraphy, and carbon isotope chemostratigraphy of a classic Zn‐Pb host succession: The Proterozoic middle McArthur group, McArthur Basin, Australia. Ore Geology Reviews, 106, 150–175. https://doi.org/10.1016/J.OREGEOREV.2019.01.011
    [Google Scholar]
  52. Langhi, L., Strand, J., & Ross, A. (2020). Stratigraphic and structural trapping frameworks in the central Ceduna sub‐basin. Marine and Petroleum Geology, 120, 104523. https://doi.org/10.1016/J.MARPETGEO.2020.104523
    [Google Scholar]
  53. Large, R. R., Bull, S. W., Cooke, D. R., & McGoldrick, P. J. (1998). A genetic model for the H.Y.C. deposit, Australia; based on regional sedimentology, geochemistry, and sulfide‐sediment relationships. Economic Geology, 93, 1345–1368. https://doi.org/10.2113/gsecongeo.93.8.1345
    [Google Scholar]
  54. Lewis, G., Knipe, R. J., & Li, A. (2002). Fault seal analysis in unconsolidated sediments: A field study from Kentucky, USA. Norwegian Petroleum Society Special Publications, 11, 243–253. https://doi.org/10.1016/S0928‐8937(02)80019‐4
    [Google Scholar]
  55. Li, L., Zhou, H., & Jaime Gómez‐Hernández, J. (2010). Steady‐state saturated groundwater flow modeling with full tensor conductivities using finite differences. Computational Geosciences, 36, 1211–1223. https://doi.org/10.1016/J.CAGEO.2010.04.002
    [Google Scholar]
  56. Liu, W., Spinks, S. C., Glenn, M., MacRae, C., & Pearce, M. A. (2021). How carbonate dissolution facilitates sediment‐hosted Zn‐Pb mineralization. Geology, 49, 1363–1368. https://doi.org/10.1130/G49056.1
    [Google Scholar]
  57. Logan, G. A., Hinman, M. C., Walter, M. R., & Summons, R. E. (2001). Biogeochemistry of the 1640 ma McArthur River (HYC) lead‐zinc ore and host sediments, Northern Territory, Australia. Geochimica et Cosmochimica Acta, 65, 2317–2336. https://doi.org/10.1016/S0016‐7037(01)00599‐3
    [Google Scholar]
  58. Logan, R. G., Murray, W. J., & Williams, N. (1990). HYC silver‐lead‐zinc deposit, McArthur River. Australasian Institute of Mining and Metallurgy Monograph, 14, 907–911.
    [Google Scholar]
  59. Magnall, J. M., Gleeson, S. A., Hayward, N., & Rocholl, A. (2020). Massive sulfide Zn deposits in the Proterozoic did not require euxinia. Geochemical Perspectives Letters, 1, 19–24. https://doi.org/10.7185/geochemlet.2008
    [Google Scholar]
  60. Magnall, J. M., Hayward, N., Gleeson, S. A., Schleicher, A., Dalrymple, I., King, R., & Mahlstadt, N. (2021). The Teena Zn‐Pb deposit (McArthur Basin, Australia). Part II: Carbonate replacement sulfide mineralization during burial diagenesis—Implications for mineral exploration. Economic Geology, 116, 1769–1801. https://doi.org/10.5382/ECONGEO.4845
    [Google Scholar]
  61. McGoldrick, P., Winefield, P., Bull, S., Selley, D., & Scott, R. (2010). Sequences, synsedimentary structures, and sub‐basins: The where and when of SEDEX zinc systems in the southern McArthur Basin, Australia. In R. J.Goldfarb, E. E.Marsh, & T.Monecke (Eds.), The challenge of finding new mineral resources: Global metallogeny, innovative exploration, and new discoveries (Vol. 15, pp. 367–390). Society of Economic Geologists, Special Publication.
    [Google Scholar]
  62. Murray, T. A., Power, W. L., Johnson, A. J., Christie, G. J., & Richards, D. R. (2020). Validation and analysis procedures for juxtaposition and membrane fault seals in oil and gas exploration. Geological Society, London, Special Publications, 496, 145–161. https://doi.org/10.1144/SP496‐2018‐171
    [Google Scholar]
  63. Otoo, D., & Hodgetts, D. (2021). Porosity and permeability prediction through forward stratigraphic simulations using GPM™ and petrel™: Application in shallow marine depositional settings. Geoscientific Model Development, 14, 2075–2095. https://doi.org/10.5194/gmd‐14‐2075‐2021
    [Google Scholar]
  64. Page, R. W., Jackson, M. J., & Krassay, A. A. (2000). Constraining sequence stratigraphy in north Australian basins: SHRIMP U–Pb zircon geochronology between Mt Isa and McArthur River. Australian Journal of Earth Sciences, 47, 431–459. https://doi.org/10.1046/J.1440‐0952.2000.00797.X
    [Google Scholar]
  65. Page, R. W., & Sweet, I. P. (1998). Geochronology of Basin Phases in the Western Mt Isa Inlier, and Correlation with the McArthur Basin, 45, 219–232. https://doi.org/10.1080/08120099808728383
  66. Perkins, W. G., & Bell, T. H. (1998). Stratiform replacement lead‐zinc deposits; a comparison between Mount Isa, Hilton, and McArthur River. Economic Geology, 93, 1190–1212. https://doi.org/10.2113/gsecongeo.93.8.1190
    [Google Scholar]
  67. Permann, C. J., Gaston, D. R., Andrš, D., Carlsen, R. W., Kong, F., Lindsay, A. D., Miller, J. M., Peterson, J. W., Slaughter, A. E., Stogner, R. H., & Martineau, R. C. (2020). MOOSE: Enabling massively parallel multiphysics simulation. SoftwareX, 11, 100430. https://doi.org/10.1016/j.softx.2020.100430
    [Google Scholar]
  68. Phillips, O. M. (1991). Flow and reactions in permeable rocks. Cambridge University Press.
    [Google Scholar]
  69. Plumb, K. A. (1979a). Structure and tectonic style of the Precambrian shields and platforms of northern Australia. Tectonophysics, 58, 291–325. https://doi.org/10.1016/0040‐1951(79)90314‐7
    [Google Scholar]
  70. Plumb, K. A. (1979b). The tectonic evolution of Australia. Earth‐Science Reviews, 14, 205–249.
    [Google Scholar]
  71. Polito, P. A., Kyser, T. K., & Jackson, M. J. (2006). The role of sandstone diagenesis and aquifer evolution in the formation of uranium and zinc‐lead deposits, southern McArthur Basin, Northern Territory, Australia. Economic Geology, 101, 1189–1209. https://doi.org/10.2113/gsecongeo.101.6.1189
    [Google Scholar]
  72. Poulet, T., Giraldo, J. F., Ramanaidou, E., Piechocka, A., & Calo, V. M. (2023). Paleo‐stratigraphic permeability anisotropy controls supergene mimetic martite goethite deposits. Basin Research, 35, 572–591. https://doi.org/10.1111/BRE.12723
    [Google Scholar]
  73. Poulet, T., Lesueur, M., & Kelka, U. (2021). Dynamic modelling of overprinted low‐permeability fault cores and surrounding damage zones as lower dimensional interfaces for multiphysics simulations. Computational Geosciences, 150, 104719. https://doi.org/10.1016/J.CAGEO.2021.104719
    [Google Scholar]
  74. Rawlings, D. J. (1999). Stratigraphic resolution of a multiphase intracratonic basin system: The McArthur Basin, northern Australia. Australian Journal of Earth Sciences, 46, 703–723. https://doi.org/10.1046/j.1440‐0952.1999.00739.x
    [Google Scholar]
  75. Renard, P., & de Marsily, G. (1997). Calculating equivalent permeability: A review. Advances in Water Resources, 20, 253–278.
    [Google Scholar]
  76. Rye, D. M., & Williams, N. (1981). Studies of the base metal sulfide deposits at McArthur River, northern territory, Australia: III. The stable isotope geochemistry of the H.Y.C., ridge, and Cooley deposits. Economic Geology, 76, 1–26. https://doi.org/10.2113/gsecongeo.76.1.1
    [Google Scholar]
  77. Schilling, O., Sheldon, H. A., Reid, L. B., & Corbel, S. (2013). Hydrothermal models of the Perth metropolitan area, Western Australia: Implications for geothermal energy. Hydrogeology Journal, 21, 605–621. https://doi.org/10.1007/s10040‐012‐0945‐0
    [Google Scholar]
  78. Screaton, E. J., Wuthrich, D. R., & Dreiss, S. J. (1990). Permeabilities, fluid pressures, and flow rates in the Barbados ridge complex. Journal of Geophysical Research, 95, 8997. https://doi.org/10.1029/JB095iB06p08997
    [Google Scholar]
  79. Sheldon, H. A., Barnicoat, A. C., & Ord, A. (2006). Numerical modelling of faulting and fluid flow in porous rocks: An approach based on critical state soil mechanics. Journal of Structural Geology, 28, 1468–1482.
    [Google Scholar]
  80. Sheldon, H. A., Schaubs, P. M., Blaikie, T. N., Kunzmann, M., Poulet, T., & Spinks, S. C. (2021). 3D thermal convection in the Proterozoic McArthur River Zn‐Pb‐Ag mineral system, northern Australia. Ore Geology Reviews, 133, 104093. https://doi.org/10.1016/J.OREGEOREV.2021.104093
    [Google Scholar]
  81. Smith, J. W., & Croxford, N. J. W. (1973). Sulphur isotope ratios in the McArthur Lead‐zinc‐silver deposit. Nature Physical Science, 245, 10–12. https://doi.org/10.1038/physci245010a0
    [Google Scholar]
  82. Spinks, S., Pearce, M., Ryan, C., Moorhead, G., Sheldon, H. A., Kunzmann, M., Blaikie, T. N., Schaubs, P. M., & Rickard, W. D. A. (2019). Ultra‐high resolution trace element mapping provides new clues on the origin of the McArthur River (HYC) sediment‐hosted Zn‐Pb deposit. In Annual Geoscience Exploration Seminar (AGES) Proceedings. Northern Territory Government.
    [Google Scholar]
  83. Spinks, S. C., Pearce, M. A., Liu, W., Kunzmann, M., Ryan, C. G., Moorhead, G. F., Kirkham, R., Blaikie, T. N., Sheldon, H. A., Schaubs, P. M., & Rickard, W. D. A. (2020). Carbonate replacement as the principal ore formation process in the Proterozoic McArthur River (HYC) sediment‐hosted Zn‐Pb deposit, Australia. Economic Geology, 116, 693–718. https://doi.org/10.5382/econgeo.4793
    [Google Scholar]
  84. Strand, J., Langhi, L., Ross, A. S., & Dyt, C. (2017). Coupled stratigraphic and fault seal modelling used to describe trap integrity in the frontier Bight Basin, Australia. Marine and Petroleum Geology, 86, 474–485. https://doi.org/10.1016/J.MARPETGEO.2017.06.011
    [Google Scholar]
  85. Taylor, M. I., McMillan, N. E., Dalrymple, I. J., & Hayward, N. (2017). Teena zinc‐lead deposit. In N.Phillips (Ed.), Australian ore deposits. Australasian Institute of Mining and Metallurgy monograph 32 (pp. 483–484). Australasian Institute of Mining and Metallurgy.
    [Google Scholar]
  86. Tucker, G. E., & Slingerland, R. L. (1994). Erosional dynamics, flexural isostasy, and long‐lived escarpments: A numerical modeling study. Journal of Geophysical Research—Solid Earth, 99, 12229–12243. https://doi.org/10.1029/94JB00320
    [Google Scholar]
  87. Voss, C. I., Simmons, C. T., & Robinson, N. I. (2010). Three‐dimensional benchmark for variable‐density flow and transport simulation: Matching semi‐analytic stability modes for steady unstable convection in an inclined porous box. Hydrogeology Journal, 18, 5–23.
    [Google Scholar]
  88. Vrolijk, P., Chambers, S. R., Gieskes, J. M., & O'Neil, J. R. (1990). Stable isotope ratios of interstitial fluids from the northern Barbados accretionary prism, ODP leg 110. Proceedings of the Ocean Drilling Program, Scientific Results, 110, 189–205. https://doi.org/10.2973/odp.proc.sr.110.137.1990
    [Google Scholar]
  89. Wilkins, A., Green, C. P., & Ennis‐King, J. (2020). PorousFlow: A multiphysics simulation code for coupled problems in porous media summary and applications. Journal of Open Source Software, 5, 2176–2181. https://doi.org/10.21105/joss.02176
    [Google Scholar]
  90. Willgoose, G., Bras, R. L., & Rodriguez‐Iturbe, I. (1991). A coupled channel network growth and hillslope evolution model: 1. Theory. Water Resources Research, 27, 1671–1684. https://doi.org/10.1029/91WR00935
    [Google Scholar]
  91. Williams, N. (1978). Studies of the base metal sulfide deposits at McArthur River, Northern Territory, Australia; I, The Cooley and Ridge deposits. Economic Geology, 73, 1005–1035. https://doi.org/10.2113/gsecongeo.73.6.1005
    [Google Scholar]
  92. Williams, N., & Rye, D. M. (1974). Alternative interpretation of Sulphur isotope ratios in the McArthur lead‐zinc‐silver deposit. Nature, 247, 535–537. https://doi.org/10.1038/247535a0
    [Google Scholar]
  93. Williford, K. H., Grice, K., Logan, G. A., Chen, J., & Huston, D. (2011). The molecular and isotopic effects of hydrothermal alteration of organic matter in the Paleoproterozoic McArthur River Pb/Zn/Ag ore deposit. Earth and Planetary Science Letters, 301, 382–392. https://doi.org/10.1016/j.epsl.2010.11.029
    [Google Scholar]
  94. Wong, T. F., & Zhu, W. (1999). Brittle faulting and permeability evolution: Hydromechanical measurement, microstructural observation, and network modeling. In W. C.Haneberg, P. S.Mozley, J. C.Moore, & L. B.Goodwin (Eds.), Faults and subsurface fluid flow in the shallow crust (pp. 83–100). American Geophysical Union.
    [Google Scholar]
  95. Yager, R. M., Voss, C. I., & Southworth, S. (2009). Comparison of alternative representations of hydraulic‐conductivity anisotropy in folded fractured‐sedimentary rock: Modeling groundwater flow in the Shenandoah Valley (USA). Hydrogeology Journal, 17, 1111–1131. https://doi.org/10.1007/s10040‐008‐0431‐x
    [Google Scholar]
  96. Yang, J. (2006). Full 3‐D numerical simulation of hydrothermal fluid flow in faulted sedimentary basins: Example of the Mcarthur Basin, northern Australia. Journal of Geochemical Exploration, 89, 440–444.
    [Google Scholar]
  97. Yang, J., Bull, S., & Large, R. R. (2004). Numerical investigation of salinity in controlling ore‐forming fluid transport in sedimentary basins: Example of the HYC deposit, northern Australia. Mineralium Deposita, 39, 622–631. https://doi.org/10.1007/s00126‐004‐0430‐3
    [Google Scholar]
  98. Yang, J., Large, R. R., & Bull, S. W. (2004). Factors controlling free thermal convection in faults in sedimentary basins: Implications for the formation of zinc‐lead mineral deposits. Geofluids, 4, 237–247. https://doi.org/10.1111/j.1468‐8123.2004.00084.x
    [Google Scholar]
  99. Yang, Y., & Aplin, A. C. (2010). A permeability–porosity relationship for mudstones. Marine and Petroleum Geology, 27, 1692–1697. https://doi.org/10.1016/J.MARPETGEO.2009.07.001
    [Google Scholar]
  100. Yielding, G., Freeman, B., & Needham, D. T. (1997). Quantitative fault seal prediction. American Association of Petroleum Geologists Bulletin, 81(1997), 897–917. https://doi.org/10.1306/522B498D‐1727‐11D7‐8645000102C1865D
    [Google Scholar]
  101. Zhang, S., & Cox, S. F. (2000). Enhancement of fluid permeability during shear deformation of a synthetic mud. Journal of Structural Geology, 22, 1385–1393. https://doi.org/10.1016/S0191‐8141(00)00065‐1
    [Google Scholar]
  102. Zhang, S., Tullis, T. E., & Scruggs, V. J. (1999). Permeability anisotropy and pressure dependency of permeability in experimentally sheared gouge materials. Journal of Structural Geology, 21, 795–806. https://doi.org/10.1016/S0191‐8141(99)00080‐2
    [Google Scholar]
  103. Zhang, S., Tullis, T. E., & Scruggs, V. J. (2001). Implications of permeability and its anisotropy in a mica gouge for pore pressures in fault zones. Tectonophysics, 335, 37–50. https://doi.org/10.1016/S0040‐1951(01)00044‐0
    [Google Scholar]
  104. Zhu, W. L., Montesi, L. G. J., & Wong, T. F. (1997). Shear‐enhanced compaction and permeability reduction: Triaxial extension tests on porous sandstone. Mechanics of Materials, 25, 199–214.
    [Google Scholar]
  105. Zhu, W. L., & Wong, T. F. (1997). The transition from brittle faulting to cataclastic flow: Permeability evolution. Journal of Geophysical Research, 102, 3027–3041.
    [Google Scholar]
/content/journals/10.1111/bre.12792
Loading
/content/journals/10.1111/bre.12792
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): fault; fluid flow; McArthur Basin; mineralisation; permeability

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error