1887
Volume 35, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

The Neuquén Basin is a major Mesozoic sedimentary depocentre located in the retroarc foreland of the Argentinian Andes. The basin hosts world renowned inversion systems that have been the target of georesource exploration for the last three decades. The Huincul High is a structurally and economically prominent ca. 270 km long, E–W trending feature that formed by the accretion of exotic Palaeozoic terranes, influencing subsequent Mesozoic deformation in the basin. Exploration in the Huincul High has been mainly focused on the shallow part of the inversion structures leaving a limited understanding of the deep structural architecture and early tectonic evolution, particularly in the western reaches of the high. This research reveals that Late Triassic extensional faulting was followed by widespread thermal subsidence in the Early Jurassic, as shown by the occurrence of an extensive ca. 60 km long, ca. 20 km wide, NE–SW‐trending, central depocentre. In the Early Jurassic, as contraction ensued across this regional sag basin, atypical inversion geometries were developed. These exhibited prominent thickening in the hanging‐wall and, strikingly, in the footwall of reactivated faults. The style of inversion was also markedly influenced by the mechanically weak stratigraphy of the thick, Lower Jurassic, Los Molles formation that promoted broad inversion folding, inhibited shortcut fault creation, and decoupled post inversion deformation from earlier faulting. Quantitative fault analysis suggests that the reactivated faults originated during the Late Triassic extensional phase as separate ca. 10 km long fault segments. The analysis also indicates that segmentation of extensional faults, as well as their orientation to the later contractional vector (), spatially dictated style and magnitude of inversion. This research highlights the critical role played by structural inheritance and mechanical stratigraphy in the development of inversion in the Neuquén Basin, which might be of relevance for characterising inversion systems elsewhere. This research also proposes an evolutionary model for the western reaches of the Huincul High that suggests crustal weakening and thermal sag in the Early Jurassic. Moreover, the model highlights a previously unknown late Early Cretaceous transtensional phase that overprints the main Early Jurassic–Early Cretaceous inversion.

,

3D visualisation of the Upper Triassic, syn‐extension, top unit 1 showing the key inversion anticlines in the western Huincul High (Neuquen Basin).

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12793
2023-11-12
2025-03-25
Loading full text...

Full text loading...

/deliver/fulltext/bre/35/6/bre12793.html?itemId=/content/journals/10.1111/bre.12793&mimeType=html&fmt=ahah

References

  1. Aguirre‐Urreta, B., Naipauer, M., Lescano, M., López‐Martínez, R., Pujana, I., Vennari, V., De Lena, L. F., Concheyro, A., & Ramos, V. A. (2019). The Tithonian chrono‐biostratigraphy of the Neuquén Basin and related Andean areas: A review and update. Journal of South American Earth Sciences, 92, 350–367.
    [Google Scholar]
  2. Alasino, P. H., Paterson, S. R., Kirsch, M., & Larrovere, M. A. (2022). The role of crustal thickness on magma composition in arcs: An example from the pre‐Andean, South American Cordillera. Gondwana Research, 106, 191–210.
    [Google Scholar]
  3. Allen, P. A., & Allen, J. R. (2005). Basin analysis: Principles and applications (2nd ed., p. 549). Wiley‐Blackwell.
    [Google Scholar]
  4. Almilibia, A., McClay, K., i Montserrat, F. S., Muñoz, J. A., & Roca, E. (2005). Analogue modelling of inverted oblique rift systems. Geologica Acta, 3, 251.
    [Google Scholar]
  5. Araujo, V. S., Frisicale, M. C., Sánchez, N., Turienzo, M., Lebinson, F., & Dimieri, L. V. (2019). The relationship between Cenozoic shallow igneous bodies and thrust systems of the mountain front of the Cordillera Principal, Mendoza Province, Argentina. Journal of South American Earth Sciences, 92, 531–551.
    [Google Scholar]
  6. Astort, A., Colavitto, B., Sagripanti, L., García, H., Echaurren, A., Soler, S., Ruíz, F., & Folguera, A. (2019). Crustal and mantle structure beneath the southern Payenia Volcanic Province using gravity and magnetic data. Tectonics, 38, 144–158.
    [Google Scholar]
  7. Bahorich, M., & Farmer, S. (1995). 3‐D seismic discontinuity for faults and stratigraphic features: The coherence cube. The Leading Edge, 14(10), 1053–1058.
    [Google Scholar]
  8. Balgord, E. A., & Carrapa, B. (2016). Basin evolution of Upper Cretaceous–Lower Cenozoic strata in the Malargüe fold‐and‐thrust belt: northern Neuquén Basin, Argentina. Basin Research, 28(2), 183–206.
    [Google Scholar]
  9. Bechis, F., Cristallini, E. O., Giambiagi, L. B., Yagupsky, D. L., Guzmán, C. G., & García, V. H. (2014). Transtensional tectonics induced by oblique reactivation of previous lithospheric anisotropies during the Late Triassic to Early Jurassic rifting in the Neuquén Basin: Insights from analog models. Journal of Geodynamics, 79, 1–17.
    [Google Scholar]
  10. Bonini, M., Sani, F., & Antonielli, B. (2012). Basin inversion and contractional reactivation of inherited normal faults: A review based on previous and new experimental models. Tectonophysics, 522, 55–88.
    [Google Scholar]
  11. Brun, J. P., & Nalpas, T. (1996). Graben inversion in nature and experiments. Tectonics, 15(3), 677–687.
    [Google Scholar]
  12. Buchanan, P. G., & McClay, K. R. (1991). Sandbox experiments of inverted listric and planar fault systems. Tectonophysics, 188(1–2), 97–115.
    [Google Scholar]
  13. Buchanan, P. G., & McClay, K. R. (1992). Experiments on basin inversion above reactivated domino faults. Marine and Petroleum Geology, 9(5), 486–500.
    [Google Scholar]
  14. Buiter, S. J., & Adrian Pfiffner, O. (2003). Numerical models of the inversion of half‐graben basins. Tectonics, 22(5), 22–38.
    [Google Scholar]
  15. Buiter, S. J., Babeyko, A. Y., Ellis, S., Gerya, T. V., Kaus, B. J., Kellner, A., Schreurs, G., & Yamada, Y. (2006). The numerical sandbox: Comparison of model results for a shortening and an extension experiment. In S. J. H.Buiter & G.Schreurs (Eds.), Analogue and numerical modelling of crustal‐scale processes (Vol. 253, pp. 29–64). Geological Society, London, Special Publications.
    [Google Scholar]
  16. Buiter, S. J., Pfiffner, O. A., & Beaumont, C. (2009). Inversion of extensional sedimentary basins: A numerical evaluation of the localisation of shortening. Earth and Planetary Science Letters, 288(3–4), 492–504.
    [Google Scholar]
  17. Cartwright, J., Bouroullec, R., James, D., & Johnson, H. (1998). Polycyclic motion history of some Gulf Coast growth faults from high‐resolution displacement analysis. Geology, 26(9), 819–822.
    [Google Scholar]
  18. Castagna, J. P., Batzle, M. L., & Eastwood, R. L. (1985). Relationships between compressional‐wave and shear‐wave velocities in clastic silicate rocks. Geophysics, 50(4), 571–581.
    [Google Scholar]
  19. Charrier, R., Ramos, V. A., Tapia, F., & Sagripanti, L. (2015). Tectono‐stratigraphic evolution of the Andean orogen between 31 and 37S (Chile and Western Argentina). In S. A.Sepúlveda, L. B.Giambiagi, S. M.Moreiras, L.Pinto, M.Tunik, G. D.Hoke, & M.Farías (Eds.), Geodynamic processes in the Andes of Central Chile and Argentina (Vol. 399, pp. 13–61). Geological Society, London, Special Publications.
    [Google Scholar]
  20. Chopra, S., & Marfurt, K. (2007). Seismic curvature attributes for mapping faults/fractures, and other stratigraphic features. CSEG Recorder, 32(9), 37–41.
    [Google Scholar]
  21. Chopra, S., & Marfurt, K. J. (2005). Seismic attributes—A historical perspective. Geophysics, 70(5), 3SO–28SO.
    [Google Scholar]
  22. Cloetingh, S., Beekman, F., Ziegler, P. A., Van Wees, J. D., & Sokoutis, D. (2008). Post‐rift compressional reactivation potential of passive margins and extensional basins. In H.Johnson, A. G.Doré, R. W.Gatliff, R.Holdsworth, 1. R.Lundin, & J. D.Ritchie (Eds.), The nature and origin of compression in passive margins (Vol. 306, pp. 27–70). Geological Society, London, Special Publications.
    [Google Scholar]
  23. Cooper, M., & Warren, M. J. (2020). Inverted fault systems and inversion tectonic settings. Regional Geology and Tectonics, 1, 169–204.
    [Google Scholar]
  24. Currie, C. A., Huismans, R. S., & Beaumont, C. (2008). Thinning of continental backarc lithosphere by flow‐induced gravitational instability. Earth and Planetary Science Letters, 269(3–4), 436–447.
    [Google Scholar]
  25. Davies, R., Cloke, I., Cartwright, J., Robinson, A., & Ferrero, C. (2004). Post‐breakup compression of a passive margin and its impact on hydrocarbon prospectivity: An example from the Tertiary of the Faeroe–Shetland Basin, United Kingdom. AAPG Bulletin, 88(1), 1–20.
    [Google Scholar]
  26. Deere, D. U., & Miller, R. P. (1966). Engineering classification and index properties for intact rock. Illinois University at Urbana, Department of Civil Engineering.
    [Google Scholar]
  27. Del Ventisette, C., Montanari, D., Sani, F., & Bonini, M. (2006). Basin inversion and fault reactivation in laboratory experiments. Journal of Structural Geology, 28(11), 2067–2083.
    [Google Scholar]
  28. Dubois, A., Odonne, F., Massonnat, G., Lebourg, T., & Fabre, R. (2002). Analogue modelling of fault reactivation: Tectonic inversion and oblique remobilisation of grabens. Journal of Structural Geology, 24(11), 1741–1752.
    [Google Scholar]
  29. Eisenstadt, G., & Withjack, M. O. (1995). Estimating inversion: Results from clay models. In J. G.Buchanan & P. G.Buchanan (Eds.), Basin inversion (Vol. 88, pp. 119–136). Geological Society, London, Special Publications.
    [Google Scholar]
  30. Erdős, Z., Huismans, R. S., & Faccenna, C. (2022). Wide versus narrow back‐arc rifting: Control of subduction velocity and convective back‐arc thinning. Tectonics, 41(6), e2021TC007086.
    [Google Scholar]
  31. Ferrer, O., McClay, K., & Sellier, N. C. (2017). Influence of fault geometries and mechanical anisotropies on the growth and inversion of hanging‐wall synclinal basins: Insights from sandbox models and natural examples. In C.Childs, R. E.Holdsworth, C. A.‐L.Jackson, T.Manzocchi, J. J.Walsh, & G.Yielding (Eds.), The geometry and growth of normal faults (Vol. 439, pp. 487–509). Geological Society, London, Special Publications.
    [Google Scholar]
  32. Fossen, H., Tikoff, B., & Teyssier, C. (1994). Strain modeling of transpressional and transtensional deformation. Norsk Geologisk Tidsskrift, 74(3), 134–145.
    [Google Scholar]
  33. Franzese, J. R., & Spalletti, L. A. (2001). Late Triassic–Early Jurassic continental extension in southwestern Gondwana: Tectonic segmentation and pre‐break‐up rifting. Journal of South American Earth Sciences, 14(3), 257–270.
    [Google Scholar]
  34. García Morabito, E. (2010). Tectónica y Estructura Del Retroarco Andino Entre Los 38°15′ y Los 40°S (p. 284) [Unpublished PhD Thesis]. Universidad de Buenos Aires.
    [Google Scholar]
  35. Gersztenkorn, A., & Marfurt, K. J. (1999). Eigenstructure‐based coherence computations as an aid to 3‐D structural and stratigraphic mapping. Geophysics, 64(5), 1468–1479.
    [Google Scholar]
  36. Giambiagi, L., Mescua, J., Bechis, F., Martínez, A., & Folguera, A. (2011). Pre‐Andean deformation of the Precordillera southern sector, southern Central Andes. Geosphere, 7(1), 219–239.
    [Google Scholar]
  37. Granado, P., Ferrer, O., Muñoz, J. A., Thöny, W., & Strauss, P. (2017). Basin inversion in tectonic wedges: Insights from analogue modelling and the Alpine‐Carpathian fold‐and‐thrust belt. Tectonophysics, 703, 50–68.
    [Google Scholar]
  38. Granado, P., & Ruh, J. B. (2019). Numerical modelling of inversion tectonics in fold‐and‐thrust belts. Tectonophysics, 763, 14–29.
    [Google Scholar]
  39. Grimaldi, G. O., & Dorobek, S. L. (2011). Fault framework and kinematic evolution of inversion structures: Natural examples from the Neuquén Basin, Argentina. AAPG Bulletin, 95(1), 27–60.
    [Google Scholar]
  40. Guzmán, C., Tapia, F., Ambrosio, A., Pleimling, A. G., Bustos, G., Gómez, C., & González, J. M. (2021). Lower Jurassic deformation in the eastern Huincul High, Argentina. Journal of South American Earth Sciences, 109, 103295.
    [Google Scholar]
  41. Guzmàn, C. G. (2005). Horizontal stress orientation from breakout analysis in the Neuquén Basin. In 6th International Symposium on Andean Geodynamics (ISAG 2005, Barcelona), Extended Abstracts (pp. 354–357).
    [Google Scholar]
  42. Heibach, O., Rajabi, M., Reiter, K., Ziegler, M., & Team, W. S. M. (2016). World stress map database release 2016. V.1.1. GFZ Data Services. https://doi.org/10.5880/WSM.2016.001
    [Google Scholar]
  43. Horton, B. K. (2018). Tectonic regimes of the central and southern Andes: Responses to variations in plate coupling during subduction. Tectonics, 37(2), 402–429.
    [Google Scholar]
  44. Howell, J. A., Schwarz, E., Spalletti, L. A., & Veiga, G. D. (2005). The Neuquén Basin: An overview. In G. D.Veiga, L. A.Spaletti, J. A.Howell, & E.Schwarz (Eds.), The Neuquén Basin, Argentina: A case study in sequence stratigraphy and basin dynamics (Vol. 252, pp. 1–14). Geological Society, London, Special Publications.
    [Google Scholar]
  45. Hu, J., Liu, L., & Gurnis, M. (2021). Southward expanding plate coupling due to variation in sediment subduction as a cause of Andean growth. Nature Communications, 12(1), 1–9.
    [Google Scholar]
  46. Jackson, C. A. L., Bell, E. E., Rotevatn, A., & Tvedt, A. B. M. (2017). Techniques to determine the kinematics of synsedimentary normal faults and implications for fault growth models. Geological Society, London, Special Publications, 439, 187–217.
    [Google Scholar]
  47. Jackson, C. L., Chua, S. T., Bell, R. E., & Magee, C. (2013). Structural style and early stage growth of inversion structures: 3D seismic insights from the Egersund Basin, offshore Norway. Journal of Structural Geology, 46, 167–185.
    [Google Scholar]
  48. Jackson, C. L., & Larsen, E. (2008). Temporal constraints on basin inversion provided by 3D seismic and well data: A case study from the South Viking Graben, offshore Norway. Basin Research, 20(3), 397–417.
    [Google Scholar]
  49. Kay, S. M., Ramos, V. A., Mpodozis, C., & Sruoga, P. (1989). Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin: Analogy to the Middle Proterozoic in North America?Geology, 17(4), 324–328.
    [Google Scholar]
  50. Keller, J. V. A., & McClay, K. R. (1995). 3D sandbox models of positive inversion. In J. G.Buchanan & P. G.Buchanan (Eds.), Basin inversion (Vol. 88, pp. 137–146). Geological Society, London, Special Publications.
    [Google Scholar]
  51. Kim, H. J., Mallea, M., Gutiérrez, R., & Malone, P. (2014). Exploración del Grupo Cuyo (Jurásico) en bloques maduros de la dorsal de huincul—Puesto Touquet y El Porvenir. Cuenca Neuquina. IX Congreso de Exploración y Desarrollo de Hidrocarburos, Mendoza, Argentina.
    [Google Scholar]
  52. Kleiman, L. E., & Japas, M. S. (2009). The Choiyoi volcanic province at 34 S–36 S (San Rafael, Mendoza, Argentina): Implications for the Late Palaeozoic evolution of the southwestern margin of Gondwana. Tectonophysics, 473(3–4), 283–299.
    [Google Scholar]
  53. Leanza, H. A., Zanettini, J. C. M., Rodríguez, M. F., & Argentina . (2011). Mapa Geológico De La Provincia De Neuquén. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales.
    [Google Scholar]
  54. Lebinson, F., Turienzo, M., Sánchez, N., Cristallini, E., Araujo, V., & Dimieri, L. (2020). Kinematics of a backthrust system in the Agrio fold and thrust belt, Argentina: Insights from structural analysis and analogue models. Journal of South American Earth Sciences, 100, 102594.
    [Google Scholar]
  55. Legarreta, L., Kokogian, D. A., & Boggetti, D. A. (1989). Depositional sequences of the Malargüe Group (Upper Cretaceous‐lower Tertiary), Neuquén Basin, Argentina. Cretaceous Research, 10(4), 337–356.
    [Google Scholar]
  56. Legarreta, L., & Villar, H. J. (2012). Las facies generadoras de hidrocarburos de la Cuenca Neuquina. Petrotecnia, 53(4), 14–39.
    [Google Scholar]
  57. Letouzey, J., Werner, P., & Marty, A. (1990). Fault reactivation and structural inversion. Backarc and intraplate compressive deformations. Example of the eastern Sunda shelf (Indonesia). Tectonophysics, 183(1–4), 341–362.
    [Google Scholar]
  58. Li, Z., Dong, M., Li, S., & Huang, S. (2006). CO2 sequestration in depleted oil and gas reservoirs—Caprock characterization and storage capacity. Energy Conversion and Management, 47(11–12), 1372–1382.
    [Google Scholar]
  59. Lowell, J. D. (1995). Mechanics of basin inversion from worldwide examples. In J. G.Buchanan & P. G.Buchanan (Eds.), Basin inversion (Vol. 88, pp. 39–57). Geological Society, London, Special Publications.
    [Google Scholar]
  60. Marfurt, K. J., Kirlin, R. L., Farmer, S. L., & Bahorich, M. S. (1998). 3‐D seismic attributes using a semblance‐based coherency algorithm. Geophysics, 63(4), 1150–1165.
    [Google Scholar]
  61. McClay, K. R. (1995). The geometries and kinematics of inverted fault systems: A review of analogue model studies. In J. G.Buchanan & P. G.Buchanan (Eds.), Basin inversion (Vol. 88, pp. 97–118). Geological Society, London, Special Publications.
    [Google Scholar]
  62. Mosquera, A., & Ramos, V. A. (2006). Intraplate deformation in the Neuquén embayment. In S. M.Kay & V. A.Ramos (Eds.), Evolution of an Andean Margin: A tectonic and magmatic view from the Andes to the Neuquèn Basin (35°–39°S lat) (Vol. 407, pp. 97–123). GSA Special Papers.
    [Google Scholar]
  63. Mosquera, A., Silvestro, J., Ramos, V. A., Alarcón, M., & Zubiri, M. (2011). La estructura de la Dorsal de Huincul. In Relatorio del XVIII Congreso Geológico Argentino. Geología y Recursos Naturales del Neuquén (pp. 385–398).
    [Google Scholar]
  64. Navarrete, C., Gianni, G., Encinas, A., Márquez, M., Kamerbeek, Y., Valle, M., & Folguera, A. (2019). Triassic to Middle Jurassic geodynamic evolution of southwestern Gondwana: From a large flat‐slab to mantle plume suction in a rollback subduction setting. Earth‐Science Reviews, 194, 125–159.
    [Google Scholar]
  65. Oliveros, V., Vásquez, P., Creixell, C., Lucassen, F., Ducea, M. N., Ciocca, I., González, J., Espinoza, M., Salazar, E., Coloma, F., & Kasemann, S. A. (2020). Lithospheric evolution of the Pre‐and Early Andean convergent margin, Chile. Gondwana Research, 80, 202–227.
    [Google Scholar]
  66. Orts, D. L., Folguera, A., Giménez, M., & Ramos, V. A. (2012). Variable structural controls through time in the Southern Central Andes (ca. 36S). Andean Geology, 39(2), 220–241.
    [Google Scholar]
  67. Osagiede, E. E., Duffy, O. B., Jackson, C. A.‐L., & Wrona, T. (2014). Quantifying the growth history of seismically imaged normal faults. Journal of Structural Geology, 66, 382–399.
    [Google Scholar]
  68. Pángaro, F., Melli, A. T., Malone, P., Cevallos, M., Soraci, A., Mosquera, A., & Kim, H. J. (2005). Modelos de entrampamientos de la Dorsal de Huincul, Cuenca Neuquina, Argentina. In E.Kozlowski, G.Vergani, & A.Boll (Eds.), Las trampas de hidrocarburos en las Cuencas Productivas Argentinas (pp. 331–368). VI° Congreso de Exploración y Desarrollo de Hidrocarburos.
    [Google Scholar]
  69. Pángaro, F., Pereira, D., & Micucci, E. (2009). El sinrift de la dorsal de Huincul, Cuenca Neuquina: evolucióny control sobre la estratigrafía y estructura del área. Revista de la Asociación Geológica Argentina, 65(2), 265–277.
    [Google Scholar]
  70. Panien, M., Buiter, S. J. H., Schreurs, G., & Pfiffner, O. A. (2006). Inversion of a symmetric basin: Insights from a comparison between analogue and numerical experiments. In S. J. H.Buiter & G.Schreurs (Eds.), Analogue and numerical modelling of crustal‐scale processes (Vol. 253, pp. 253–270). Geological Society, London, Special Publications.
    [Google Scholar]
  71. Panien, M., Schreurs, G., & Pfiffner, A. (2005). Sandbox experiments on basin inversion: Testing the influence of basin orientation and basin fill. Journal of Structural Geology, 27(3), 433–445.
    [Google Scholar]
  72. Phillips, T. B., Jackson, C. A. L., & Norcliffe, J. R. (2020). Pre‐inversion normal fault geometry controls inversion style and magnitude, Farsund Basin, offshore southern Norway. Solid Earth, 11(4), 1489–1510.
    [Google Scholar]
  73. Ramos, V. A., & Folguera, A. (2005). Tectonic evolution of the Andes of Neuquén: Constraints derived from the magmatic arc and foreland deformation. In G. D.Veiga, L. A.Spaletti, J. A.Howell, & E.Schwarz (Eds.), The Neuquén Basin, Argentina: A case study in sequence stratigraphy and basin dynamics (Vol. 252, pp. 15–35). Geological Society, London, Special Publications.
    [Google Scholar]
  74. Ramos, V. A., Naipauer, M., Leanza, H. A., & Sigismondi, M. E. (2019). The Vaca Muerta formation of the Neuquén Basin: An exceptional setting along the Andean continental margin. In Integrated geology of unconventionals: The case of the Vaca Muerta Play, Argentina (Vol. 120, pp. 25–39). AAPG Memoir.
    [Google Scholar]
  75. Randen, T., Monsen, E., Signer, C., Abrahamsen, A., Schlaf, J., Sæter, T., & Hansen, J. O. (2000). Three‐dimensional texture attributes for seismic data analysis. SEG Technical Program Expanded Abstracts, 2000, 668–671.
    [Google Scholar]
  76. Reeve, M. T., Bell, R. E., Duffy, O. B., Jackson, C. A. L., & Sansom, E. (2015). The growth of non‐colinear normal fault systems; What can we learn from 3D seismic reflection data?Journal of Structural Geology, 70, 141–155.
    [Google Scholar]
  77. Reilly, C., Nicol, A., & Walsh, J. (2017). Importance of pre‐existing fault size for the evolution of an inverted fault system. In C.Childs, R. E.Holdsworth, C. A.‐L.Jackson, T.Manzocchi, J. J.Walsh, & G.Yielding (Eds.), The geometry and growth of normal faults (Vol. 439, pp. 447–463). Geological Society, London, Special Publications.
    [Google Scholar]
  78. Roberts, S., & Jackson, J. (1991). Active normal faulting in Central Greece: An overview. In A. M.Roberts, G.Yielding, & B.Freeman (Eds.), The geometry of normal faults (Vol. 56, pp. 125–142). Geological Society, London, Special Publications.
    [Google Scholar]
  79. Roma, M., Ferer, O., McClay, K. R., Muñoz, J. A., Roca i Abella, E., Gratacós, O., & Cabello López, P. (2018). Weld kinematics of syn‐rift salt during basement‐involved extension and subsequent inversion: Results from analog models. Geologica Acta, 16(4), 391–410.
    [Google Scholar]
  80. Roma, M., Vidal‐Royo, O., McClay, K., Ferrer, O., & Muñoz, J. A. (2018). Tectonic inversion of salt‐detached ramp‐syncline basins as illustrated by analog modeling and kinematic restoration. Interpretation, 6(1), 127–144.
    [Google Scholar]
  81. Sato, A. M., Llambías, E. J., Basei, M. A., & Castro, C. E. (2015). Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins. Journal of South American Earth Sciences, 63, 48–69.
    [Google Scholar]
  82. Saxena, V., Krief, M., & Adam, L. (2018). Handbook of borehole acoustics and rock physics for reservoir characterization (p. 484). Elsevier.
    [Google Scholar]
  83. Scisciani, V. (2009). Styles of positive inversion tectonics in the Central Apennines and in the Adriatic foreland: Implications for the evolution of the Apennine chain (Italy). Journal of Structural Geology, 31(11), 1276–1294.
    [Google Scholar]
  84. Scisciani, V., Agostini, S., Calamita, F., Pace, P., Cilli, A., Giori, I., & Paltrinieri, W. (2014). Positive inversion tectonics in foreland fold‐and‐thrust belts: A reappraisal of the Umbria–Marche Northern Apennines (Central Italy) by integrating geological and geophysical data. Tectonophysics, 637, 218–237.
    [Google Scholar]
  85. Scivetti, N., & Franzese, J. R. (2019). Late Triassic ‐ Late Jurassic subsidence analysis in Neuquén Basin central area. Journal of South American Earth Sciences, 94, 102230.
    [Google Scholar]
  86. Scivetti, N., Marcos, P., Pivetta, C. P., Benedini, L., Falco, J. I., Arrouy, M. J., Bahía, M. E., Franzese, J. R., & Gregori, D. A. (2021). Stretching in continental back‐arc basins: Insights from subsidence analysis of the Neuquén Basin, Argentina. Tectonophysics, 812, 228–917.
    [Google Scholar]
  87. Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., & Chandler, M. (2012). Global continental and ocean basin reconstructions since 200 Ma. Earth‐Science Reviews, 113, 212–270.
    [Google Scholar]
  88. Silvestro, J., & Zubiri, M. (2008). Convergencia oblicua: Modelo estructural alternativo para la Dorsal Neuquina (39°S)‐Neuquén. Revista de la Asociación Geológica Argentina, 63(1), 49–64.
    [Google Scholar]
  89. Stewart, S. (2007). Salt tectonics in the North Sea Basin: A structural style template for seismic interpreters. In A. C.Ries, R. W. H.Butler, & R. H.Graham (Eds.), Deformation of the continental crust: The legacy of Mike Coward (Vol. 272, pp. 361–396). Geological Society, London, Special Publications.
    [Google Scholar]
  90. Stewart, S. A., & Coward, M. P. (1995). Synthesis of salt tectonics in the southern North Sea, UK. Marine and Petroleum Geology, 12(5), 457–475.
    [Google Scholar]
  91. Tari, G., Arbouille, D., Schléder, Z., & Tóth, T. (2020). Inversion tectonics: A brief petroleum industry perspective. Solid Earth, 11(5), 1865–1889.
    [Google Scholar]
  92. Turienzo, M., Sánchez, N., Lebinson, F., Peralta, F., Araujo, V., Irastorza, A., & Dimieri, L. (2020). Basement‐cover interaction in the mountain front of the Northern Neuquén fold and thrust belt (37 10′–37 40′S), Argentina. Journal of South American Earth Sciences, 100, 102560.
    [Google Scholar]
  93. Tvedt, A. B. M., Rotevatn, A., Jackson, C. A. L., Fossen, H., & Gawthorpe, R. L. (2013). Growth of normal faults in multilayer sequences: A 3D seismic case study from the Egersund Basin, Norwegian North Sea. Journal of Structural Geology, 55, 120.
    [Google Scholar]
  94. Uliana, M. A., & Biddle, K. T. (1988). Mesozoic‐Cenozoic paleogeographic and geodynamic evolution of southern South America. Revista Brasileira de Geociencias, 18(2), 172–190.
    [Google Scholar]
  95. Veiga, R. D., Vergani, G. D., Brissón, I. E., Macellari, C. E., & Leanza, H. A. (2020). The Neuquén super basin. AAPG Bulletin, 104(12), 2521–2555.
    [Google Scholar]
  96. Vergani, G., Arregui, C., Carbone, O., Leanza, H. A., Danieli, J. C., & Vallés, J. M. (2011). Sistemas petroleros y tipos de entrampamientos en la Cuenca Neuquina. In Geologıa y Recursos Naturales de la Provincia de Neuquén: XVIII Congreso Geológico Argentino (pp. 645–656).
    [Google Scholar]
  97. Vergani, G. D., Tankard, A. J., Belotti, H. J., & Welsink, H. J. (1995). Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. In A. J.Tankard, R. S.Suárez, & H. J.Welsink (Eds.), Petroleum basins of South America (Vol. 62, pp. 383–402). AAPG Memoir.
    [Google Scholar]
  98. Wang, L., Maestrelli, D., Corti, G., Zou, Y., & Shen, C. (2021). Normal fault reactivation during multiphase extension: Analogue models and application to the Turkana depression, East Africa. Tectonophysics, 811, 228870.
    [Google Scholar]
  99. Wu, L., Shen, C., Paton, D. A., Hou, Y., Mei, L., Zeng, X., & Shi, G. (2022). The nature of the Late Syn‐Rift Sag Basin (LSSB). Terra Nova, 34, 512–522.
    [Google Scholar]
  100. Yamada, Y., & McClay, K. (2000). Application of geometric models to inverted listric fault systems in sandbox experiments. Journal of Structural Geology, 25(8), 1331–1336.
    [Google Scholar]
  101. Yamada, Y., & McClay, K. (2004). 3‐D analog modeling of inversion thrust structures, thrust tectonics and hydrocarbon systems. In K. R.McClay (Ed.), Thrust tectonics and hydrocarbon systems (Vol. 82, pp. 276–301). AAPG Memoir.
    [Google Scholar]
  102. Zapata, T., & Folguera, A. (2005). Tectonic evolution of the Andean fold and thrust belt of the southern Neuquén Basin, Argentina. In G. D.Veiga, L. A.Spaletti, J. A.Howell, & E.Schwarz (Eds.), The Neuquén Basin, Argentina: A case study in sequence stratigraphy and basin dynamics (Vol. 252, pp. 37–56). Geological Society, London, Special Publications.
    [Google Scholar]
  103. Ziegler, P. A., Cloetingh, S., & van Wees, J. D. (1995). Dynamics of intra‐plate compressional deformation: The Alpine foreland and other examples. Tectonophysics, 252(1–4), 7–59.
    [Google Scholar]
  104. Zwaan, F., Chenin, P., Erratt, D., Manatschal, G., & Schreurs, G. (2021). Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models. Solid Earth, 12(7), 1473–1495.
    [Google Scholar]
  105. Zwaan, F., Schreurs, G., Buiter, S., Ferrer, O., Reitano, R., Rudolf, M., & Willingshofer, E. (2022). Analogue modelling of basin inversion: A review and future perspectives. Solid Earth Discussions, 13(12), 1–84.
    [Google Scholar]
/content/journals/10.1111/bre.12793
Loading
/content/journals/10.1111/bre.12793
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error