1887
Volume 35, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

River‐blocking landslides exert a deep impact on mountain range landscapes and the organization of catchments. A blocked river diverted to another watershed modifies both original and transferred drainage networks both up‐ and downstream. Using western Pyrenees examples, a geological and geomorphic framework with diagnostic criteria to detect river diversion by landslides is presented, including the identification of elbows of diversion, eroded divides, beheaded underfit rivers, diverted overfit rivers, reversed river segments and the landslides at fault. Some landslides caused the formation of lakes that overflowed upstream at catchment divide segments with elevations lower than those of blocking landslide tops. Unravelling the presence of fan deltas at distinct sites/elevations of palaeolake shores contributed as well to identification of river damming and later diversion episodes. Reconstruction of the sedimentary organization of river palaeovalleys and of their associated fluvial terraces and palaeoriver channels (some currently submerged by the Cantabrian Sea), along with the reconstruction of river profiles, analysis of bedrock and morphology of watershed divides, identify seven river diversions caused by landslides and 14 additional slides that variably constrained river basin dynamics in the area studied. The diverting slides have current areas between 0.06 and 12.3 km2 (thus including giant examples), thicknesses up to 300 m and translational–rotational rupture surfaces usually with low dip angles (3.5–12.3°). A combination of relative dating methods and published absolute ages suggests that diversion events occurred during the Quaternary. This study shows that river diversion by landslides can be significant in mountainous areas of moderate relief.

,

Sketches showing the geomorphic features expected after a river is dammed and diverted by a landslide. (a) Pre‐landslide geography. (b) Formation of a lake by landslide damming and eventual overflow. (c) Reconfiguration of the drainage network and catchment boundaries after erosion of the divide.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12798
2023-11-12
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/bre/35/6/bre12798.html?itemId=/content/journals/10.1111/bre.12798&mimeType=html&fmt=ahah

References

  1. Ábalos, B. (2016). Geologic map of the Basque Cantabrian Basin and a new tectonic interpretation of the Basque arc. International Journal of Earth Sciences, 105, 2327–2354. https://doi.org/10.1007/s00531‐016‐1291‐6
    [Google Scholar]
  2. Agliardi, F., Crosta, G. B., & Frattini, P. (2012). Slow rock‐slope deformation. In J. J.Clague & D.Stead (Eds.), Landslides: Types, mechanisms and modeling (pp. 207–221). Cambridge University Press. https://doi.org/10.1017/CBO9780511740367.019
    [Google Scholar]
  3. Altuna, J., Cearreta, A., Edeso, J. M., Elorza, M., Isturiz, M. J., Mariezkurrena, K., Mujika, J. A., & Ugarte, F. (1993). El yacimiento de Herriko‐Barra (Zarautz, País Vasco) y su relación con las transgresiones marinas holocenas. In ITGME (Ed.), El Cuaternario en España y Portugal (Vol. 2, pp. 923–942). Instituto Tecnológico GeoMinero de España.
    [Google Scholar]
  4. Alvarez‐Marrón, J., Hetzelb, R., Niedermannc, S., Menéndez, R., & Marquínez, J. (2008). Origin, structure and exposure history of a wave‐cut platform more than 1 Ma in age at the coast of northern Spain: A multiple cosmogenic nuclide approach. Geomorphology, 93, 316–334. https://doi.org/10.1016/j.geomorph.2007.03.005
    [Google Scholar]
  5. Anton, L., Mather, A. E., Stokes, M., Muñoz‐Martin, A., & De Vicente, G. (2015). Exceptional river gorge formation from unexceptional floods. Nature Communications, 6, 7963. https://doi.org/10.1038/ncomms8963
    [Google Scholar]
  6. AZTI . (2015). Estudio morfo‐sedimentario y geofísico de la bahía de La Concha de San Sebastián. Donostiako Udala‐Ayuntamiento de San Sebastián.
    [Google Scholar]
  7. Barnolas, A., & Pujalte, V. (2004). La Cordillera Pirenaica: definición, límites y división. In J. A.Vera (Ed.), Geología de España (pp. 233–241). Sociedad Geológica de España – Instituto Geológico y Minero de España.
    [Google Scholar]
  8. Benito‐Calvo, A., Moreno, D., Fujioka, T., López, G. I., Martín‐González, F., Martínez‐Fernández, A., Hernando‐Alonso, I., Karampaglidis, T., Bermúdez de Castro, J. M., & Francisco Gutiérrez, F. (2021). Towards the steady state? A long‐term river incision deceleration pattern during pleistocene entrenchment (Upper Ebro River, Northern Spain). Global and Planetary Change, 213, 103813. https://doi.org/10.1016/j.gloplacha.2022.103813
    [Google Scholar]
  9. Bhattacharya, J. P., Copeland, P., Lawton, T. F., & Holbrook, J. (2016). Estimation of source area, river paleo‐discharge, paleoslope, and sediment budgets of linked deep‐time depositional systems and implications for hydrocarbon potential. Earth‐Science Reviews, 153, 77–110. https://doi.org/10.1016/j.earscirev.2015.10.013
    [Google Scholar]
  10. Bilbao‐Lasa, P., Jara‐Muñoz, J., Pedoja, K., Álvarez, I., Aranburu, A., Iriarte, E., & Galparsoro, I. (2020). Submerged marine terraces identification and an approach for numerical modeling the sequence formation in the Bay of Biscay (Northeastern Iberian Peninsula). Frontiers in Earth Science, 8, 47. https://doi.org/10.3389/feart.2020.00047
    [Google Scholar]
  11. Bishop, P. (1995). Drainage rearrangement by river capture, beheading and diversion. Progress in Physical Geography, 19(4), 449–473. https://doi.org/10.1177/030913339501900402
    [Google Scholar]
  12. Blum, M., Martin, J., Milliken, K., & Garvin, M. (2013). Paleovalley systems: Insights from Quaternary analogs and experiments. Earth‐Science Reviews, 116, 128–169. https://doi.org/10.1016/j.earscirev.2012.09.003
    [Google Scholar]
  13. Bodego, A., & Agirrezabala, L. M. (2013). Syn‐depositional thin‐ and thick‐skinned extensional tectonics in the mid‐Cretaceous Lasarte sub‐basin, western Pyrenees. Basin Research, 25, 594–612. https://doi.org/10.1111/bre.12017
    [Google Scholar]
  14. Campos, J., & García‐Dueñas, V. (1974). Mapa Geológico y Memoria de la Hoja n° 64 (San Sebastián). In Mapa Geológico de España E. 1:50.000. Segunda Serie (MAGNA) (Primera ed., p. 43). IGME.
    [Google Scholar]
  15. Colman, S. M. (1983). Influence of the Onion Creek salt diapir on the late Cenozoic history of Fisher Valley, southeastern Utah. Geology, 11, 240–243. https://doi.org/10.1130/0091‐7613(1983)11
    [Google Scholar]
  16. Costa, J. E., & Schuster, R. L. (1988). The formation and failure of natural dams. GSA Bulletin, 100(7), 1054–1068. https://doi.org/10.1130/0016‐7606(1988)100<1054:TFAFON>2.3.CO;2
    [Google Scholar]
  17. Cuerpo de Ingenieros Militares . (1852). Plano de la Plaza de San Sebastián y sus inmediaciones 1:10.000 scale — Plano n° 212 de la Cartoteca del Centro Geográfico del Ejército.
  18. Cuevas, J., Aranguren, A., Badillo, J. M., & Tubía, J. M. (1999). Estudio estructural del sector central del Arco Vasco (Cuenca Vasco‐Cantábrica). Boletín Geológico y Minero, 110, 3–18.
    [Google Scholar]
  19. Dalrymple, R. W., Mackay, D. A., Ichaso, A. A., & Choi, K. S. (2012). Processes, morphodynamics, and facies of tide‐dominated estuaries. In R. A.Davis, Jr. & R. W.Dalrymple (Eds.), Principles of tidal sedimentology (pp. 79–107). Springer. https://doi.org/10.1007/978‐94‐007‐0123‐6_5
    [Google Scholar]
  20. Davis, W. M. (1890). The rivers and valleys of Pennsylvania. National Geographic Magazine, 1, 183–253.
    [Google Scholar]
  21. Davis, W. M. (1913). Meandering valleys and underfit rivers. Annals of the Association of American Geographers, 3, 3–28.
    [Google Scholar]
  22. DeFelipe, I., Pedreira, D., Pulgar, J. A., Beek, P. A., Bernet, M., & Pik, R. (2019). Unraveling the Mesozoic and Cenozoic tectonothermal evolution of the Eastern Basque‐Cantabrian Zone–Western Pyrenees by low‐temperature thermochronology. Tectonics, 38, 3436–3461. https://doi.org/10.1029/2019TC005532
    [Google Scholar]
  23. DeFelipe, I., Pulgar, J. A., & Pedreira, D. (2018). Crustal structure of the Eastern Basque‐Cantabrian Zone‐Western Pyrenees: From the Cretaceous hyperextension to the Cenozoic inversion. Revista de la Sociedad Geológica de España, 31, 69–82.
    [Google Scholar]
  24. del Val, M., Duvald, M., Medialdea, A., Bateman, M. D., Moreno, D., Arriolabengoa, M., Aranburu, A., & Iriarte, E. (2019). First chronostratigraphic framework of fluvial terrace systems in the eastern Cantabrian margin (Bay of Biscay, Spain). Quaternary Geochronology, 49, 108–114. https://doi.org/10.1016/j.quageo.2018.07.001
    [Google Scholar]
  25. del Val, M., Iriarte, E., Arriolabengoa, M., & Aranburu, A. (2015). An automated method to extract fluvial terraces from LIDAR based high resolution Digital Elevation Models: The Oiartzun valley, a case study in the Cantabrian Margin. Quaternary International, 364, 35–43. https://doi.org/10.1016/j.quaint.2014.10.030
    [Google Scholar]
  26. Delchiaro, M., Della Seta, M., Martino, S., Dehbozorgi, M., & Nozaem, R. (2019). Reconstruction of river valley evolution before and after the emplacement of the giant Seymareh rock avalanche (Zagros Mts., Iran). Earth Surface Dynamics, 7, 929–947. https://doi.org/10.5194/esurf‐7‐929‐2019
    [Google Scholar]
  27. Demoulin, A., Bovy, B., Rixhon, G., & Cornet, Y. (2007). An automated method to extract fluvial terraces from digital elevation models: The Vesdre valley, a case study in eastern Belgium. Geomorphology, 91, 51–64. https://doi.org/10.1016/j.geomorph.2007.01.020
    [Google Scholar]
  28. Densmore, A. L., & Hovius, N. (2000). Topographic fingerprints of bedrock lanslides. Geology, 28, 371–374.
    [Google Scholar]
  29. DFG . (2006). Nuevo proyecto de construcción de la variante de Orio en la carretera N‐634.
  30. Discenza, M. E., & Esposito, C. (2021). State‐of‐art and remarks on some open questions about DSGSDs: Hints from a review of the scientific literature on related topics. Italian Journal of Engineering Geology and Environment, 1, 31–59. https://doi.org/10.4408/IJEGE.2021‐01.O‐03
    [Google Scholar]
  31. Douglass, J., Meek, M., Dorn, R. I., & Schmeeckle, M. W. (2009). A criteria‐based methodology for determining the mechanism of transverse drainage development, with application to the southwestern United States. GSA Bulletin, 121(3–4), 586–598. https://doi.org/10.1130/B26131.1
    [Google Scholar]
  32. Dumont, T., Replumaz, A., Rouméjon, S., Briais, A., Rigo, A., & Bouillin, J.‐P. (2015). Microseismicity of the Béarn range: Reactivation of inversion and collision structures at the northern edge of the Iberian plate. Tectonics, 34, 934–950. https://doi.org/10.1002/2014TC003816
    [Google Scholar]
  33. Dury, G. H. (1964). Principles of underfit streams. U.S. Geologic Survey, professional paper 452‐A. U.S. Government Printing Office. https://doi.org/10.3133/PP452A
    [Google Scholar]
  34. Eddey, L. J., Bateman, M. D., Livingstone, S. J., & Lee, J. R. (2022). New geomorphic evidence for a multi‐stage proglacial lake associated with the former British–Irish Ice Sheet in the Vale of Pickering, Yorkshire, UK. Journal of Quaternary Science, 37(8), 1407–1421. https://doi.org/10.1002/jqs.3413
    [Google Scholar]
  35. Edeso, J. M. (2006). Caracterización granulométrica, morfométrica, litológica y sedimentológica de las terrazas fluviales del río Oiartzun (Gipuzkoa, País Vasco). Lurralde: Investigación y Espacio, 29, 299–342. http://www.ingeba.org/lurralde/lurranet/lur29/edeso29/29edeso.htm
    [Google Scholar]
  36. Edeso, J. M., Lopetegi, A., & Mujika, J. A. (2014). Quaternary Sea level changes in Jaizkibel: Sedimentary interpretation and geomorphological dynamics. Munibe Monographs. Nature Series, 2, 25–46.
    [Google Scholar]
  37. Edeso, J. M., Soria, A., Lopetegi, A., Mujika, J. A., & Ruiz, M. (2017). Estratigrafía y Sedimentología del relleno detrítico del estuario del Río Urumea (Donostia‐San Sebastián, España). Boletín de la Sociedad Geológica Mexicana, 69, 175–197.
    [Google Scholar]
  38. ESGEMAR . (2015). Estudio geofísico marino mediante sísmica de reflexión de alta resolución en la bahía de La Concha. Donostiako Udala‐Ayuntamiento de San Sebastián.
    [Google Scholar]
  39. Euroestudios . (1971). Proyecto de construcción Autopista Bilbao‐Behobia. Tramo IVc: Zarauz‐S. Sebastian.
    [Google Scholar]
  40. EVE . (1996). Mapa Hidrogeológico del País Vasco (p. 377). Ente Vasco de la Energía.
    [Google Scholar]
  41. Fan, X., Dufresne, A., Siva Subramanian, S., Strom, A., Hermanns, A., Tacconi Stefanelli, C., Hewitt, K., Yunus, A. P., Dunningh, S., Capra, L., Geertsema, M., Miller, B., Casagli, N., Jansen, J. D., & Xu, Q. (2020). The formation and impact of landslide dams – State of the art. Earth‐Science Reviews, 203, 103116. https://doi.org/10.1016/j.earscirev.2020.103116
    [Google Scholar]
  42. Flor, G., & Flor‐Blanco, G. (2014). Raised beaches in the Cantabrian coast. In F.Gutiérrez & M.Gutiérrez (Eds.), Landscapes and landforms of Spain, world geomorphological landscapes (pp. 239–248). Springer. https://doi.org/10.1007/978‐94‐017‐8628‐7_20
    [Google Scholar]
  43. Flor‐Blanco, G., Flor, G. J., Morales, A., & Pando, L. (2015). Hydrodynamic controls of morpho‐sedimentary evolution in a rockbounded mesotidal estuary. Tina Menor (N Spain). Journal of Iberian Geology, 41, 315–332. https://doi.org/10.5209/rev_JIGE.2015.v41.n3.50313
    [Google Scholar]
  44. Fryirs, K. A., & Brierley, G. J. (2013). Geomorphic analysis of river systems: An approach to reading the landscape. Wiley‐Blacwell. https://doi.org/10.1002/9781118305454
    [Google Scholar]
  45. Galparsoro, I., Borja, A., Legorburu, I., Hernández, C., Chust, G., Liria, P., & Uriarte, A. (2010). Morphological characteristics of the Basque continental shelf (Bay of Biscay, northern Spain); their implications for Integrated Coastal Zone Management. Geomorphology, 118, 314–329. https://doi.org/10.1016/j.geomorph.2010.01.012
    [Google Scholar]
  46. García, A. F. (2006). Thresholds of strath genesis deduced from landscape response to stream piracy by pancho Rico creek in the coast ranges of central California. American Journal of Science, 306, 655–681. https://doi.org/10.2475/08.2006.03
    [Google Scholar]
  47. Garcia‐Castellanos, D. (2006). Long‐term evolution of tectonic lakes: Climatic controls on the development of internally drained basins. GSA Special Papers, 398, 283–294. https://doi.org/10.1130/2006.2398(17)
    [Google Scholar]
  48. Garcia‐Castellanos, D., & O'Connor, J. (2018). Outburst floods provide erodability estimates consistent with longterm landscape evolution. Scientific Reports, 8(1), 10573. https://doi.org/10.1038/s41598‐018‐28981‐y
    [Google Scholar]
  49. Garrote, A., García, J., Muñoz, L., Fernández, J., Cerezo, A., Tijero, F., & Zapata, M. (1988). Mapa Geológico y Memoria de la Hoja n° 64‐I (Zarautz). Mapa Geológico del País Vasco E. 1:25.000. EVE, 42 p.
  50. Gibling, M. (2006). Width and thickness of fluvial channel bodies and valley fills in the geological record: A literature compilation and classification. Journal of Sedimentary Research, 76, 731–770. https://doi.org/10.2110/jsr.2006.060
    [Google Scholar]
  51. Gómez de Llarena, J. (1955). Terrazas fluviales. Munibe. Sociedad de Ciencias Naturales Aranzadi (San Sebastian), 7, 27–33.
    [Google Scholar]
  52. Gómez, M., Vergés, J., & Riaza, C. (2002). Inversion tectonics of the northern margin of the Basque Cantabrian Basin. Bulletin de la Société Géologique de France, 173, 449–459.
    [Google Scholar]
  53. Guerit, L., Goren, L., Dominguez, S., Malavieille, J., & Castellfort, S. (2018). Landscape ‘stress’ and reorganization from χ‐maps: Insights from experimental drainage networks in oblique collision setting. Earth Surface Processes and Landforms, 43, 3152–3163. https://doi.org/10.1002/esp.4477
    [Google Scholar]
  54. Gutiérrez, F., Sevil, J., Silva, P. G., Roca, E., & Escosa, F. (2019). Geomorphic and stratigraphic evidence of Quaternary diapiric activity enhanced by fluvial incision. Navarrés salt wall and graben system, SE Spain. Geomorphology, 342, 176–195. https://doi.org/10.1016/j.geomorph.2019.06.002
    [Google Scholar]
  55. Hancock, G. T., & Perrin, N. D. (2009). Green Lake Landslide and other giant and very large postglacial landslides in Fiordland, New Zealand. Quaternary Science Reviews, 28, 1020–1036. https://doi.org/10.1016/j.quascirev.2008.08.017
    [Google Scholar]
  56. Hanisch, J. (1974a). A “Sigsbee knoll” in early tertiary Bay of Biscay and associated turbidity currents. American Association of Petroleum Geologists Bulletin, 62, 2232–2242. https://doi.org/10.1306/C1EA53C8‐16C9‐11D7‐8645000102C1865D
    [Google Scholar]
  57. Hanisch, J. (1974b). Der Tiefsee–Diapir von Zarauz (N–Spanien) im Spiegel von Sedimentation und Tektonik des Kreide/Tertiair–Flysches. Geologisches Jahrbuch, B–11, 101–142.
    [Google Scholar]
  58. Hart, M. W., Shaller, P. J., & Farrand, G. T. (2012). When landslides are misinterpreted as faults: Case studies from the Western United States. Environmental & Engineering Geoscience, 18, 313–325.
    [Google Scholar]
  59. Hermanns, R. L., Folguera, A., Penna, I., Fauqué, L., & Niedermann, S. (2011). Landslide dams in the Central Andes of Argentina (Northern Patagonia and the Argentine Northwest). In S. G.Evans, R. L.Hermanns, A. L.Strom, & G.Scarascia Mugnozza (Eds.), Natural and artificial rockslide dams, lecture notes in earth sciences (Vol. 133, pp. 147–176). Springer‐Verlag. https://doi.org/10.1007/978‐3‐642‐04764‐0_5
    [Google Scholar]
  60. Hermanns, R. L., Hewitt, K., Strom, A., Evans, S. G., Dunning, S. A., & Scarascia‐Mugnozza, G. (2011). The classification of rockslide dams. In S. G.Evans, R. L.Hermanns, A. L.Strom, & G.Scarascia Mugnozza (Eds.), Natural and artificial rockslide dams, lecture notes in earth sciences (Vol. 133, pp. 581–593). Springer‐Verlag. https://doi.org/10.1007/978‐3‐642‐04764‐0_24
    [Google Scholar]
  61. Hovius, N., Stark, C. P., & Allen, P. A. (1997). Sediment flux from a mountain belt derived by landslide mapping. Geology, 25, 231–234.
    [Google Scholar]
  62. Irabien, M. J., Cearreta, A., Gomez‐Arozamena, J. G., & García‐Artola, A. (2020). Holocene vs Anthropocene sedimentary records in a human‐altered estuary: The Pasaia case (northern Spain). Marine Geology, 429, 106292. https://doi.org/10.1016/j.margeo.2020.106292
    [Google Scholar]
  63. Jaboyedoffa, M., Carreaa, D., Derrona, M.‐H., Oppikoferb, T., Pennac, I. M., & Rudaza, B. (2020). A review of methods used to estimate initial landslide failure surface depths and volumes. Engineering Geology, 267, 105478. https://doi.org/10.1016/j.enggeo.2020.105478
    [Google Scholar]
  64. Johnson, K. N. (2016). Causes and consequences of meandering in bedrock rivers: How interactions between rock properties and environmental conditions shape landscapes (PhD thesis). UC Santa Cruz. https://escholarship.org/uc/item/812236pk
  65. Johnson, K. N., & Finnegan, N. J. (2015). A lithologic control on active meandering in bedrock channels. GSA Bulletin, 127(11/12), 1766–1776. https://doi.org/10.1130/B31184.1
    [Google Scholar]
  66. Kennedy, D. M., & Paulik, R. (2007). Estuarine shore platforms in Whanganui Inlet, South Island, New Zealand. Geomorphology, 88, 214–225. https://doi.org/10.1016/j.geomorph.2006.11.007
    [Google Scholar]
  67. Korup, O. (2006). Landslide‐induced river channel avulsions in mountain catchments of southwest New Zealand. Geomorphology, 63, 57–80. https://doi.org/10.1016/j.geomorph.2004.03.005
    [Google Scholar]
  68. Korup, O., Strom, A. L., & Weidinger, J. T. (2007). Fluvial response to large rock‐slope failures: Examples from the Himalayas, the Tien Shan, and the Southern Alps in New Zealand. Geomorphology, 78, 3–21. https://doi.org/10.1016/j.geomorph.2006.01.020
    [Google Scholar]
  69. Lacroix, P., Handwergfer, A. L., & Bièvre, G. (2020). Life and death of slow‐moving landslides. Nature Reviews Earth & Environment, 1, 404–419. https://doi.org/10.1038/s43017‐020‐0072‐8
    [Google Scholar]
  70. Link, P. K., Crosby, B. T., Lifton, Z. M., Eversole, E. A., & Rittenour, T. M. (2014). The late Pleistocene (17 ka) Soldier Bar landslide and Big Creek Lake, Frank Church‐River of No Return Wilderness, central Idaho, U.S.A. Rocky Mountain Geology, 49(1), 17–31. https://doi.org/10.2113/gsrocky.49.1.17
    [Google Scholar]
  71. Logan, R. L., & Schuster, R. L. (1991). Lakes divided: The origin of Lake Sutherland and Lake Crescent, Clallam County, Washington. Washington Geology, 19(1), 38–42.
    [Google Scholar]
  72. Loget, N., & Van Den Driessche, J. (2009). Wave train model for knickpoint migration. Geomorphology, 106, 376–382. https://doi.org/10.1016/j.geomorph.2008.10.017
    [Google Scholar]
  73. Ma, Q., Li, A., & Wang, P. (2023). Automatic detection of river capture based on planform pattern and χ‐plot of the stream network. Geomorphology, 425, 108587. https://doi.org/10.1016/j.geomorph.2023.108587
    [Google Scholar]
  74. Mather, A., & Stokes, M. (2016). Extracting palaeoflood data from coarse‐grained Pleistocene river terrace archives: An example from SE Spain. Earth Surface Processes and Landforms, 41, 1991–2004. https://doi.org/10.1002/esp.4001
    [Google Scholar]
  75. Mendicoa, J. (2011). The Holocene sedimentary infill of the Zarautz depression: Response to the eustatic sea‐level rise. Quaternary Studies, 1, 115–131.
    [Google Scholar]
  76. Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275, 221–232.
    [Google Scholar]
  77. Miall, A. D. (2014). Fluvial depositional systems (p. 316). Springer. https://doi.org/10.1007/978‐3‐319‐00666‐6
    [Google Scholar]
  78. Monge‐Ganuzas, M., Cearreta, A., Irabien, M. J., & García‐Artola, A. (2019). Estuaries of the Basque coast. In J. A.Morales (Ed.), The Spanish coastal systems (pp. 437–465). Springer. https://doi.org/10.1007/978‐3‐319‐93169‐2_19
    [Google Scholar]
  79. Nemec, W., & Steel, R. J. (1988). What is a fan delta and how do we recognize it? In W.Nemec & R. J.Steel (Eds.), Fan deltas: Sedimentology and tectonic settings (pp. 3–13). Blackie and Son.
    [Google Scholar]
  80. OCSA . (2015). Reconocimiento geofísico con sísmica de refracción en la playa de Ondarreta (San Sebastián). Donostiako Udala‐Ayuntamiento de San Sebastián.
    [Google Scholar]
  81. Ouimet, W. B., Whipple, K. X., Crosby, B. T., Johnson, J. P., & Schildgen, T. F. (2008). Epigenetic gorges in fluvial landscapes. Earth Surface Processes and Landforms, 33, 1993–2009. https://doi.org/10.1002/esp.1650
    [Google Scholar]
  82. Pánek, T., & Klimeš, J. (2016). Temporal behavior of deep‐seated gravitational slope deformations: A review. Earth‐Science Reviews, 156, 14–38. https://doi.org/10.1016/j.earscirev.2016.02.007
    [Google Scholar]
  83. Pánek, T., Břežný, M., Harrison, S., Schönfeldt, E., & Winocur, D. (2022). Large landslides cluster at the margin of a deglaciated mountain belt. Scientific Reports, 12, 5658. https://doi.org/10.1038/s41598‐022‐09357‐9
    [Google Scholar]
  84. Pedrera, A., García‐Senz, J., Ayala, C., Ruiz‐Constán, A., Rodríguez‐Fernandez, L. R., Robador, A., & González‐Menéndez, L. (2017). Reconstruction of the exhumed mantle across the north Iberian margin by crustal‐scale 3‐D gravity inversion and geological cross section. Tectonics, 36, 3155–3177. https://doi.org/10.1002/2017TC004716
    [Google Scholar]
  85. Pedrera, A., García‐Senz, J., Peropadre, C., Robador, A., López‐Mir, B., Díaz‐Alvarado, J., & Rodríguez‐Fernandez, L. R. (2021). The Getxo crustal‐scale cross section: Testing tectonic models in the Bay of Biscay‐Pyrenean rift system. Earth‐Science Reviews, 221, 103429. https://doi.org/10.1016/j.earscirev.2020.103429
    [Google Scholar]
  86. Retallack, G. J., & Roering, J. J. (2012). Wave‐cut or water‐table platforms of rocky coasts and rivers?GSA Today, 22(6), 4–10. https://doi.org/10.1130/GSATG144A.1
    [Google Scholar]
  87. Ríos, J. M. (1948). Diapirismo. Boletín del Instituto Geológico y Minero de España, 60, 155–390.
    [Google Scholar]
  88. Ruiz, M., Gallart, J., Díaz, J., Olivera, C., Pedreira, D., López, C., González‐Cortina, J. M., & Pulgar, J. A. (2006). Seismic activity at the western Pyrenean edge. Tectonophysics, 412(217), 235. https://doi.org/10.1016/j.tecto.2005.10.034
    [Google Scholar]
  89. Santana, R. (1966a). Géomorphologie des bassins de la Bidasoa et de l'Urumea (Thèse de doctorat d'université). Institut de Géographie, Faculté des Lettres et Sciences Humaines, 1–162.
  90. Santana, R. (1966b). Evolución Geomorfológica del litoral Guipuzcoano. País Vasco Español. In Estudios geográficos: Homenaje de la Facultad de Filosofía y Educación a don Humberto Fuenzalida Villegas (pp. 165–184). Facultad de Filosofía y Educación, Universidad de Chile.
    [Google Scholar]
  91. Sklar, L. S., & Dietrich, W. E. (2006). The role of sediment in controlling steady‐state bedrock channel slope: Implications of the saltation‐abrasion incision model. Geomorphology, 82, 58–83. https://doi.org/10.1016/j.geomorph.2005.08.019
    [Google Scholar]
  92. Spratt, R. M., & Lisiecki, L. E. (2016). A Late Pleistocene sea level stack. Climate of the Past, 12, 1079–1092. https://doi.org/10.5194/cp‐12‐1079‐2016
    [Google Scholar]
  93. Stead, D., & Wolter, A. (2015). A critical review of rock slope failure mechanisms: The importance of structural geology. Journal of Structural Geology, 74, 1–23. https://doi.org/10.1016/j.jsg.2015.02.002
    [Google Scholar]
  94. Teixell, A., Labaume, P., Ayarza, P., Espurt, N., de Saint Blanquat, M., & Lagabrielle, Y. (2018). Crustal structure and evolution of the Pyrenean‐Cantabrian belt: A review and new interpretations from recent concepts and data. Tectonophysics, 734‐735, 130–147. https://doi.org/10.1016/j.tecto.2018.04.017
    [Google Scholar]
  95. Tofiño de San Miguel, V. (1788). Atlas marítimo de España. Retrieved July 28, 2016, from http://www.cervantesvirtual.com/obra/atlas‐maritimo‐de‐espana/
  96. Twidale, C. R. (2004). River patterns and their meaning. Earth‐Science Reviews, 67, 159–218. https://doi.org/10.1016/j.earscirev.2004.03.001
    [Google Scholar]
  97. Valdés, J. M. (1942). Informe de la Jefatura de sondeos y estudio geológicos. In J. M.Aguirre (Ed.), Memoria que manifiesta el progreso y desarrollo del Puerto de Pasajes desde su reversión al Estado en enero de 1927 hasta diciembre de 1941 (pp. 194–198). Talleres Gráficos Laborde y Labayen.
    [Google Scholar]
  98. Wang, R., Colombera, L., & Mountney, N. P. (2019). Geological controls on the geometry of incised‐valley fills: Insights from a global dataset of late‐quaternary examples. Sedimentology, 66, 2134–2168. https://doi.org/10.1111/sed.12596
    [Google Scholar]
  99. Willett, S. D., McCoy, S. W., Perron, J. T., Goren, L., & Chen, C.‐Y. (2014). Dynamic reorganization of river basins. Science, 343, 1248765. https://doi.org/10.1126/science.1248765
    [Google Scholar]
  100. Zabaleta, A., Antigüedad, I., Barrio, I., & Probst, J. L. (2016). Suspended sediment delivery from small catchments to the Bay of Biscay. What are the controlling factors?Earth Surface Processes and Landforms, 41, 1894–1910. https://doi.org/10.1002/esp.3957
    [Google Scholar]
  101. Zhang, X., Wang, S., Wu, X., Xu, S., & Li, Z. (2016). The development of a laterally confined laboratory fan delta under sediment supply reduction. Geomorphology, 257, 120–133. https://doi.org/10.1016/j.geomorph.2015.12.027
    [Google Scholar]
  102. Zhang, Y., Dai, X., Wang, M., & Li, X. (2020). The concept, characteristics and significance of fluvial fans. Petroleum Exploration and Development, 47, 1014–1026. https://doi.org/10.1016/S1876‐3804(20)60113‐6
    [Google Scholar]
  103. Zhonga, Q., Chena, S., & Shana, Y. (2020). Prediction of the overtopping‐induced breach process of the landslide dam. Engineering Geology, 274, 105709. https://doi.org/10.1016/j.enggeo.2020.105709
    [Google Scholar]
/content/journals/10.1111/bre.12798
Loading
/content/journals/10.1111/bre.12798
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): landslides; palaeovalleys; Quaternary; river diversion; western Pyrenees

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error