1887
Volume 35, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

Drainage evolution of the Pearl River, one of the major rivers in the eastern margin of the Asian continent, has important implications for the tectonomorphic evolution of the northern margin of the South China Sea and the southeastern Tibetan Plateau. Previous reconstructions using different methods suggested discrepant timings for the formation of river, ranging from Early Oligocene to Middle Miocene. Here, we address this heavily debated topic using quantitative unmixing modelling of detrital zircon data from the Pearl River Mouth Basin in the northern margin of the South China Sea. In this study, we develop a novel approach for estimating the relative contributions of detrital zircon sources to their shared sink, and propose to use the correlation coefficients among zircon contribution models to evaluate the trade‐off among sources with similar age spectra, to avoid the potential overinterpretation of individual contributions. Our new method is applied to new (997) and published detrital zircon U–Pb data from offshore boreholes and modern Pearl River samples to quantitatively interpret and reconstruct the sediment provenance of the Pearl River Mouth Basin and the development of the Pearl River. Our findings reveal that the provenance change of the Pearl River Mouth Basin can be divided into three main stages. Eocene sediments were mainly sourced in the intra‐basinal highlands and the eastern coastal tributaries, indicating a local drainage system. Early Oligocene provenances extended westward, as shown by the increase in sediment contribution from the central and western parts of the Pearl River (28% in total). Since the Late Oligocene, the eastern, central and western parts of the modern Pearl River have contributed equal amounts of zircons to the Pearl River Mouth Basin, indicating the establishment and long‐term stability of the modern‐like drainage system, as highlighted by our new data acquired from the borehole Miocene strata. The Late Oligocene westward expansion of the Pearl River is consistent with the timing of the coeval breakup and spreading of the South China Sea and the intensified Asian monsoon precipitation, highlighting the importance of base level fall and climate in controlling the drainage evolution.

,

Schematic Late Oligocene–present (a), the Early Oligocene (b) and the Eocene (c) reconstructions of the drainage system of the Pearl River, draining into the PRMB. The Eocene Pearl River was restricted in the eastern part of the Cathaysia Block. The river propagated to the Yangtze Block, west of the Shaoxing–Jiangshan–Pingxiang fault zone in the Early Oligocene (b). Further westward propagation formed the modern‐like drainage system at the Late Oligocene (a). The modern coastal line is plotted for showing the relative locations.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12797
2023-11-12
2025-04-30
Loading full text...

Full text loading...

References

  1. Braza, M., & Mcquarrie, N. (2021). Determining the tempo of exhumation in the eastern Himalaya: Part 1. Geometry, kinematics and predicted cooling ages. Basin Research, 34, 141–169.
    [Google Scholar]
  2. Campbell, S. D. G., & Sewell, R. J. (1997). Structural control and tectonic setting of Mesozoic volcanism in Hong Kong. Journal of the Geological Society, 154, 1039–1052.
    [Google Scholar]
  3. Cao, L., Shao, L., Qiao, P., Zhao, Z., & Van Hinsbergen, D. J. J. (2018). Early Miocene birth of modern Pearl River recorded low‐relief, high‐elevation surface formation of SE Tibetan Plateau. Earth and Planetary Science Letters, 496, 120–131.
    [Google Scholar]
  4. Cardoso, A. R., Nogueira, A. C. R., Rabelo, C. E. N., Soares, J. L., & Góes, A. M. (2019). Multi‐approach provenance in stratigraphy: Implications for the Upper Mesozoic evolution of the Parnaíba Basin, NE Brazil. Journal of South American Earth Sciences, 96, 102386.
    [Google Scholar]
  5. Carter, A., & Bristow, C. S. (2000). Detrital zircon geochronology: Enhancing the quality of sedimentary source information through improved methodology and combined U‐Pb and fission‐track techniques. Basin Research, 12, 47–57.
    [Google Scholar]
  6. Chen, C., Shi, H., Xu, S., & Chen, X. (2003). Tertiary hydrocarbon reservoir forming conditions in the eastern Pearl River Mouth Basin (pp. 13–90). Science Press.
    [Google Scholar]
  7. Chen, P. (2000). Paleoenvironmental changes during the Cretaceous in eastern China. Developments in Palaeontology and Stratigraphy, 17, 81–90.
    [Google Scholar]
  8. Chen, Y., Meng, J., Liu, H., Wang, C., Tang, M., Liu, T., & Zhao, Y. (2022). Detrital zircons record the evolution of the Cathaysian Coastal Mountains along the South China margin. Basin Research, 34, 688–701.
    [Google Scholar]
  9. Chu, Y., Lin, W., Faure, M., Wang, Q., & Ji, W. (2012). Phanerozoic tectonothermal events of the Xuefengshan Belt, Central South China: Implications from U–Pb age and Lu‐Hf determinations of granites. Lithos, 150, 243–255.
    [Google Scholar]
  10. Clark, M. K., House, M. A., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., & Tang, W. (2005). Late Cenozoic uplift of southeastern Tibet. Geology, 33, 525–528.
    [Google Scholar]
  11. Clift, P., Lin, J., & Barckhausen, U. (2002). Evidence of low flexural rigidity and low viscosity lower continental crust during continental break‐up in the South China Sea. Marine and Petroleum Geology, 19, 951–970.
    [Google Scholar]
  12. Clift, P. D. (2006). Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth and Planetary Science Letters, 241, 571–580.
    [Google Scholar]
  13. Clift, P. D. (2020). Asian monsoon dynamics and sediment transport in SE Asia. Journal of Asian Earth Sciences, 195, 104352.
    [Google Scholar]
  14. Clift, P. D., Blusztajn, J., & Nguyen, A. D. (2006). Large‐scale drainage capture and surface uplift in eastern Tibet–SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophysical Research Letters, 33, L19403.
    [Google Scholar]
  15. Cogné, N., Chew, D. M., Donelick, R. A., & Ansberque, C. (2020). LA‐ICP‐MS apatite fission track dating: A practical zeta‐based approach. Chemical Geology, 531, 119302.
    [Google Scholar]
  16. Compston, W., Williams, I., Kirschvink, J., Zichao, Z., & Guogan, M. (1992). Zircon U‐Pb ages for the early Cambrian time‐scale. Journal of the Geological Society, 149, 171–184.
    [Google Scholar]
  17. Ding, L., Kapp, P., Cai, F., Garzione, C. N., Xiong, Z., Wang, H., & Wang, C. (2022). Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews Earth & Environment., 3, 652–667.
    [Google Scholar]
  18. Dong, D., Zhang, G., Zhong, K., Yuan, S., & Wu, S. (2009). Tectonic evolution and dynamics of deepwater area of Pearl River Mouth Basin, northern South China Sea. Journal of Earth Science, 20, 147–159.
    [Google Scholar]
  19. Ghoshal, S., Mcquarrie, N., Huntington, K. W., Robinson, D. M., & Ehlers, T. A. (2023). Testing erosional and kinematic drivers of exhumation in the central Himalaya. Earth and Planetary Science Letters, 609, 118087.
    [Google Scholar]
  20. Gilder, S. A., Keller, G. R., Luo, M., & Goodell, P. C. (1991). Eastern Asia and the Western Pacific timing and spatial distribution of rifting in China.
  21. Gong, Z. S., Li, S. T., Xie, T., Zhang, Q.‐M., Xu, S.‐C., Xia, K.‐Y., Yang, J.‐M., Sun, Y.‐C., & Liu, L.‐H. (1997). Continental margin basin analysis and hydrocarbon accumulation of the northern South China Sea. 510 pp.
  22. Guo, Z., Ruddiman, W. F., Hao, Q. Z., Wu, H., Qiao, Y., Zhu, R. X., Peng, S., Wei, J., Yuan, B., & Liu, T. (2002). Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416, 159–163.
    [Google Scholar]
  23. Guo, Z. T., Sun, B., Zhang, Z. S., Peng, S. Z., Xiao, G. Q., Ge, J. Y., Hao, Q. Z., Qiao, Y. S., Liang, M. Y., Liu, J. F., Yin, Q. Z., & Wei, J. J. (2008). A major reorganization of Asian climate regime by the early Miocene. Climate of the Past, 4, 535–584.
    [Google Scholar]
  24. Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer‐based reconstructions, model and animations. Journal of Asian Earth Sciences, 20, 353–431.
    [Google Scholar]
  25. He, J., Garzanti, E., Cao, L., & Wang, H. (2020). The zircon story of the Pearl River (China) from cretaceous to present. Earth Science Reviews, 201, 103078.
    [Google Scholar]
  26. Hoke, G. D. (2018). Geochronology transforms our view of how Tibet's southeast margin evolved. Geology, 46, 95–96.
    [Google Scholar]
  27. Hoke, G. D., Liu‐Zeng, J., Hren, M. T., Wissink, G. K., & Garzione, C. N. (2014). Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth and Planetary Science Letters, 394, 270–278.
    [Google Scholar]
  28. Huang, K., Zhong, G., He, M., Liu, L., Wu, Z., & Liu, X. (2018). Growth and linkage of a complex oblique‐slip fault zone in the Pearl River Mouth Basin, northern South China Sea. Journal of Structural Geology, 117, 27–43.
    [Google Scholar]
  29. Iwano, H., Danhara, T., Danhara, Y., Hirabayashi, S., Nakajima, T., Sakai, H., & Hirata, T. (2020). Zircon fission‐track and U–Pb double dating using femtosecond laser ablation–inductively coupled plasma–mass spectrometry: A technical note. Island Arc, 29(1), e12348.
    [Google Scholar]
  30. Jasra, A., Stephens, D. A., Gallagher, K., & Holmes, C. C. (2006). Bayesian mixture modelling in geochronology via Markov Chain Monte Carlo. Mathematical Geology, 38, 269–300.
    [Google Scholar]
  31. Jin, H., Wan, S., Clift, P. D., Liu, C., Huang, J., Jiang, S., Li, M., Qin, L., Shi, X., & Li, A. (2022). Birth of the Pearl River at 30 Ma: Evidence from sedimentary records in the Northern South China Sea. Earth and Planetary Science Letters, 600, 117872.
    [Google Scholar]
  32. John, B. M., Zhou, X. H., & Li, J. L. (1990). Formation and tectonic evolution of southeastern China and Taiwan: Isotopic and geochemical constraints. Tectonophysics, 183, 145–160.
    [Google Scholar]
  33. Lavarini, C., Attal, M., Da Costa Filho, C. A., & Kirstein, L. A. (2018). Does pebble abrasion influence detrital age population statistics? A numerical investigation of natural data sets. Journal of Geophysical Research: Earth Surface, 123, 2577–2601.
    [Google Scholar]
  34. Lehrmann, D. J., Chaikin, D. H., Enos, P., Minzoni, M., Payne, J. L., Yu, M., Goers, A., Wood, T., Richter, P., Kelley, B. M., Li, X., Qin, Y., Liu, L., & Lu, G. (2015). Patterns of basin fill in Triassic turbidites of the Nanpanjiang Basin: Implications for regional tectonics and impacts on carbonate‐platform evolution. Basin Research, 27, 587–612.
    [Google Scholar]
  35. Li, C.‐F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y., Zhao, X., Liu, Q., Kulhanek, D. K., Wang, J., Song, T., Zhao, J., Qiu, N., Guan, Y., Zhou, Z., Williams, T., Bao, R., Briais, A., Brown, E. A., … Zhang, G.‐L. (2014). Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP expedition 349. Geochemistry, Geophysics, Geosystems, 15, 4958–4983.
    [Google Scholar]
  36. Li, S., Currie, B. S., Rowley, D. B., & Ingalls, M. (2015). Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: Constraints on the tectonic evolution of the region. Earth and Planetary Science Letters, 432, 415–424.
    [Google Scholar]
  37. Li, X.‐H., Wei, G., Shao, L., Liu, Y., Liang, X., Jian, Z., Sun, M., & Wang, P. (2003). Geochemical and Nd isotopic variations in sediments of the South China Sea: A response to Cenozoic tectonism in Se Asia. Earth and Planetary Science Letters, 211, 207–220.
    [Google Scholar]
  38. Li, Z.‐X., & Li, X.‐H. (2007). Formation of the 1300‐km‐wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat‐slab subduction model. Geology, 35, 179.
    [Google Scholar]
  39. Liu, C., Clift, P. D., Carter, A., Böning, P., Hu, Z., Sun, Z., & Pahnke, K. (2017). Controls on modern erosion and the development of the Pearl River drainage in the late Paleogene. Marine Geology, 394, 52–68.
    [Google Scholar]
  40. Liu, C., Stockli, D. F., Clift, P. D., Wan, S., Stockli, L. D., Höfig, T. W., & Schindlbeck‐Belo, J. C. (2022). Geochronological and geochemical characterization of paleo‐rivers deposits during rifting of the South China Sea. Earth and Planetary Science Letters, 584, 117427.
    [Google Scholar]
  41. Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K., & Wang, D. (2009). Continental and oceanic crust recycling‐induced melt‐peridotite interactions in the trans‐North China orogen: U‐Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51, 537–571.
    [Google Scholar]
  42. Liu, Y., Hu, Z., Gao, S., Günther, D., Xu, J., Gao, C., & Chen, H. (2008). In situ analysis of major and trace elements of anhydrous minerals by LA‐ICP‐MS without applying an internal standard. Chemical Geology, 257, 34–43.
    [Google Scholar]
  43. Morley, C. K. (2016). Major unconformities/termination of extension events and associated surfaces in the South China seas: Review and implications for tectonic development. Journal of Asian Earth Sciences, 120, 62–86.
    [Google Scholar]
  44. Najman, Y., Bickle, M., Garzanti, E., Pringle, M., Barfod, D., Brozovic, N., Burbank, D., & Ando, S. (2009). Reconstructing the exhumation history of the lesser Himalaya, NW India, from a multitechnique provenance study of the Foreland Basin Siwalik group. Tectonics, 28, 1–15.
    [Google Scholar]
  45. Nie, J., Ruetenik, G., Gallagher, K., Hoke, G., Garzione, C. N., Wang, W., Stockli, D., Hu, X., Wang, Z., Wang, Y., Stevens, T., Danišík, M., & Liu, S. (2018). Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nature Geoscience, 11, 944–948.
    [Google Scholar]
  46. Pang, X., Chen, C., Zhu, M., He, M., Shen, J., Lian, S., Wu, X., & Shao, L. (2009). Baiyun movement: A significant tectonic event on Oligocene/Miocene boundary in the northern South China Sea and its regional implications. Journal of Earth Science, 20, 49–56.
    [Google Scholar]
  47. Rahl, J. M., Ehlers, T. A., & Van Der Pluijm, B. A. (2007). Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits. Earth and Planetary Science Letters, 256, 147–161.
    [Google Scholar]
  48. Shao, L., Cao, L., Pang, X., Jiang, T., Qiao, P., & Zhao, M. (2016). Detrital zircon provenance of the Paleogene syn‐rift sediments in the northern South China Sea. Geochemistry, Geophysics, Geosystems, 17, 255–269.
    [Google Scholar]
  49. Shao, L., Meng, A., Li, Q., Qiao, P., Cui, Y., Cao, L., & Chen, S. (2017). Detrital zircon ages and elemental characteristics of the Eocene sequence in IODP Hole U1435A: Implications for rifting and environmental changes before the opening of the South China Sea. Marine Geology, 394, 39–51. https://doi.org/10.1016/j.margeo.2017.08.002
    [Google Scholar]
  50. Shao, L., Qiao, P., Zhao, M., Li, Q., Wu, M., Pang, X., & Zhang, H. (2016). Depositional characteristics of the northern South China Sea in response to the evolution of the Pearl River. Geological Society, London, Special Publications, 429, 31–44.
    [Google Scholar]
  51. Shi, H., He, M., & Zhang, L. (2014). Hydrocarbon geology, accumulation pattern and the next exploration strategy in the eastern pearl river mouth basin. China Offshore Oil and Gas, 3, 11–25.
    [Google Scholar]
  52. Shi, H., Xu, C., Zhou, Z., & Ma, C. (2011). Zircon U‐Pb dating on granitoids from the northern South China Sea and its geotectonic relevance. Acta Geologica Sinica, 85, 1359–1372.
    [Google Scholar]
  53. Shi, X., Kohn, B., Yu, C., Tian, Y., Li, G., & Zhao, P. (2022). Thermo‐tectonic history of coastal NW South China Sea: A low‐temperature thermochronology study. Tectonophysics, 833, 229344.
    [Google Scholar]
  54. Sun, W. D. (2016). Initiation and evolution of the South China Sea: An overview. Acta Geochimica, 35, 215–225.
    [Google Scholar]
  55. Sun, X., Kuiper, K. F., Tian, Y., Li, C. A., Gemignani, L., Zhang, Z., & Wijbrans, J. R. (2020). Impact of hydraulic sorting and weathering on mica provenance studies: An example from the Yangtze River. Chemical Geology, 532, 119359.
    [Google Scholar]
  56. Sun, X., & Wang, P. (2005). How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 222, 181–222.
    [Google Scholar]
  57. Suo, Y., Li, S., Jin, C., Zhang, Y., Zhou, J., Li, X., Wang, P., Liu, Z., Wang, X., & Somerville, I. (2019). Eastward tectonic migration and transition of the Jurassic‐Cretaceous Andean‐type continental margin along Southeast China. Earth‐Science Reviews, 196, 102884.
    [Google Scholar]
  58. Tang, X., Yang, S., & Hu, S. (2020). Provenance of the Paleogene sediments in the Pearl River Mouth Basin, northern South China Sea: Insights from zircon U‐Pb and fission track double dating. Journal of Asian Earth Sciences, 200, 104494.
    [Google Scholar]
  59. Tang, X. Y., Sheng‐Biao, H. U., Zhang, G. C., Yang, S. C., Shen, H. L., Rao, S., & Wei‐Wei, L. I. (2014). Characteristic of surface heat flow in the Pearl River Mouth Basin and its relationship with thermal lithosphere thickness. Chinese Journal of Geophysics, 57, 1857–1867.
    [Google Scholar]
  60. Tapponnier, P., Peltzer, G., Le Dain, A., Armijo, R., & Cobbold, P. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10, 611–616.
    [Google Scholar]
  61. Taylor, B., & Hayes, D. (1983). Origin and history of the South China Sea basin. Washington DC American Geophysical Union Geophysical Monograph Series, 27, 23–56.
    [Google Scholar]
  62. Tian, Y., Kohn, B. P., Gleadow, A. J. W., & Hu, S. (2014). A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 119, 676–698.
    [Google Scholar]
  63. Tian, Y., Qin, Y., Hu, J., Zhang, G., Liu, Y., Pan, L., Yan, Z., Zhang, Z., Sun, X., & Zhang, P. (2022). Cretaceous‐Cenozoic first‐order landscape evolution of the East Asia and its tectonic drivers: A synthesis of sedimentary and structural records. Geotectonica et Metallogenia, 188, 471–482.
    [Google Scholar]
  64. Vermeesch, P., & Garzanti, E. (2015). Making geological sense of ‘big data’ in sedimentary provenance analysis. Chemical Geology, 409, 20–27.
    [Google Scholar]
  65. Wang, C., Wen, S., Liang, X., Shi, H., & Liang, X. (2018). Detrital zircon provenance record of the Oligocene Zhuhai formation in the Pearl River Mouth Basin, northern South China Sea. Marine and Petroleum Geology, 98, 448–461.
    [Google Scholar]
  66. Wang, P. (2004). Cenozoic deformation and history of sea‐land interaction in Asia. Geophysical Monograph Series, 149, 1–22.
    [Google Scholar]
  67. Wang, P., Huang, C.‐Y., Lin, J., Jian, Z., Sun, Z., & Zhao, M. (2019). The South China Sea is not a mini‐Atlantic: Plate‐edge rifting vs intra‐plate rifting. National Science Review, 6, 902–913.
    [Google Scholar]
  68. Wang, W., Yang, X., Bidgoli, T. S., & Ye, J. (2019). Detrital zircon geochronology reveals source‐to‐sink relationships in the Pearl River Mouth Basin, China. Sedimentary Geology, 388, 81–98.
    [Google Scholar]
  69. Wang, W., Ye, J., Bidgoli, T., Yang, X., Shi, H., & Shu, Y. (2017). Using detrital zircon geochronology to constrain Paleogene provenance and its relationship to rifting in the Zhu 1 depression, Pearl River Mouth Basin, South China Sea. Geochemistry, Geophysics, Geosystems, 18, 3976–3999.
    [Google Scholar]
  70. Wang, Y., Wang, Y., Li, S., Seagren, E., Zhang, Y., Zhang, P., & Qian, X. (2020). Exhumation and landscape evolution in eastern South China since the cretaceous: New insights from fission‐track thermochronology. Journal of Asian Earth Sciences, 191, 104239.
    [Google Scholar]
  71. Wang, Y., Zhang, P., Schoenbohm, L. M., Zheng, W., Zhang, B., Zhang, J., Zheng, D., Zhou, R., & Tian, Y. (2018). Two‐phase exhumation along major shear zones in the SE Tibetan Plateau in the late Cenozoic. Tectonics, 37, 2675–2694.
    [Google Scholar]
  72. Waskom, M. (2021). seaborn: Statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021
    [Google Scholar]
  73. Wu, M., Huang, J., Spicer, R. A., Li, S., Zhao, J., Deng, W., Ding, W., Tang, H., Xing, Y., Tian, Y., Zhou, Z., & Su, T. (2022). The early Oligocene establishment of modern topography and plant diversity on the southeastern margin of the Tibetan Plateau. Global and Planetary Change, 214, 103856.
    [Google Scholar]
  74. Xie, H., Zhou, D., Pang, X., Li, Y., Wu, X., Qiu, N., Li, P., & Chen, G. (2013). Cenozoic sedimentary evolution of Deepwater sags in the Pearl River Mouth Basin, northern South China Sea. Marine Geophysical Research, 34, 159–173.
    [Google Scholar]
  75. Xu, C., Shi, H., Barnes, C. G., & Zhou, Z. (2015). Tracing a late Mesozoic magmatic arc along the southeast Asian margin from the granitoids drilled from the northern South China Sea. International Geology Review, 58, 71–94.
    [Google Scholar]
  76. Xu, X., O'reilly, S. Y., Griffin, W. L., Wang, X., Pearson, N. J., & He, Z. (2007). The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 158, 51–78.
    [Google Scholar]
  77. Xu, Y., Wang, C. Y., & Zhao, T. (2016). Using detrital zircons from River Sands to constrain major tectono‐thermal events of the Cathaysia Block, SE China. Journal of Asian Earth Sciences, 124, 1–13.
    [Google Scholar]
  78. Yan, Y., Yao, D., Tian, Z.‐X., Huang, C.‐Y., Dilek, Y., Clift, P. D., & Li, Z.‐A. (2018). Tectonic topography changes in Cenozoic East Asia: A landscape erosion‐sediment archive in the South China Sea. Geochemistry, Geophysics, Geosystems, 19, 1731–1750.
    [Google Scholar]
  79. Yin, A., & Harrison, T. M. (2000). Geologic evolution of the Himalayan‐Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28, 211–280.
    [Google Scholar]
  80. Yu, H.‐S. (1994). Structure, stratigraphy and basin subsidence of tertiary basins along the Chinese southeastern continental margin. Tectonophysics, 235, 63–76.
    [Google Scholar]
  81. Zawacki, E., Van Soest, M., Hodges, K., Scott, J., Barboni, M., Strecker, M., Feibel, C., Campisano, C., & Arrowsmith, R. (2022). Sediment provenance and silicic volcano‐tectonic evolution of the northern East African Rift System from U/Pb and (U‐Th)/He laser ablation double dating of detrital zircons. Earth and Planetary Science Letters, 580, 117375.
    [Google Scholar]
  82. Zhang, G., Tian, Y., Li, R., Shen, X., Zhang, Z., Sun, X., & Chen, D. (2022). Progressive tectonic evolution from crustal shortening to mid‐lower crustal expansion in the southeast Tibetan Plateau: A synthesis of structural and thermochronological insights. Earth‐Science Reviews, 226, 103951.
    [Google Scholar]
  83. Zhang, Z., Daly, J. S., Tian, Y., Tyrrell, S., Sun, X., Badenszki, E., Qin, Y., Cheng, Z., & Guo, R. (2022). Sedimentary provenance perspectives on the evolution of the Major Rivers draining the eastern Tibetan Plateau. Earth‐Science Reviews, 232, 104151.
    [Google Scholar]
  84. Zhao, M., Shao, L., & Qiao, P. (2015). Characteristics of detrital zircon U‐Pb geochronology of the Pearl River Sands and its implication on provenances. Tongji Daxue Xuebao/Journal of Tongji University, 43, 915–923.
    [Google Scholar]
  85. Zhao, Y., Ren, J., Pang, X., Yang, L., & Zheng, J. (2018). Structural style, formation of low angle normal fault and its controls on the evolution of Baiyun Rift, northern margin of the South China Sea. Marine and Petroleum Geology, 89, 687–700.
    [Google Scholar]
  86. Zheng, H., Clift, P. D., Wang, P., Tada, R., Jia, J., He, M., & Jourdan, F. (2013). Pre‐Miocene birth of the Yangtze River. Proceedings of the National Academy of Sciences of the United States of America, 110, 7556–7561.
    [Google Scholar]
  87. Zhong, L., Li, G., Yan, W., Xia, B., Feng, Y., Miao, L., & Zhao, J. (2017). Using zircon U–Pb ages to constrain the provenance and transport of heavy minerals within the northwestern shelf of the South China Sea. Journal of Asian Earth Sciences, 134, 176–190.
    [Google Scholar]
  88. Zhou, X. M., Sun, T., Shen, W. Z., Shu, L. S., & Niu, Y. L. (2006). Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29, 26–33.
    [Google Scholar]
  89. Zhou, Z., Mei, L., Liu, J., Zheng, J., Chen, L., & Hao, S. (2018). Continentward‐dipping detachment fault system and asymmetric rift structure of the Baiyun Sag, northern South China Sea. Tectonophysics, 726, 121–136.
    [Google Scholar]
  90. Zhu, W., Huang, B., Mi, L., Wilkins, R. W. T., Fu, N., & Xiao, X. (2009). Geochemistry, origin, and deep‐water exploration potential of natural gases in the Pearl River mouth and Qiongdongnan basins, South China Sea. AAPG Bulletin, 93, 741–761.
    [Google Scholar]
/content/journals/10.1111/bre.12797
Loading
/content/journals/10.1111/bre.12797
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error