1887
Volume 35, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

The erosion model of the Yarlung Tsangpo Gorge.

, Abstract

The Namche Barwa Syntaxis (NBS) is one of the most productive detrital factories on Earth. Previous studies have shown that the NBS supplies large amounts of sediment to the Brahmaputra River, although the sources and controlling factors of sediment production have not been ascertained in detail. This study presents petrographic and heavy‐mineral data for 43 sand samples collected in the Yarlung and Parlung river catchments covering the entire NBS and surrounding areas. Combined with U–Pb ages of detrital zircons, our data indicate that 89 ± 11% of Yarlung River sediments downstream of the NBS are produced in the Yarlung and Parlung gorges. The annual sediment flux of the Yarlung River increases by a factor of 20 within ca. 250 km from upstream of the NBS (ca. 10 Mt) to downstream (ca. 200 Mt/a). The Yarlung and Parlung gorges, representing only ca. 1% of the Yarlung‐Brahmaputra catchment area, contribute 74 ± 9% of the total Brahmaputra sediment flux. Average interannual erosion rates in the Yarlung and Parlung gorges corresponding to these fluxes are calculated to be 9.2 ± 1.2 mm/a and 6.5 ± 2.1 mm/a respectively. Focused erosion of the Namche Barwa Complex and Yarlung Suture Zone in the gorge, where high‐grade metamorphic rocks are exposed, is a consequence of high channel steepness ( values up to 800–1800), high stream power and extreme events including frequent earthquakes and landslides. The coupling between surface erosion and tectonic uplift in the Yarlung Gorge is in full agreement with the tectonic aneurism model of NBS evolution.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12795
2023-11-12
2025-04-17
Loading full text...

Full text loading...

References

  1. An, B., Wang, W., Yang, W., Wu, G., Guo, Y., Zhu, H., Gao, Y., Bai, L., Zhang, F., Zeng, C., Wang, L., Zhou, J., Li, X., Li, J., Zhao, Z., Chen, Y., Liu, J., Li, J., Wang, Z., … Yao, T. (2022). Process, mechanisms, and early warning of glacier collapse‐induced river blocking disasters in the Yarlung Tsangpo Grand Canyon, southeastern Tibetan Plateau. Science of the Total Environment, 816(151), 652. https://doi.org/10.1016/j.scitotenv.2021.151652
    [Google Scholar]
  2. Andersen, T. (2002). Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology, 192, 59–79. https://doi.org/10.1016/S0009‐2541(02)00195‐X
    [Google Scholar]
  3. Andò, S., & Garzanti, E. (2014). Raman spectroscopy in heavy‐mineral studies. Geological Society, London, Special Publications, 386(1), 395–412. https://doi.org/10.1144/sp386.2
    [Google Scholar]
  4. Andò, S., Morton, A., & Garzanti, E. (2014). Metamorphic grade of source rocks revealed by chemical fingerprints of detrital amphibole and garnet. Geological Society, London, Special Publications, 386(1), 351–371. https://doi.org/10.1144/sp386.5
    [Google Scholar]
  5. Bendick, R., & Ehlers, T. A. (2014). Extreme localized exhumation at syntaxes initiated by subduction geometry. Geophysical Research Letters, 41, 5861–5867. https://doi.org/10.1002/2014GL061026
    [Google Scholar]
  6. Bierman, P. R., & Montgomery, D. R. (2020). Key concepts in geomorphology (2nd ed.). Macmillan Learning. https://www.macmillanlearning.com/ed/uk
    [Google Scholar]
  7. Bracciali, L., Parrish, R. R., Najman, Y., Smye, A., Carter, A., & Wijbrans, J. R. (2016). Plio‐Pleistocene exhumation of the eastern Himalayan syntaxis and its domal ‘pop‐up’. Earth‐Science Reviews, 160, 350–385. https://doi.org/10.1016/j.earscirev.2016.07.010
    [Google Scholar]
  8. Burbank, D. W., Blythe, A. E., Putkonen, J., Pratt‐Sitaula, B., Gabet, E., Oskin, M., Barros, A., & Ojha, T. P. (2003). Decoupling of erosion and precipitation in the Himalayas. Nature, 426, 652–655. https://doi.org/10.1038/nature02187
    [Google Scholar]
  9. Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., & Duncan, C. (1996). Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature, 379, 505–510. https://doi.org/10.1038/379505a0
    [Google Scholar]
  10. Burg, J.‐P., Davy, P., Nievergelt, P., Oberli, F., Seward, D., Diao, Z., & Meier, M. (1997). Exhumation during crustal folding in the Namche‐Barwa syntaxis. Terra Nova, 9, 53–56. https://doi.org/10.1111/j.1365‐3121.1997.tb00001.x
    [Google Scholar]
  11. Burg, J.‐P., Nievergelt, P., Oberli, F., Seward, D., Davy, P., Maurin, J. C., Diao, Z., & Meier, M. (1998). The Namche Barwa syntaxis evidence for exhumation related to compressional crustal folding. Journal of Asian Earth Sciences, 16, 239–252. https://doi.org/10.1016/S0743‐9547(98)00002‐6
    [Google Scholar]
  12. Burg, J.‐P., & Podladchikov, Y. (1999). Lithospheric scale folding: Numerical modelling and application to the Himalayan syntaxes. International Journal of Earth Sciences, 88, 190–200. https://doi.org/10.1007/s005310050259
    [Google Scholar]
  13. Chen, Y., Zhang, Z., Chen, X., Palin, R. M., Tian, Z., Shao, Z., Qin, S., & Yuan, Y. (2022). Neoproterozoic and Early Paleozoic magmatism in the eastern Lhasa terrane: Implications for Andean‐type orogeny along the northern margin of Rodinia and Gondwana. Precambrian Research, 369, 1–17. https://doi.org/10.1016/j.precamres.2021.106520
    [Google Scholar]
  14. Chiu, H. Y., Chung, S. L., Wu, F.‐Y., Liu, D., Liang, Y.‐H., Lin, I. J., Iizuka, Y., Xie, L.‐W., Wang, Y., & Chu, M.‐F. (2009). Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477(1–2), 3–19. https://doi.org/10.1016/j.tecto.2009.02.034
    [Google Scholar]
  15. Cina, S. E., Yin, A., Grove, M., Dubey, C. S., Shukla, D. P., Lovera, O. M., Kelty, T. K., Gehrels, G. E., & Foster, D. A. (2009). Gangdese arc detritus within the eastern Himalayan Neogene foreland basin: Implications for the Neogene evolution of the Yalu–Brahmaputra River system. Earth and Planetary Science Letters, 285(1–2), 150–162. https://doi.org/10.1016/j.epsl.2009.06.005
    [Google Scholar]
  16. Clift, P. D., Mark, C., Alizai, A., Khan, H., & Jan, M. Q. (2022). Detrital U–Pb rutile and zircon data show Indus River sediment dominantly eroded from East Karakoram, not Nanga Parbat. Earth and Planetary Science Letters, 600(117), 873. https://doi.org/10.1016/j.epsl.2022.117873
    [Google Scholar]
  17. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J., Hsu, M., Lin, C., Horng, M., Chen, T., Milliman, J., & Stark, C. P. (2004). Earthquake‐triggered increase in sediment delivery from an active mountain belt. Geology, 32(8), 733–736. https://doi.org/10.1130/g20639.1
    [Google Scholar]
  18. Ding, L., Zhong, D., Yin, A., Kapp, P., & Harrison, T. M. (2001). Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192, 423–438. https://doi.org/10.1016/S0012‐821X(01)00463‐0
    [Google Scholar]
  19. Dong, X., Peng, T., Fan, W., Zhao, G., Zhang, J., Liu, B., Gao, J., Peng, B., Liang, X., Zeng, W., & Chen, L. (2019). Origin and tectonic implications of Early Cretaceous high‐ and low‐Mg series rocks and mafic enclaves in the Bomi–Chayu Fold Belt, SE Tibet. Lithos, 334–335, 102–116. https://doi.org/10.1016/j.lithos.2019.03.018
    [Google Scholar]
  20. Du, Y., & Yi, J. (2019). Data of climatic factors of annual average temperature in the Xizang (1990–2015). In National Tibetan Plateau Data Center (Ed.). National Tibetan Plateau Data Center. http://data.tpdc.ac.cn
  21. Enkelmann, E., Ehlers, T. A., Zeitler, P. K., & Hallet, B. (2011). Denudation of the Namche Barwa antiform, eastern Himalaya. Earth and Planetary Science Letters, 307(3–4), 323–333. https://doi.org/10.1016/j.epsl.2011.05.004
    [Google Scholar]
  22. Finnegan, N. J., Hallet, B., Montgomery, D. R., Zeitler, P. K., Stone, J. O., Anders, A. M., & Yuping, L. (2008). Coupling of rock uplift and river incision in the Namche Barwa‐Gyala Peri massif, Tibet. Geological Society of America Bulletin, 120(1–2), 142–155. https://doi.org/10.1130/b26224.1
    [Google Scholar]
  23. Garzanti, E. (2019). Petrographic classification of sand and sandstone. Earth‐Science Reviews, 192, 545–563. https://doi.org/10.1016/j.earscirev.2018.12.014
    [Google Scholar]
  24. Garzanti, E., & Andò, S. (2007). Heavy‐mineral concentration in modern sands: Implications for provenance interpretation. In M. A.Mange & D. T.Wright (Eds.), Heavy minerals in use (pp. 517–545). Amsterdam: Elsevier. https://doi.org/10.1016/S0070‐4571(07)58020‐9
    [Google Scholar]
  25. Garzanti, E., & Andò, S. (2019). Heavy minerals for junior woodchucks. Minerals, 9(3), 1–25. https://doi.org/10.3390/min9030148
    [Google Scholar]
  26. Garzanti, E., Andò, S., & Vezzoli, G. (2008). Settling equivalence of detrital minerals and grain‐size dependence of sediment composition. Earth and Planetary Science Letters, 273(1–2), 138–151. https://doi.org/10.1016/j.epsl.2008.06.020
    [Google Scholar]
  27. Garzanti, E., Andò, S., & Vezzoli, G. (2009). Grain‐size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters, 277, 422–432. https://doi.org/10.1016/j.epsl.2008.11.007
    [Google Scholar]
  28. Garzanti, E., Liang, W., Andò, S., Clift, P. D., Resentini, A., Vermeesch, P., & Vezzoli, G. (2020). Provenance of Thal Desert sand: Focused erosion in the western Himalayan syntaxis and foreland‐basin deposition driven by latest Quaternary climate change. Earth‐Science Reviews, 207(103), 220. https://doi.org/10.1016/j.earscirev.2020.103220
    [Google Scholar]
  29. Garzanti, E., Limonta, M., Vezzoli, G., An, W., Wang, J., & Hu, X. (2018). Petrology and multimineral fingerprinting of modern sand generated from a dissected magmatic arc (Lhasa River, Tibet). In Tectonics, sedimentary basins, and provenance: A celebration of the career of William R. Dickinson's career (Vol. 540, pp. 197–221). The Geological Society of America. https://doi.org/10.1130/2018.2540(09)
    [Google Scholar]
  30. Garzanti, E., Resentini, A., Vezzoli, G., Andò, S., Malusà, M., & Padoan, M. (2012). Forward compositional modelling of alpine orogenic sediments. Sedimentary Geology, 280, 149–164. https://doi.org/10.1016/j.sedgeo.2012.03.012
    [Google Scholar]
  31. Garzanti, E., & Vezzoli, G. (2003). A classification of metamorphic grains in sands based on their composition and grade. Journal of Sedimentary Research, 73, 830–837. https://doi.org/10.1306/012203730830
    [Google Scholar]
  32. Garzanti, E., Vezzoli, G., Andò, S., France‐Lanord, C., Singh, S. K., & Foster, G. (2004). Sand petrology and focused erosion in collision orogens: The Brahmaputra case. Earth and Planetary Science Letters, 220(1–2), 157–174. https://doi.org/10.1016/s0012‐821x(04)00035‐4
    [Google Scholar]
  33. Garzanti, E., Vezzoli, G., Andò, S., Lavé, J., Attal, M., France‐Lanord, C., & DeCelles, P. (2007). Quantifying sand provenance and erosion (Marsyandi River, Nepal Himalaya). Earth and Planetary Science Letters, 258(3–4), 500–515. https://doi.org/10.1016/j.epsl.2007.04.010
    [Google Scholar]
  34. Gemignani, L., Kuiper, K. F., Wijbrans, J. R., Sun, X., & Santato, A. (2019). Improving the precision of single grain mica 40Ar/39Ar‐dating on smaller and younger muscovite grains: Application to provenance studies. Chemical Geology, 511, 100–111. https://doi.org/10.1016/j.chemgeo.2019.02.013
    [Google Scholar]
  35. Gemignani, L., van der Beek, P. A., Braun, J., Najman, Y., Bernet, M., Garzanti, E., & Wijbrans, J. R. (2018). Downstream evolution of the thermochronologic age signal in the Brahmaputra catchment (eastern Himalaya): Implications for the detrital record of erosion. Earth and Planetary Science Letters, 499, 48–61. https://doi.org/10.1016/j.epsl.2018.07.019
    [Google Scholar]
  36. Goswami, D. C. (1985). Brahmaputra River, Assam, India physiography, basin denudation, and channel aggradation. Water Resources Research, 21, 959–978. https://doi.org/10.1029/WR021i007p00959
    [Google Scholar]
  37. Govin, G., van der Beek, P., Najman, Y., Millar, I., Gemignani, L., Huyghe, P., Dupont‐Nivet, G., Bernet, M., Mark, C., & Wijbrans, J. (2020). Early onset and late acceleration of rapid exhumation in the Namche Barwa syntaxis, eastern Himalaya. Geology, 48(12), 1139–1143. https://doi.org/10.1130/g47720.1
    [Google Scholar]
  38. Guo, L., Zhang, H., Harris, N., Parrish, R., Xu, W., & Shi, Z. (2012). Paleogene crustal anatexis and metamorphism in Lhasa terrane, eastern Himalayan syntaxis: Evidence from U–Pb zircon ages and Hf isotopic compositions of the Nyingchi complex. Gondwana Research, 21, 100–111. https://doi.org/10.1016/j.gr.2011.03002
    [Google Scholar]
  39. Guo, L., Zhang, H. F., Harris, N., Xu, W. C., & Pan, F. B. (2017). Detrital zircon U–Pb geochronology, trace‐element and Hf isotope geochemistry of the metasedimentary rocks in the Eastern Himalayan Syntaxis: Tectonic and paleogeographic implications. Gondwana Research, 41, 207–221. https://doi.org/10.1016/j.gr.2015.07.013
    [Google Scholar]
  40. Hartmann, L. A., & Santos, J. O. S. (2004). Predominance of high Th/U, magmatic zircon in Brazilian shield sandstones. Geology, 32, 73–76. https://doi.org/10.1130/g20007.1
    [Google Scholar]
  41. Ingersoll, R. V. (1990). Actualistic sandstone petrofacies: Discriminating modern and ancient source rocks. Geology, 18(8), 733–736. https://doi.org/10.1130/0091‐7613(1990)018<0733:ASPDMA>2.3.CO;2
    [Google Scholar]
  42. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi–Dickinson point‐counting method. Journal of Sedimentary Petrology, 54, 103–116. https://doi.org/10.1306/212F83B9‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  43. Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation‐inductively coupled plasma‐mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211(1–2), 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    [Google Scholar]
  44. Ji, W., Wu, F., Chung, S., Li, J., & Liu, C. (2009). Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3–4), 229–245. https://doi.org/10.1016/j.chemgeo.2009.01.020
    [Google Scholar]
  45. Khandu, Awange, J. L., Anyah, R., Kuhn, M., & Fukuda, Y. (2016). Assessing regional climate simulations of the last 30 years (1982–2012) over Ganges–Brahmaputra–Meghna River Basin. Climate Dynamics, 49(7–8), 2329–2350. https://doi.org/10.1007/s00382‐016‐3457‐0
    [Google Scholar]
  46. Khatiwada, M., & Curtis, S. (2021). Precipitation trends in the Ganges‐Brahmaputra‐Meghna River Basin, South Asia: Inconsistency in satellite‐based products. Atmosphere, 12(9), 1155. https://doi.org/10.3390/atmos12091155
    [Google Scholar]
  47. King, G. E., Herman, F., & Guralnik, B. (2016). Northward migration of the eastern Himalayan syntaxis revealed by OSL thermochronometry. Science, 353(6301), 800–804. https://doi.org/10.1126/science.aaf2637
    [Google Scholar]
  48. Lai, S. C., & Zhu, R. Z. (2019). Petrogenesis of Early Cretaceous high‐Mg# granodiorites in the northeastern Lhasa terrane, SE Tibet: Evidence for mantle‐deep crustal interaction. Journal of Asian Earth Sciences, 177, 17–37. https://doi.org/10.1016/j.jseaes.2019.02.021
    [Google Scholar]
  49. Lang, K. A., Huntington, K. W., Burmester, R., & Housen, B. (2016). Rapid exhumation of the eastern Himalayan syntaxis since the late Miocene. Geological Society of America Bulletin, 128(9–10), 1403–1422. https://doi.org/10.1130/b31419.1
    [Google Scholar]
  50. Lang, K. A., Huntington, K. W., & Montgomery, D. R. (2013). Erosion of the Tsangpo Gorge by megafloods, Eastern Himalaya. Geology, 41(9), 1003–1006. https://doi.org/10.1130/g34693.1
    [Google Scholar]
  51. Larsen, I. J., & Montgomery, D. R. (2012). Landslide erosion coupled to tectonics and river incision. Nature Geoscience, 5(7), 468–473. https://doi.org/10.1038/ngeo1479
    [Google Scholar]
  52. Liang, W., Garzanti, E., Hu, X., Resentini, A., Vezzoli, G., & Yao, W. (2022). Tracing erosion patterns in South Tibet: Balancing sediment supply to the Yarlung Tsangpo from the Himalaya versus Lhasa Block. Basin Research, 34, 411–439. https://doi.org/10.1111/bre.12625
    [Google Scholar]
  53. Liang, W., Resentini, A., Guo, R., & Garzanti, E. (2020). Multimineral fingerprinting of modern sand generated from the Tethys Himalaya (Nianchu River, Tibet). Sedimentary Geology, 399, 1–11. https://doi.org/10.1016/j.sedgeo.2020.105604
    [Google Scholar]
  54. Limonta, M., Garzanti, E., & Resentini, A. (2023). Petrology of Bengal Fan turbidites (IODP expeditions 353 and 354): Provenance versus diagenetic control. Journal of Sedimentary Research, 93(4), 256–272. https://doi.org/10.2110/jsr.2022.071
    [Google Scholar]
  55. Lupker, M., Lavé, J., France‐Lanord, C., Christl, M., Bourlès, D., Carcaillet, J., Maden, C., Wieler, R., Rahman, M., Bezbaruah, D., & Xiaohan, L. (2017). 10Be systematics in the Tsangpo‐Brahmaputra catchment: The cosmogenic nuclide legacy of the eastern Himalayan syntaxis. Earth Surface Dynamics, 5(3), 429–449. https://doi.org/10.5194/esurf‐5‐429‐2017
    [Google Scholar]
  56. Malamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004). Landslides, earthquakes, and erosion. Earth and Planetary Science Letters, 229(1–2), 45–59. https://doi.org/10.1016/j.epsl.2004.10.018
    [Google Scholar]
  57. Marc, O., Hovius, N., Meunier, P., Uchida, T., & Hayashi, S. (2015). Transient changes of landslide rates after earthquakes. Geology, 43(2), 883–886. https://doi.org/10.1130/g36961.1
    [Google Scholar]
  58. Märki, L., Lupker, M., France‐Lanord, C., Lavé, J., Gallen, S., Gajurel, A. P., Haghipour, N., Leuenberger‐West, F., & Eglinton, T. (2021). An unshakable carbon budget for the Himalaya. Nature Geoscience, 14(10), 745–750. https://doi.org/10.1038/s41561‐021‐00815‐z
    [Google Scholar]
  59. Milliman, J. D., & Meade, R. H. (1983). World‐wide delivery of river sediment to the oceans. Journal of Geology, 91, 1–21. https://doi.org/10.1086/628741
    [Google Scholar]
  60. Najman, Y., Mark, C., Barfod, D. N., Carter, A., Parrish, R., Chew, D., & Gemignani, L. (2019). Spatial and temporal trends in exhumation of the Eastern Himalaya and syntaxis as determined from a multitechnique detrital thermochronological study of the Bengal Fan. Geological Society of America Bulletin, 131(9–10), 1607–1622. https://doi.org/10.1130/B35031.1
    [Google Scholar]
  61. Palomares, M., & Arribas, J. (1993). Modern stream sands from compound crystalline sources: Composition and sand generation index. In M. J.Johnsson & A.Basu (Eds.), Processes Controlling the Composition of Clastic Sediments, (Vol. 284, pp. 313–322). GSA Special papers, Geological Society of America. https://doi.org/10.1130/SPE284‐p313
    [Google Scholar]
  62. Rahman, M., Dustegir, M., Karim, R., Haque, A., Nicholls, R. J., Darby, S. E., Nakagawa, H., Hossain, M., Dunn, F. E., & Akter, M. (2018). Recent sediment flux to the Ganges‐Brahmaputra‐Meghna delta system. Science of the Total Environment, 643, 1054–1064. https://doi.org/10.1016/j.scitotenv.2018.06.147
    [Google Scholar]
  63. Resentini, A., Goren, L., Castelltort, S., & Garzanti, E. (2017). Partitioning sediment flux by provenance and tracing erosion patterns in Taiwan. Journal of Geophysical Research: Earth Surface, 122(7), 1430–1454. https://doi.org/10.1002/2016jf004026
    [Google Scholar]
  64. Rice, S. K. (2010). Suspended sediment transport in the Ganges‐Brahmaputra River system, Bangladesh.
    [Google Scholar]
  65. Seward, D., & Burg, J.‐P. (2008). Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge: Constraints from structural and thermochronological data. Tectonophysics, 451, 282–289. https://doi.org/10.1016/j.tecto.2007.11.057
    [Google Scholar]
  66. Sharman, G. R., Sharman, J. P., & Sylvester, Z. (2018). detritalPy: A Python‐based toolset for visualizing and analysing detrital geo‐thermochronologic data. The Depositional Record, 4(2), 202–215. https://doi.org/10.1002/dep2.45
    [Google Scholar]
  67. Shi, X., Zhang, F., Lu, X., Wang, Z., Gong, T., Wang, G., & Zhang, H. (2018). Spatiotemporal variations of suspended sediment transport in the upstream and midstream of the Yarlung Tsangpo River (the upper Brahmaputra), China. Earth Surface Processes and Landforms, 43(2), 432–443. https://doi.org/10.1002/esp.4258
    [Google Scholar]
  68. Sol, S., Meltzer, A., Bürgmann, R., van der Hilst, R. D., King, R., Chen, Z., Koons, P. O., Lev, E., Liu, Y. P., Zeitler, P. K., Zhang, X., Zhang, J., & Zurek, B. (2007). Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy. Geology, 35(6), 563–566. https://doi.org/10.1130/g23408a.1
    [Google Scholar]
  69. Stewart, R. J., Hallet, B., Zeitler, P. K., Malloy, M. A., Allen, C. M., & Trippett, D. (2008). Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya. Geology, 36(9), 711–714. https://doi.org/10.1130/g24890a.1
    [Google Scholar]
  70. Vermeesch, P., Resentini, A., & Garzanti, E. (2016). An R package for statistical provenance analysis. Sedimentary Geology, 336, 14–25. https://doi.org/10.1016/j.sedgeo.2016.01.009
    [Google Scholar]
  71. Vezzoli, G., Garzanti, E., Limonta, M., & Radeff, G. (2020). Focused erosion at the core of the Greater Caucasus: Sediment generation and dispersal from Mt. Elbrus to the Caspian Sea. Earth‐Science Reviews, 200, 102987. https://doi.org/10.1016/j.earscirev.2019.102987
    [Google Scholar]
  72. Wang, Y., Wang, L., Li, X., & Zhou, J. (2020). High temporal and spatial resolution precipitation data of Upper Brahmaputra River Basin. National Tibetan Plateau Data Center. https://doi.org/10.5281/zenodo.3711155
    [Google Scholar]
  73. Wang, Y., Wang, L., Li, X., Zhou, J., & Hu, Z. (2020). An integration of gauge, satellite, and reanalysis precipitation datasets for the largest river basin of the Tibetan Plateau. Earth System Science Data, 12(3), 1789–1803. https://doi.org/10.5194/essd‐12‐1789‐2020
    [Google Scholar]
  74. Xu, W., Zhang, H., Harris, N., Guo, L., Pan, F., & Wang, S. (2013). Geochronology and geochemistry of Mesoproterozoic granitoids in the Lhasa terrane, South Tibet: Implications for the early evolution of Lhasa terrane. Precambrian Research, 236, 46–58. https://doi.org/10.1016/j.precamres.2013.07.016
    [Google Scholar]
  75. Xu, Z., Ji, S., Cai, Z., Zeng, L., Geng, Q., & Cao, H. (2012). Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: Constraints from deformation, fabrics and geochronology. Gondwana Research, 21(1), 19–36. https://doi.org/10.1016/j.gr.2011.06.010
    [Google Scholar]
  76. Yang, R., Herman, F., Fellin, M. G., & Maden, C. (2018). Exhumation and topographic evolution of the Namche Barwa Syntaxis, eastern Himalaya. Tectonophysics, 722, 43–52. https://doi.org/10.1016/j.tecto.2017.10.026
    [Google Scholar]
  77. Yu, G.‐A., Lu, J., Lyu, L., Han, L., & Wang, Z. (2020). Mass flows and river response in rapid uplifting regions—A case of lower Yarlung Tsangpo basin, Southeast Tibet, China. International Journal of Sediment Research, 35(6), 609–620. https://doi.org/10.1016/j.ijsrc.2020.05.006
    [Google Scholar]
  78. Zeitler, P. K., Meltzer, A. S., Brown, L., Kidd, W. S. F., Lim, C., & Enkelmann, E. (2014). Tectonics and topographic evolution of Namche Barwa and the easternmost Lhasa block, Tibet, toward an improved understanding of uplift mechanisms and the elevation history of the Tibetan Plateau. Geological Society of America Special Paper, 507, 23–58. https://doi.org/10.1130/2014.2507(02)
    [Google Scholar]
  79. Zeitler, P. K., Meltzer, A. S., Koons, P. O., Craw, D., Hallet, B., Chamberlain, C. P., Kidd, W. S., Park, S. K., Seeber, L., & Bishop, M. (2001). Erosion, Himalayan geodynamics, and the geomorphology of metamorphism. GSA Today, 11(1), 4–9. https://doi.org/10.1130/10525173(2001)011<0004:EHGATG>2.0.CO;2
    [Google Scholar]
  80. Zhang, J. Y., Yin, A., Liu, W. C., Wu, F. Y., Lin, D., & Grove, M. (2012). Coupled U–Pb dating and Hf isotopic analysis of detrital zircon of modern river sand from the Yalu River (Yarlung Tsangpo) drainage system in southern Tibet: Constraints on the transport processes and evolution of Himalayan rivers. Geological Society of America Bulletin, 124, 1449–1473. https://doi.org/10.1130/B30592.1
    [Google Scholar]
  81. Zhang, L., Liang, S., Yang, X., Gan, W., & Dai, C. (2021). Geometric and kinematic evolution of the Jiali fault, eastern Himalayan Syntaxis. Journal of Asian Earth Sciences, 212, 104722. https://doi.org/10.1016/j.jseaes.2021.104722
    [Google Scholar]
  82. Zhang, R., Xu, Z., Zuo, D., & Ban, C. (2020). Hydro‐meteorological trends in the Yarlung Zangbo River Basin and possible associations with large‐scale circulation. Water, 12(1), 144. https://doi.org/10.3390/w12010144
    [Google Scholar]
  83. Zhang, Z. M., Ding, H., Palin, R. M., Dong, X., Tian, Z., & Chen, Y. (2020). The lower crust of the Gangdese magmatic arc, southern Tibet, implication for the growth of continental crust. Gondwana Research, 77, 136–146. https://doi.org/10.1016/j.gr.2019.07.010
    [Google Scholar]
  84. Zhang, Z. M., Ding, H., Palin, R. M., Dong, X., Tian, Z., Kong, D., Jiang, Y., Qin, S., & Li, W. (2021). On the origin of high‐pressure mafic granulite in the eastern Himalayan Syntaxis: Implications for the tectonic evolution of the Himalayan orogen. Gondwana Research, 104, 4–22. https://doi.org/10.1016/j.gr.2021.05.011
    [Google Scholar]
  85. Zhang, Z. M., Dong, X., Santosh, M., & Zhao, G. C. (2014). Metamorphism and tectonic evolution of the Lhasa terrane, Central Tibet. Gondwana Research, 25(1), 170–189. https://doi.org/10.1016/j.gr.2012.08.024
    [Google Scholar]
  86. Zhao, F., Long, D., Li, X., Huang, Q., & Han, P. (2022). Glacier elevation change in the southeastern Tibetan plateau since the year 2000. In National Tibetan Plateau Data Center (Ed.), National Tibetan Plateau Data Center. http://data.tpdc.ac.cn
    [Google Scholar]
  87. Zhu, D. C., Mo, X., Wang, L., Zhao, Z., Niu, Y., Zhou, C., & Yang, Y. (2009). Petrogenesis of highly fractionated I‐type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U–Pb geochronology, geochemistry and Sr‐Nd‐Hf isotopes. Science in China Series D: Earth Sciences, 52(9), 1223–1239. https://doi.org/10.1007/s11430‐009‐0132‐x
    [Google Scholar]
  88. Zhu, D. C., Wang, Q., Chung, S., Cawood, P. A., & Zhao, Z. (2019). Gangdese magmatism in southern Tibet and India–Asia convergence since 120 Ma. Geological Society, London, Special Publications, 483(1), 583–604. https://doi.org/10.1144/sp483.14
    [Google Scholar]
  89. Zhu, D. C., Wang, Q., Zhao, Z. D., Chung, S. L., Cawood, P. A., Niu, Y., Liu, S. A., Wu, F. Y., & Mo, X. X. (2015). Magmatic record of India‐Asia collision. Scientific Reports, 5(1), 14289. https://doi.org/10.1038/srep17236
    [Google Scholar]
/content/journals/10.1111/bre.12795
Loading
/content/journals/10.1111/bre.12795
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error