1887
Volume 35, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

Salt‐bearing rifted margins comprise some of the most structurally complex and economically important sedimentary basin settings such as the South Atlantic and the Gulf of Mexico salt basins. They are also involved with some of the largest uncertainties regarding the crustal and syn‐rift basin architecture and supra‐salt tectonic evolution, as well as the link between rifted margin architecture with salt deposition and post‐rift gravity‐driven salt tectonics. We thus conduct a margin‐scale study along nearly the entire West African salt basin, from South Gabon to Namibe, combining a vast data set of 2D and 3D seismic and well data with gravimetric and magnetic data to analyse its along‐strike rift and salt tectonic structural variability. We construct regional structural and thickness maps of key salt and post‐salt intervals to depict the history of individual margin segments and to investigate (1) how rifting and rifted margin architecture influences post‐rift salt tectonics evolution, (2) how these vary through time and space and (3) what are the controls between their different salt tectonic styles. We show that rifting and rift structures controlled the salt basin geometry, thickness and base‐salt relief in different ways for the different margin segments, and drastically influenced their post‐rift salt tectonic evolution. Differences in post‐salt sediment supply and continental uplift also had a role in their salt tectonic evolution. The results also have general implications to understand the interplay between rifted margin architecture with post‐rift salt tectonics for salt‐bearing rifted margins.

,

Comparison panel of key margin‐scale profiles along the West African salt‐bearing margin, between Gabon and Namibe, demonstrating the rifted margin, salt and post‐salt structural architecture and variability.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12796
2023-11-12
2025-04-19
Loading full text...

Full text loading...

/deliver/fulltext/bre/35/6/bre12796.html?itemId=/content/journals/10.1111/bre.12796&mimeType=html&fmt=ahah

References

  1. Allen, J., Beaumont, C., & Deptuck, M. E. (2020). Feedback between synrift lithospheric extension, sedimentation and salt tectonics on wide, weak continental margins. Petroleum Geoscience, 26(1), 16–35.
    [Google Scholar]
  2. Alves, T. M., Gawthorpe, R. L., Hunt, D. W., & Monteiro, J. H. (2003). Post‐Jurassic tectono‐sedimentary evolution of the Northern Lusitanian Basin (western Iberian margin). Basin Research, 15(2), 227–249.
    [Google Scholar]
  3. Araujo, M. N., Pérez‐Gussinyé, M., & Muldashev, I. (2022). Oceanward rift migration during formation of Santos–Benguela ultra‐wide rifted margins. Geological Society, London, Special Publications, 524(1), SP524‐2021.
    [Google Scholar]
  4. Augustin, N., Devey, C. W., van der Zwan, F. M., Feldens, P., Tominaga, M., Bantan, R. A., & Kwasnitschka, T. (2014). The rifting to spreading transition in the Red Sea. Earth and Planetary Science Letters, 395, 217–230.
    [Google Scholar]
  5. Brune, S., Heine, C., Pérez‐Gussinyé, M., & Sobolev, S. V. (2014). Rift migration explains continental margin asymmetry and crustal hyper‐extension. Nature Communications, 5(1), 4014.
    [Google Scholar]
  6. Brune, S., Williams, S. E., & Müller, R. D. (2018). Oblique rifting: The rule, not the exception. Solid Earth, 9(5), 1187–1206.
    [Google Scholar]
  7. Buck, W. R. (1991). Modes of continental lithospheric extension. Journal of Geophysical Research: Solid Earth, 96(B12), 20161–20178.
    [Google Scholar]
  8. Buiter, S. J., & Torsvik, T. H. (2014). A review of Wilson Cycle plate margins: A role for mantle plumes in continental break‐up along sutures?Gondwana Research, 26(2), 627–653.
    [Google Scholar]
  9. Callot, J. P., Salel, J. F., Letouzey, J., Daniel, J. M., & Ringenbach, J. C. (2016). Three‐dimensional evolution of salt‐controlled minibasins: Interactions, folding, and megaflap development. AAPG Bulletin, 100(9), 1419–1442.
    [Google Scholar]
  10. Chauvet, F., Sapin, F., Geoffroy, L., Ringenbach, J. C., & Ferry, J. N. (2021). Conjugate volcanic passive margins in the austral segment of the South Atlantic–Architecture and development. Earth‐Science Reviews, 212, 103461.
    [Google Scholar]
  11. Clerc, C., Ringenbach, J. C., Jolivet, L., & Ballard, J. F. (2018). Rifted margins: Ductile deformation, boudinage, continentward‐dipping normal faults and the role of the weak lower crust. Gondwana Research, 53, 20–40.
    [Google Scholar]
  12. Davison, I. (1999). Tectonics and hydrocarbon distribution along the Brazilian South Atlantic margin. Geological Society, London, Special Publications, 153(1), 133–151.
    [Google Scholar]
  13. Davison, I. (2007). Geology and tectonics of the South Atlantic Brazilian salt basins. Geological Society, London, Special Publications, 272(1), 345–359.
    [Google Scholar]
  14. Davison, I., Anderson, L., & Nuttall, P. (2012). Salt deposition, loading and gravity drainage in the Campos and Santos salt basins. Geological Society of London Special Publications, 363(1), 159–174.
    [Google Scholar]
  15. Deptuck, M. E., & Kendell, K. L. (2017). A review of Mesozoic‐Cenozoic salt tectonics along the Scotian margin, eastern Canada (pp. 287–312). Permo‐Triassic Salt Provinces of Europe.
    [Google Scholar]
  16. Dooley, T. P., Hudec, M. R., Carruthers, D., Jackson, M. P., & Luo, G. (2017). The effects of base‐salt relief on salt flow and suprasalt deformation patterns—Part 1: Flow across simple steps in the base of salt. Interpretation, 5(1), SD1–SD23.
    [Google Scholar]
  17. Dooley, T. P., Hudec, M. R., Pichel, L. M., & Jackson, M. P. (2020). The impact of base‐salt relief on salt flow and suprasalt deformation patterns at the autochthonous, paraautochthonous and allochthonous level: Insights from physical models. Geological Society, London, Special Publications, 476(1), 287–315.
    [Google Scholar]
  18. Dupre, S., Bertotti, G., & Cloetingh, S. (2007). Tectonic history along the South Gabon Basin: Anomalous early post‐rift subsidence. Marine and Petroleum Geology, 24(3), 151–172.
    [Google Scholar]
  19. Epin, M. E., Manatschal, G., Sapin, F., & Rowan, M. G. (2021). The tectono‐magmatic and subsidence evolution during lithospheric breakup in a salt‐rich rifted margin: Insights from a 3D seismic survey from South Gabon. Marine and Petroleum Geology, 128, 105005.
    [Google Scholar]
  20. Erdi, A., & Jackson, C. A. L. (2021). What controls salt‐detached contraction in the translational domain of the outer Kwanza Basin, offshore Angola?Basin Research, 33(3), 1880–1905.
    [Google Scholar]
  21. Evans, S. L., & Jackson, C. A. L. (2020). Base‐salt relief controls salt‐related deformation in the outer Kwanza Basin, offshore Angola. Basin Research, 32(4), 668–687.
    [Google Scholar]
  22. Fernandez, O., Olaiz, A., Cascone, L., Hernandez, P., Pereira, A. D. F., Tritlla, J., Ingles, M., Aida, B., Pinto, I., Rocca, R., Sanders, C., Herrá, A., & Tur, N. (2020). Geophysical evidence for breakup volcanism in the Angola and Gabon passive margins. Marine and Petroleum Geology, 116, 104330.
    [Google Scholar]
  23. Ferrer, O., Gratacós, O., Roca, E., & Muñoz, J. A. (2017). Modeling the interaction between presalt seamounts and gravitational failure in salt‐bearing passive margins: The Messinian case in the northwestern Mediterranean Basin. Interpretation, 5(1), SD99–SD117.
    [Google Scholar]
  24. Ge, H., Jackson, M. P., & Vendeville, B. C. (1997). Kinematics and dynamics of salt tectonics driven by progradation. AAPG Bulletin, 81(3), 398–423.
    [Google Scholar]
  25. Gindre‐Chanu, L., Pichat, A., Delhaye‐Prat, V., Vis, C., Ringenbach, R., & Schlund, J. M. (2022). Depositional and diagenetic model of the Aptian potash‐bearing Loémé evaporites in onshore Congo. Sedimentary Geology, 427, 106038.
    [Google Scholar]
  26. Green, P. F., & Machado, V. (2017). Pre‐rift and synrift exhumation, post‐rift subsidence and exhumation of the onshore Namibe Margin of Angola revealed from apatite fission track analysis. Geological Society, London, Special Publications, 438(1), 99–118.
    [Google Scholar]
  27. Guiraud, M., Buta‐Neto, A., & Quesne, D. (2010). Segmentation and differential post‐rift uplift at the Angola margin as recorded by the transform‐rifted Benguela and oblique‐to‐orthogonal‐rifted Kwanza basins. Marine and Petroleum Geology, 27(5), 1040–1068.
    [Google Scholar]
  28. Heine, C., Zoethout, J., & Müller, R. D. (2013). Kinematics of the South Atlantic rift. Solid Earth, 4(2), 215–253.
    [Google Scholar]
  29. Hudec, M. R., & Jackson, M. P. (2004). Regional restoration across the Kwanza Basin, Angola: Salt tectonics triggered by repeated uplift of a metastable passive margin. AAPG Bulletin, 88(7), 971–990.
    [Google Scholar]
  30. Hudec, M. R., & Norton, I. O. (2019). Upper Jurassic structure and evolution of the Yucatán and Campeche subbasins, southern Gulf of Mexico. AAPG Bulletin, 103(5), 1133–1151.
    [Google Scholar]
  31. Hudec, M. R., Norton, I. O., Jackson, M. P., & Peel, F. J. (2013). Jurassic evolution of the Gulf of Mexico salt basin. AAPG Bulletin, 97(10), 1683–1710.
    [Google Scholar]
  32. Huismans, R. S., & Beaumont, C. (2003). Symmetric and asymmetric lithospheric extension: Relative effects of frictional‐plastic and viscous strain softening. Journal of Geophysical Research: Solid Earth, 108(B10), 1–22.
    [Google Scholar]
  33. Huismans, R. S., & Beaumont, C. (2011). Depth‐dependent extension, two‐stage breakup and cratonic underplating at rifted margins. Nature, 473(7345), 74–78.
    [Google Scholar]
  34. Huismans, R. S., & Beaumont, C. (2014). Rifted continental margins: The case for depth‐dependent extension. Earth and Planetary Science Letters, 407, 148–162.
    [Google Scholar]
  35. Izquierdo‐Llavall, E., Ringenbach, J. C., Sapin, F., Rives, T., & Callot, J. P. (2022). Crustal structure and lateral variations in the Gulf of Mexico conjugate margins: From rifting to break‐up. Marine and Petroleum Geology, 136, 105484.
    [Google Scholar]
  36. Jackson, C. A. L., Jackson, M. P., & Hudec, M. R. (2015). Understanding the kinematics of salt‐bearing passive margins: A critical test of competing hypotheses for the origin of the Albian Gap, Santos Basin, offshore Brazil. Bulletin, 127(11–12), 1730–1751.
    [Google Scholar]
  37. Jackson, C. A. L., Jackson, M. P., Hudec, M. R., & Rodriguez, C. R. (2015). Enigmatic structures within salt walls of the Santos Basin—Part 1: Geometry and kinematics from 3D seismic reflection and well data. Journal of Structural Geology, 75, 135–162.
    [Google Scholar]
  38. Jackson, M., & Hudec, M. (2009, October). Interplay of basement tectonics, salt tectonics, and sedimentation in the Kwanza Basin, Angola. In AAPG search and discovery article 30091, presented at the AAPG international conference and exhibition (Vol. 26, p. 29). AAPG Search and Discovery.
    [Google Scholar]
  39. Jackson, M. P., & Hudec, M. R. (2005). Stratigraphic record of translation down ramps in a passive‐margin salt detachment. Journal of Structural Geology, 27(5), 889–911.
    [Google Scholar]
  40. Jackson, M. P., & Hudec, M. R. (2017). Salt tectonics: Principles and practice. Cambridge University Press.
    [Google Scholar]
  41. Jones, I. F., & Davison, I. (2014). Seismic imaging in and around salt bodies. Interpretation, 2(4), SL1–SL20.
    [Google Scholar]
  42. Kukla, P. A., Strozyk, F., & Mohriak, W. U. (2018). South Atlantic salt basins–witnesses of complex passive margin evolution. Gondwana Research, 53, 41–57.
    [Google Scholar]
  43. Kumar, N., Danforth, A., Nuttall, P., Helwig, J., Bird, D. E., & Venkatraman, S. (2013). From oceanic crust to exhumed mantle: A 40 year (1970–2010) perspective on the nature of crust under the Santos Basin, SE Brazil. Geological Society, London, Special Publications, 369(1), 147–165.
    [Google Scholar]
  44. Lavier, L. L., & Manatschal, G. (2006). A mechanism to thin the continental lithosphere at magma‐poor margins. Nature, 440(7082), 324–328.
    [Google Scholar]
  45. Lentini, M. R., Fraser, S. I., Sumner, H. S., & Davies, R. J. (2010). Geodynamics of the central South Atlantic conjugate margins: implications for hydrocarbon potential. Petroleum Geoscience, 16, 217–229.
    [Google Scholar]
  46. Magee, C., Pichel, L. M., Madden‐Nadeau, A. L., Jackson, C. A. L., & Mohriak, W. (2021). Salt–magma interactions influence intrusion distribution and salt tectonics in the Santos Basin, offshore Brazil. Basin Research, 33(3), 1820–1843.
    [Google Scholar]
  47. Marton, L. G., Tari, G. C., & Lehmann, C. T. (2000). Evolution of the Angolan passive margin, West Africa, with emphasis on post‐salt structural styles. Geophysical Monograph‐American Geophysical Union, 115, 129–150.
    [Google Scholar]
  48. McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40(1), 25–32.
    [Google Scholar]
  49. Mohriak, W. U., & Leroy, S. (2013). Architecture of rifted continental margins and break‐up evolution: Insights from the South Atlantic, North Atlantic and Red Sea–Gulf of Aden conjugate margins. Geological Society, London, Special Publications, 369(1), 497–535.
    [Google Scholar]
  50. Moragas, M., Baqués, V., Martín‐Martín, J. D., Sharp, I., Lapponi, F., Hunt, D., Zeller, M., Vergés, J., Messager, G., Gindre‐Chanu, L., Swart, R., & Machado, V. (2023). Paleoenvironmental and diagenetic evolution of the Aptian Pre‐Salt succession in Namibe Basin (Onshore Angola). Marine and Petroleum Geology, 150, 106153.
    [Google Scholar]
  51. Moulin, M., Aslanian, D., Olivet, J. L., Contrucci, I., Matias, L., Géli, L., Klingelhoefer, F., Nouzé, H., Réhault, J. P., & Unternehr, P. (2005). Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (ZaïAngo project). Geophysical Journal International, 162(3), 793–810.
    [Google Scholar]
  52. Neuharth, D., Brune, S., Wrona, T., Glerum, A., Braun, J., & Yuan, X. (2022). Evolution of rift systems and their fault networks in response to surface processes. Tectonics, 41(3), e2021TC007166.
    [Google Scholar]
  53. Norton, I. O., Carruthers, D. T., & Hudec, M. R. (2016). Rift to drift transition in the South Atlantic salt basins: A new flavor of oceanic crust. Geology, 44(1), 55–58.
    [Google Scholar]
  54. Peron‐Pinvidic, G., Manatschal, G., & Osmundsen, P. T. (2013). Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology, 43, 21–47.
    [Google Scholar]
  55. Phillips, T. B., Magee, C., Jackson, C. A. L., & Bell, R. E. (2018). Determining the three‐dimensional geometry of a dike swarm and its impact on later rift geometry using seismic reflection data. Geology, 46(2), 119–122.
    [Google Scholar]
  56. Pichel, L. M., Finch, E., & Gawthorpe, R. L. (2019). The impact of pre‐salt rift topography on salt tectonics: A discrete‐element modeling approach. Tectonics, 38(4), 1466–1488.
    [Google Scholar]
  57. Pichel, L. M., Huismans, R. S., Gawthorpe, R., Faleide, J. I., & Theunissen, T. (2022a). Late‐Syn‐to post‐rift salt tectonics on wide rifted margins—Insights from geodynamic modeling. Tectonics, 41(8), e2021TC007158.
    [Google Scholar]
  58. Pichel, L. M., Huismans, R. S., Gawthorpe, R., Faleide, J. I., & Theunissen, T. (2022b). Coupling crustal‐scale rift architecture with passive margin salt tectonics: A geodynamic modelling approach. Journal of Geophysical Research: Solid Earth, 127(11), e2022JB025177.
    [Google Scholar]
  59. Pichel, L. M., Huuse, M., Redfern, J., & Finch, E. (2019). The influence of base‐salt relief, rift topography and regional events on salt tectonics offshore Morocco. Marine and Petroleum Geology, 103, 87–113.
    [Google Scholar]
  60. Pichel, L. M., & Jackson, C. A. L. (2020). The enigma of the Albian Gap: Spatial variability and the competition between salt expulsion and extension. Journal of the Geological Society, 177(6), 1129–1148.
    [Google Scholar]
  61. Pichel, L. M., Jackson, C. A. L., Peel, F., & Dooley, T. P. (2020). Base‐salt relief controls salt‐tectonic structural style, São Paulo Plateau, Santos Basin, Brazil. Basin Research, 32(3), 453–484.
    [Google Scholar]
  62. Pichel, L. M., Jackson, C. A. L., Peel, F., & Ferrer, O. (2021). The Merluza Graben: How a failed spreading center influenced margin structure, and salt deposition and tectonics in the Santos Basin, Brazil. Tectonics, 40(10), e2020TC006640.
    [Google Scholar]
  63. Pichel, L. M., Peel, F., Jackson, C. A.‐L., & Huuse, M. (2018). Geometry and kinematics of salt‐detached ramp syncline basins. Journal of Structural Geology, 115, 208–230. https://doi.org/10.1016/j.jsg.2018.07.016
    [Google Scholar]
  64. Pindell, J., & Heyn, T. (2022). Dynamo‐thermal subsidence and sag–salt section deposition as magma‐rich rifted margins move off plume centres along incipient lines of break‐up. Journal of the Geological Society, 179(5), jgs2021‐095.
    [Google Scholar]
  65. Planke, S., Symonds, P. A., Alvestad, E., & Skogseid, J. (2000). Seismic volcanostratigraphy of large‐volume basaltic extrusive complexes on rifted margins. Journal of Geophysical Research: Solid Earth, 105(B8), 19335–19351.
    [Google Scholar]
  66. Quirk, D. G., Hertle, M., Jeppesen, J. W., Raven, M., Mohriak, W. U., Kann, D. J., Nørgaard, M., Howe, M. J., Hsu, D., Coffey, B., & Mendes, M. P. (2013). Rifting, subsidence and continental break‐up above a mantle plume in the central South Atlantic. Geological Society, London, Special Publications, 369(1), 185–214.
    [Google Scholar]
  67. Reston, T. J. (2010). The opening of the central segment of the South Atlantic: Symmetry and the extension discrepancy. Petroleum Geoscience, 16(3), 199–206.
    [Google Scholar]
  68. Ribes, C., Ghienne, J. F., Manatschal, G., Dall'Asta, N., Stockli, D. F., Galster, F., Gillard, M., & Karner, G. D. (2020). The Grès Singuliers of the Mont Blanc region (France and Switzerland): Stratigraphic response to rifting and crustal necking in the Alpine Tethys. International Journal of Earth Sciences, 109(7), 2325–2352.
    [Google Scholar]
  69. Rowan, M. G. (2014). Passive‐margin salt basins: Hyperextension, evaporite deposition, and salt tectonics. Basin Research, 26(1), 154–182.
    [Google Scholar]
  70. Rowan, M. G. (2020). The South Atlantic and Gulf of Mexico salt basins: Crustal thinning, subsidence and accommodation for salt and presalt strata. Geological Society, London, Special Publications, 476(1), 333–363.
    [Google Scholar]
  71. Rowan, M. G., Peel, F. J., & Vendeville, B. C. (2004). Thrust tectonics and hydrocarbon systems, American Association of Petroleum Geologists Memoir (Vol. 82, pp. 157–182).
    [Google Scholar]
  72. Rowan, M. G., Tilton, J., Lebit, H., & Fiduk, J. C. (2022). Thin‐skinned extensional salt tectonics, counterregional faults, and the Albian Gap of Brazil. Marine and Petroleum Geology, 137, 105478.
    [Google Scholar]
  73. Salazar‐Mora, C. A., Huismans, R. S., Fossen, H., & Egydio‐Silva, M. (2018). The Wilson cycle and effects of tectonic structural inheritance on rifted passive margin formation. Tectonics, 37(9), 3085–3101.
    [Google Scholar]
  74. Sapin, F., Ringenbach, J. C., & Clerc, C. (2021). Rifted margins classification and forcing parameters. Scientific Reports, 11(1), 1–17.
    [Google Scholar]
  75. Schofield, N., Alsop, I., Warren, J., Underhill, J. R., Lehné, R., Beer, W., & Lukas, V. (2014). Mobilizing salt: Magma‐salt interactions. Geology, 42(7), 599–602.
    [Google Scholar]
  76. Stanton, N., Kusznir, N., Gordon, A., & Schmitt, R. (2019). Architecture and tectono‐magmatic evolution of the Campos Rifted Margin: Control of OCT structure by basement inheritance. Marine and Petroleum Geology, 100, 43–59.
    [Google Scholar]
  77. Tari, G., Novotny, B., Jabour, H., & Hafid, M. (2017). Salt tectonics along the Atlantic margin of NW Africa (Morocco and Mauritania). In Permo‐Triassic Salt Provinces of Europe, North Africa and the Atlantic margins (pp. 331–351). Elsevier.
    [Google Scholar]
  78. Theunissen, T., & Huismans, R. S. (2019). Long‐term coupling and feedback between tectonics and surface processes during non‐volcanic rifted margin formation. Journal of Geophysical Research: Solid Earth, 124(11), 12323–12347.
    [Google Scholar]
  79. Tugend, J., Gillard, M., Manatschal, G., Nirrengarten, M., Harkin, C., Epin, M. E., Sauter, D., Autin, J., Kusznir, N., & Mcdermott, K. (2020). Reappraisal of the magma‐rich versus magma‐poor rifted margin archetypes. Geological Society, London, Special Publications, 476(1), 23–47.
    [Google Scholar]
  80. Turner, J. P., Green, P. F., Holford, S. P., & Lawrence, S. R. (2008). Thermal history of the Rio Muni (West Africa)–NE Brazil margins during continental breakup. Earth and Planetary Science Letters, 270(3–4), 354–367.
    [Google Scholar]
  81. Unternehr, P., Péron‐Pinvidic, G., Manatschal, G., & Sutra, E. (2010). Hyper‐extended crust in the South Atlantic: In search of a model. Petroleum Geoscience, 16(3), 207–215.
    [Google Scholar]
  82. Wardlaw, N. C. & Nicholls, G. D. 1972. Cretaceous evaporites of Brazil and West Africa and their bearing on the theory of continental separation. International Geological Congress, 24th Meeting, Section 6 (pp. 43–55).
  83. Zalán, P. V., Severino, M. d. C. G., Rigoti, C. A., Magnavita, L. P., De Oliveira, J. A. B., & Vianna, A. R. (2011). An entirely new 3D‐view of the crustal and mantle structure of a South Atlantic Passive Margin—Santos, Campos and Espírito Santo Basins, Brazil. In AAPG Annual Convention and Exhibition, Houston, TX. AAPG Search and Discovery.
    [Google Scholar]
/content/journals/10.1111/bre.12796
Loading
/content/journals/10.1111/bre.12796
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error